Next Issue
Volume 5, September
Previous Issue
Volume 5, March
 
 

Clean Technol., Volume 5, Issue 2 (June 2023) – 16 articles

Cover Story (view full-size image): The use of alternatives for petroleum-based products is becoming more and more important. Thus, biodiesel could play an important role in contributing to the implementation of biorefineries, which represent desirable goals in terms of sustainability, green chemistry and circular economy. However, one challenge related to biodiesel based on vegetable oils is its low oxidative stability, which can alter the properties of these products during storage. To avoid this problem, interesting antioxidants, such as propyl gallate (PG), could be added to biodiesel to keep its main properties during oxidation. The aim of this work was to assess the effectiveness of PG during cardoon biodiesel oxidation. As a result, it was proven that PG was highly effective, increasing the length of oxidative stability to more than 10 h at 600 mg·L−1 and retaining its main viscosity and acidity during oxidation. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
25 pages, 3461 KiB  
Review
Moving towards Greener Road Transportation: A Review
by Nick Rigogiannis, Ioannis Bogatsis, Christos Pechlivanis, Anastasios Kyritsis and Nick Papanikolaou
Clean Technol. 2023, 5(2), 766-790; https://doi.org/10.3390/cleantechnol5020038 - 07 Jun 2023
Cited by 6 | Viewed by 2112
Abstract
Road transportation accounts for about 20% of the total GHG emissions in the EU. Nowadays, the substitution of conventional fossil fuel-based ICEs with electric engines, or their hybridization, operating along with Energy Storage Systems, seems to be the most appropriate measure to achieve [...] Read more.
Road transportation accounts for about 20% of the total GHG emissions in the EU. Nowadays, the substitution of conventional fossil fuel-based ICEs with electric engines, or their hybridization, operating along with Energy Storage Systems, seems to be the most appropriate measure to achieve reductions in both fuel consumption and GHGs. However, EVs encounter crucial challenges, such as long charging time and limited driving range. Hence, the transition to the mass adoption of EVs requires considerable effort and time. However, significant steps have been taken in the hybridization of road vehicles, with the aid of renewables and energy recovery/saving systems. In this context, this paper presents a comprehensive literature review of modern green technologies for GHG reduction that are applicable to road transportation, such as on-vehicle energy harvesting and recovery (e.g., thermal, kinetic, etc.) systems and the incorporation of RES into EV charging stations. The impact of road vehicles on the environment is discussed in detail, along with the EU roadmap towards the decarbonization of transportation. Next, methods and techniques for fuel consumption and GHG reduction are systematically presented and categorized into on-vehicle and off-vehicle ones. Finally, a future outlook on more environmentally friendly road transportation is presented. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

22 pages, 2005 KiB  
Article
Forecast Optimization of Wind Speed in the North Coast of the Yucatan Peninsula, Using the Single and Double Exponential Method
by Christy Pérez-Albornoz, Ángel Hernández-Gómez, Victor Ramirez and Damien Guilbert
Clean Technol. 2023, 5(2), 744-765; https://doi.org/10.3390/cleantechnol5020037 - 02 Jun 2023
Viewed by 1214
Abstract
Installation of new wind farms in areas such as the north coast of the Yucatan peninsula is of vital importance to face the local energy demand. For the proper functioning of these facilities it is important to perform wind data analysis, the data [...] Read more.
Installation of new wind farms in areas such as the north coast of the Yucatan peninsula is of vital importance to face the local energy demand. For the proper functioning of these facilities it is important to perform wind data analysis, the data having been collected by anemometers, and to consider the particular characteristics of the studied area. However, despite the great development of anemometers, forecasting methods are necessary for the optimal harvesting of wind energy. For this reason, this study focuses on developing an enhanced wind forecasting method that can be applied to wind data from the north coast of the Yucatan peninsula (in general, any type of data). Thus, strategies can be established to generate a greater amount of energy from the wind farms, which supports the local economy of this area. Four variants have been developed based on the traditional double and single exponential methods. Furthermore, these methods were compared to the experimental data to obtain the optimal forecasting method for the Yucatan area. The forecasting method with the highest performance has obtained an average relative error of 7.9510% and an average mean error of 0.3860 m/s. Full article
(This article belongs to the Special Issue Recent Advances in Wind Energy)
Show Figures

Figure 1

31 pages, 4134 KiB  
Project Report
Alternative Fuel Substitution Improvements in Low NOx In-Line Calciners
by Essossinam Beguedou, Satyanarayana Narra, Komi Agboka, Damgou Mani Kongnine and Ekua Afrakoma Armoo
Clean Technol. 2023, 5(2), 713-743; https://doi.org/10.3390/cleantechnol5020036 - 01 Jun 2023
Viewed by 2031
Abstract
The process of making cement clinker uses a lot of energy and produces a lot of pollution. Currently, cement companies use a combination of traditional fossil fuels and alternative fuels (AF-Fuels) to lower their energy consumption and environmental footprint by improving the pyro-system. [...] Read more.
The process of making cement clinker uses a lot of energy and produces a lot of pollution. Currently, cement companies use a combination of traditional fossil fuels and alternative fuels (AF-Fuels) to lower their energy consumption and environmental footprint by improving the pyro-system. In a calciner, AF-Fuels can reach a thermal substitution rate (TSR) of up to 80–100%. However, a kiln burner can only achieve a TSR of 50–60%. High TSR values have been provided by improvements in multi-channel burners, proper AF-Fuel feeding point setups, and various AF pre-combustion methods. Significant modeling of the calciner burner and system has also improved TSRs. However, the cement industry has encountered operational problems such as kiln coating build-up, reduced flame temperatures, higher specific heat consumption, and incomplete combustion. There is growing interest in waste substitution, a promising source of AF-Fuel that needs to be integrated into the current cement plant design to solve the calciner operational problems of the cement industry. This study discusses the latest developments and different experimental and modeling studies performed on the direct burning/co-firing of AF-Fuel in the cement industry as well as the incorporation of gasification in cement manufacturing. Based on this, a technically and environmentally improved solution is proposed. The characteristics of both approaches towards pre-calciner function and optimization are critically assessed. The many in-line cement calciner integration technologies and their various configurations for the long-term problems of cement plants are discussed. This project report also focuses on the necessity of creating appropriate calciner models for forecasting calciner production based on various AF-Fuels and their feeding positions in the calciner. Full article
Show Figures

Figure 1

17 pages, 1732 KiB  
Article
CO2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles
by Lucian-Ioan Dulău
Clean Technol. 2023, 5(2), 696-712; https://doi.org/10.3390/cleantechnol5020035 - 01 Jun 2023
Cited by 3 | Viewed by 6118
Abstract
During the last few years, electric and hydrogen vehicles have become an alternative to cars that use internal combustion engines. The number of electric and hydrogen vehicles sold has increased due to support from local governments and because car manufacturers will stop the [...] Read more.
During the last few years, electric and hydrogen vehicles have become an alternative to cars that use internal combustion engines. The number of electric and hydrogen vehicles sold has increased due to support from local governments and because car manufacturers will stop the production of internal combustion engines in the near future. The emissions of these vehicles while being driven are zero, but they still have an impact on the environment due to their fuel. In this article, an analysis of carbon dioxide (CO2) emissions for two types of vehicles: battery electric vehicles (BEVs) powered by electricity and fuel cell electric vehicles (FCEVs) powered by hydrogen, is presented. The analysis considers different values for the mix of power generation and hydrogen production options in comparison to other studies. The CO2 emissions were calculated and compared for the two types of vehicles. The results show that the CO2 emissions of BEVs are lower when compared to FCEVs if the hydrogen is obtained from pollutant sources and is higher if the hydrogen is obtained from nuclear power and renewable energy sources. When compared to conventional combustion engine vehicles, BEVs have lower CO2 emissions, while the emissions of FCEVs are dependent on the hydrogen production method. Full article
Show Figures

Figure 1

21 pages, 4555 KiB  
Article
Torrefaction of Pine Using a Pilot-Scale Rotary Reactor: Experimentation, Kinetics, and Process Simulation Using Aspen Plus™
by Suchandra Hazra, Prithvi Morampudi, John C. Prindle, Dhan Lord B. Fortela, Rafael Hernandez, Mark E. Zappi and Prashanth Buchireddy
Clean Technol. 2023, 5(2), 675-695; https://doi.org/10.3390/cleantechnol5020034 - 17 May 2023
Cited by 1 | Viewed by 2121
Abstract
Biomass is an excellent sustainable carbon neutral energy source, however its use as a coal/petroleum coke substitute in thermal applications poses several challenges. Several inherent properties of biomass including higher heating value (HHV), bulk density, and its hydrophilic and fibrous nature, all contribute [...] Read more.
Biomass is an excellent sustainable carbon neutral energy source, however its use as a coal/petroleum coke substitute in thermal applications poses several challenges. Several inherent properties of biomass including higher heating value (HHV), bulk density, and its hydrophilic and fibrous nature, all contribute to challenges for it to be used as a solid fuel. Torrefaction or mild pyrolysis is a well-accepted thermal pretreatment technology that solves most of the above-mentioned challenges and results in a product with superior coal-like properties. Torrefaction involves the heating of biomass to moderate temperatures typically between 200 °C and 300 °C in a non-oxidizing atmosphere. This study focused on evaluating the influence of torrefaction operating temperature (204–304 °C) and residence time (10–40 min) on properties of pine. Tests were performed on a continuous 0.3 ton/day indirectly heated rotary reactor. The influence of torrefaction operational conditions on pine was evaluated in terms of the composition of torrefied solids, mass yield, energy yield, and HHV using a simulated model developed in Aspen Plus™ software. A kinetic model was established based on the experimental data generated. An increase in torrefaction severity (increasing temperature and residence time) resulted in an increase in carbon content, accompanied with a decrease in oxygen and hydrogen. Results from the simulated model suggest that the solid and energy yields decreased with an increase in temperature and residence time. Solid yield varied from 80% at 204 °C to 68% at 304 °C, and energy yield varied from 99% at 204 °C to 70% at 304 °C, respectively. On the other hand, HHV improved from 22.8 to 25.1 MJ/kg with an increase in temperature at 20 min residence time. Over the range of 10 to 40 min residence time at 260 °C, solid and energy yields varied from 77% to 59% and 79% to 63%, respectively; however the HHV increased by only 3%. Solid yield, energy yield, and HHV simulated data were within the 5% error margin when compared to the experimental data. Validation of the simulation parameters was achieved by the conformance of the experimental and simulation data obtained under the same testing conditions. These simulated parameters can be utilized to study other operating conditions fundamental for the commercialization of these processes. Desirable torrefaction temperature to achieve the highest solid fuel yield can be determined using the energy yield and mass loss data. Full article
(This article belongs to the Special Issue Valorization of Industrial and Agro Waste)
Show Figures

Figure 1

23 pages, 6554 KiB  
Article
Material Flow Cost Accounting as a Resource-Saving Tool for Emerging Recycling Technologies
by Caitlin Walls, Almy Ruzni Keumala Putri and Gesa Beck
Clean Technol. 2023, 5(2), 652-674; https://doi.org/10.3390/cleantechnol5020033 - 17 May 2023
Cited by 1 | Viewed by 2940
Abstract
Material Flow Cost Accounting (MFCA) is an environmental management accounting method that allocates costs to material and energy flows through a process, thereby enabling a simultaneous reduction in environmental impacts alongside an improvement in business and economic efficiency. This study illustrates the versatility [...] Read more.
Material Flow Cost Accounting (MFCA) is an environmental management accounting method that allocates costs to material and energy flows through a process, thereby enabling a simultaneous reduction in environmental impacts alongside an improvement in business and economic efficiency. This study illustrates the versatility of MFCA beyond its usual application to existing production and manufacturing processes. In this paper, MFCA is used to assess the financial viability of two emerging recycling technologies, IRETA2 (Development and Evaluation of Recycling Routes to Recover Tantalum from Electronic Waste) and ReComp (Development of an Innovative, Economically and Ecologically Sensible Recycling Method for Metallised ABS and PC/ABS Composite Waste). These two projects differ in their process structure. Whilst IRETA2 is a strictly linear recycling process, ReComp consists of two process streams, split according to the treatment of its two material fractions. For both projects, the lab-scale experimental results were used to develop an MFCA model of the recycling process scaled at each project partner’s facilities. MFCA was utilised to calculate the projects’ overall profit or loss, the impact of the final products’ market conditions and processing rate (in the case of IRETA2), or machinery capacity (for ReComp) on the overall results. The results show that neither IRETA2 nor ReComp are financially viable based on the current output products’ market value and quantity produced. However, through a sensitivity analysis, it is demonstrated that IRETA2 could become financially viable if the processing rate or market conditions were to improve. Additionally, ReComp could become financially viable if there was an increase in machine capacity. Finally, this paper also explores possible implications of MFCA when applied to emerging recycling technologies on EU policy and strategy, particularly those related to the EU Green Deal, such as extended producer responsibility and supply chain acts. Full article
(This article belongs to the Collection Brilliant Young Researchers in Clean Technologies)
Show Figures

Figure 1

14 pages, 2987 KiB  
Article
Cyanobacteria Arthospira platensis as an Effective Tool for Gadolinium Removal from Wastewater
by Nikita Yushin, Inga Zinicovscaia, Liliana Cepoi, Tatiana Chiriac, Ludmila Rudi and Dmitrii Grozdov
Clean Technol. 2023, 5(2), 638-651; https://doi.org/10.3390/cleantechnol5020032 - 17 May 2023
Cited by 1 | Viewed by 1232
Abstract
The biosorption and bioaccumulation of gadolinium by Arthospira platensis in batch experiments was examined. In biosorption experiments, the influence of pH, gadolinium concentration, time of contact and temperature on Arthospira platensis sorption capacity was investigated. The maximum biosorption capacity of 101 mg/g was [...] Read more.
The biosorption and bioaccumulation of gadolinium by Arthospira platensis in batch experiments was examined. In biosorption experiments, the influence of pH, gadolinium concentration, time of contact and temperature on Arthospira platensis sorption capacity was investigated. The maximum biosorption capacity of 101 mg/g was attained at a pH of 3.0 and temperature of 20 °C. A pseudo-first-order model was applicable to describe the kinetics of the biosorption and the Freundlich model to explain the equilibrium of the process. In bioaccumulation experiments, besides the examination of the gadolinium uptake by Arthospira platensis, its effect on biomass productivity as well as the content of proteins, lipids, carbohydrates and pigments was assessed. The addition of gadolinium in the cultivation medium resulted in the increase in biomass productivity and the content of MDA and, at the same time, in the reduction in the amount of proteins and carbohydrates. The content of other monitored parameters did not change significantly. The water extracts obtained from Arthospira platensis showed a higher antiradical activity against the ABTS cation radical in comparison with ethanolic extracts. Arthospira platensis is of interest for the development of the technology of gadolinium-contaminated wastewater remediation. Full article
Show Figures

Figure 1

29 pages, 3467 KiB  
Review
Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review
by Ismail Ismail and Vassilis Gaganis
Clean Technol. 2023, 5(2), 609-637; https://doi.org/10.3390/cleantechnol5020031 - 15 May 2023
Cited by 5 | Viewed by 3922
Abstract
To mitigate dangerous climate change effects, the 195 countries that signed the 2015 Paris Agreement agreed to “keep the increase in average global surface temperature below 2 °C and limit the increase to 1.5 °C” by reducing carbon emissions. One promising option for [...] Read more.
To mitigate dangerous climate change effects, the 195 countries that signed the 2015 Paris Agreement agreed to “keep the increase in average global surface temperature below 2 °C and limit the increase to 1.5 °C” by reducing carbon emissions. One promising option for reducing carbon emissions is the deployment of carbon capture, utilization, and storage technologies (CCUS) to achieve climate goals. However, for large-scale deployment of underground carbon storage, it is essential to develop technically sound, safe, and cost-effective CO2 injection and well control strategies. This involves sophisticated balancing of various factors such as subsurface engineering policies, technical constraints, and economic trade-offs. Optimization techniques are the best tools to manage this complexity and ensure that CCUS projects are economically viable while maintaining safety and environmental standards. This work reviews thoroughly and critically carbon storage studies, along with the optimization of CO2 injection and well control strategies in saline aquifers. The result of this review provides the foundation for carbon storage by outlining the key subsurface policies and the application of these policies in carbon storage development plans. It also focusses on examining applied optimization techniques to develop CO2 injection and well control strategies in saline aquifers, providing insights for future work and commercial CCUS applications. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

25 pages, 2697 KiB  
Review
Vapor Compression Cycle: A State-of-the-Art Review on Cycle Improvements, Water and Other Natural Refrigerants
by Fadi Alsouda, Nick S. Bennett, Suvash C. Saha, Fatemeh Salehi and Mohammad S. Islam
Clean Technol. 2023, 5(2), 584-608; https://doi.org/10.3390/cleantechnol5020030 - 05 May 2023
Cited by 5 | Viewed by 7517
Abstract
Air conditioning and refrigeration have become necessary in modern life, accounting for more than 7.8% of greenhouse gases (GHG) emitted globally. Reducing the environmental impact of these systems is crucial for meeting the global GHG emission targets. Two principal directions must be considered [...] Read more.
Air conditioning and refrigeration have become necessary in modern life, accounting for more than 7.8% of greenhouse gases (GHG) emitted globally. Reducing the environmental impact of these systems is crucial for meeting the global GHG emission targets. Two principal directions must be considered to reduce the environmental impact of air conditioning systems. Firstly, reducing the direct effect by looking at less harmful refrigerants and secondly, reducing the indirect effect by searching for options to improve the system efficiency. This study presents the latest developments in the vapor compression cycle and natural refrigerants, focusing on water as a refrigerant. Natural refrigerants, and especially water, could be the ultimate solution for the environmental problems associated with the operation of vapor compression cycle (VCC) cooling systems, including ozone depletion (OD) and global warming (GW). Reducing the environmental impact of building cooling systems is essential, and the recent system improvements made to enhance the system coefficient of performance (COP) are thoroughly discussed in this paper. Though the cycle improvements discussed in this work are essential and could increase the system efficiency, they still need to solve the direct environmental impact of refrigerants. Accordingly, this paper suggests that natural refrigerants, including water, are the most suitable strategic choice to replace the current refrigerants in the refrigeration and air conditioning industry. Finally, this study reviews the latest VCC system improvements and natural refrigerants in order to guide interested researchers with solutions that may reduce the environmental impact of VCC systems and suggest future research areas. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

15 pages, 7040 KiB  
Article
Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation
by Sergio Nogales-Delgado, Agustina Guiberteau Cabanillas, Juan Pedro Moro and José María Encinar Martín
Clean Technol. 2023, 5(2), 569-583; https://doi.org/10.3390/cleantechnol5020029 - 02 May 2023
Cited by 2 | Viewed by 1685
Abstract
The use of alternatives for petroleum-based products is becoming more and more important, especially considering the new and constantly changing geopolitical context, where excessive energy dependence is not desirable. Thus, biodiesel could play an important role in contributing to the implementation of biorefineries, [...] Read more.
The use of alternatives for petroleum-based products is becoming more and more important, especially considering the new and constantly changing geopolitical context, where excessive energy dependence is not desirable. Thus, biodiesel could play an important role in contributing to the implementation of biorefineries, which represent desirable goals in terms of sustainability, green chemistry and the circular economy. However, one challenge related to biodiesel based on vegetable oils is its low oxidative stability, which can alter the properties of these products during storage. To avoid this problem, interesting antioxidants, such as propyl gallate (PG), could be added to biodiesel to allow it to keep its main properties during oxidation. Additionally, monitoring PG content during oxidation is interesting, and the use of voltammetry could be suitable for this purpose. The aim of this work was to assess the effectiveness of PG during cardoon biodiesel oxidation, while monitoring the process through cyclic voltammetry (CV). As a result, it was proven that PG was highly effective, increasing the length of oxidative stability to more than 10 h at low concentrations (600 mg·L−1) and retaining its main properties (viscosity and acidity) during oxidation. Regarding CV, this technique was successfully optimized to determine PG concentration in cardoon biodiesel during oxidation. Full article
(This article belongs to the Collection Bioenergy Technologies)
Show Figures

Figure 1

38 pages, 5173 KiB  
Review
Investigation of Hydrogen Production System-Based PEM EL: PEM EL Modeling, DC/DC Power Converter, and Controller Design Approaches
by Mohamed Koundi, Hassan El Fadil, Zakaria EL Idrissi, Abdellah Lassioui, Abdessamad Intidam, Tasnime Bouanou, Soukaina Nady and Aziz Rachid
Clean Technol. 2023, 5(2), 531-568; https://doi.org/10.3390/cleantechnol5020028 - 23 Apr 2023
Cited by 5 | Viewed by 3520
Abstract
The main component of the hydrogen production system is the electrolyzer (EL), which is used to convert electrical energy and water into hydrogen and oxygen. The power converter supplies the EL, and the controller is used to ensure the global stability and safety [...] Read more.
The main component of the hydrogen production system is the electrolyzer (EL), which is used to convert electrical energy and water into hydrogen and oxygen. The power converter supplies the EL, and the controller is used to ensure the global stability and safety of the overall system. This review aims to investigate and analyze each one of these components: Proton Exchange Membrane Electrolyzer (PEM EL) electrical modeling, DC/DC power converters, and control approaches. To achieve this desired result, a review of the literature survey and an investigation of the PEM EL electrical modeling of the empirical and semi-empirical, including the static and dynamic models, are carried out. In addition, other sub-models used to predict the temperature, gas flow rates (H2 and O2), hydrogen pressure, and energy efficiency for PEM EL are covered. DC/DC power converters suitable for PEM EL are discussed in terms of efficiency, current ripple, voltage ratio, and their ability to operate in the case of power switch failure. This review involves analysis and investigation of PEM EL control strategies and approaches previously used to achieve control objectives, robustness, and reliability in studying the DC/DC converter-PEM electrolyzer system. The paper also highlights the online parameter identification of the PEM electrolyzer model and adaptive control issues. Finally, a discussion of the results is developed to emphasize the strengths, weaknesses, and imperfections of the literature on this subject as well as proposing ideas and challenges for future work. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

13 pages, 3315 KiB  
Article
Membrane Filtration Applied to the Purification of Sugarcane Bagasse Mild Alkaline Extracts
by Vincent Oriez, Nga Thi-Thanh Pham, Jérôme Peydecastaing, Philippe Behra and Pierre-Yves Pontalier
Clean Technol. 2023, 5(2), 518-530; https://doi.org/10.3390/cleantechnol5020027 - 23 Apr 2023
Cited by 1 | Viewed by 1604
Abstract
Sugarcane bagasse (SCB), a by-product of the sugar industry, is composed mainly of cellulose, hemicelluloses, and lignin, and can be used to replace petrochemical polymers in various applications. In this work, SCB was treated under mild alkaline conditions with 1.5% NaOH (m:v) and [...] Read more.
Sugarcane bagasse (SCB), a by-product of the sugar industry, is composed mainly of cellulose, hemicelluloses, and lignin, and can be used to replace petrochemical polymers in various applications. In this work, SCB was treated under mild alkaline conditions with 1.5% NaOH (m:v) and a solid:liquid ratio of 1:20 (m:v) at 60 °C, during 6 h. A 10 kDa polysulfone hollow fiber membrane was used for the purification of the extract in different filtration modes, namely concentration and diafiltration, and a combination of both modes. Permeate fluxes and rejection rates were evaluated at different transmembrane pressure (TMP) at the shear rate of 10,187 s–1, at 40 °C. In concentration mode, increasing the volume reduction factor up to 6.1 led to a significant increase in the retention rates of acid-soluble lignin (ASL) and xylan, and a decrease in inorganic salt content in the retentate. In diafiltration mode, after 2.9 diavolumes, the acid-insoluble lignin (AIL) and xylan rejection rates drastically increased, as did the rejection rates of ash. Full article
(This article belongs to the Special Issue Membrane Technology in Decentralized Applications)
Show Figures

Figure 1

21 pages, 4932 KiB  
Systematic Review
Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021)
by Samuel-Soma M. Ajibade, Festus Victor Bekun, Festus Fatai Adedoyin, Bright Akwasi Gyamfi and Anthonia Oluwatosin Adediran
Clean Technol. 2023, 5(2), 497-517; https://doi.org/10.3390/cleantechnol5020026 - 19 Apr 2023
Cited by 9 | Viewed by 2227
Abstract
This study examines the research climate on machine learning applications in renewable energy (MLARE). Therefore, the publication trends (PT) and bibliometric analysis (BA) on MLARE research published and indexed in the Elsevier Scopus database between 2012 and 2021 were examined. The PT was [...] Read more.
This study examines the research climate on machine learning applications in renewable energy (MLARE). Therefore, the publication trends (PT) and bibliometric analysis (BA) on MLARE research published and indexed in the Elsevier Scopus database between 2012 and 2021 were examined. The PT was adopted to deduce the major stakeholders, top-cited publications, and funding organizations on MLARE, whereas BA elucidated critical insights into the research landscape, scientific developments, and technological growth. The PT revealed 1218 published documents comprising 46.9% articles, 39.7% conference papers, and 6.0% reviews on the topic. Subject area analysis revealed MLARE research spans the areas of science, technology, engineering, and mathematics among others, which indicates it is a broad, multidisciplinary, and impactful research topic. The most prolific researcher, affiliations, country, and funder are Ravinesh C. Deo, National Renewable Energy Laboratory, United States, and the National Natural Science Foundation of China, respectively. The most prominent journals on the top are Applied Energy and Energies, which indicates that journal reputation and open access are critical considerations for the author’s choice of publication outlet. The high productivity of the major stakeholders in MLARE is due to collaborations and research funding support. The keyword co-occurrence analysis identified four (4) clusters or thematic areas on MLARE, which broadly describe the systems, technologies, tools/technologies, and socio-technical dynamics of MLARE research. Overall, the study showed that ML is critical to the prediction, operation, and optimization of renewable energy technologies (RET) along with the design and development of RE-related materials. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

13 pages, 2099 KiB  
Article
Reduced Mechanism for Combustion of Ammonia and Natural Gas Mixtures
by Aniket R. Khade, Vijaya D. Damodara and Daniel H. Chen
Clean Technol. 2023, 5(2), 484-496; https://doi.org/10.3390/cleantechnol5020025 - 12 Apr 2023
Viewed by 2515
Abstract
A fuel mixture of ammonia and natural gas as a low-carbon alternative for future power generation and transportation is an attractive option. In this work, a 50-species reduced mechanism, NH3NG, suitable for computational fluid dynamics simulations (CFD), is developed for ammonia–natural [...] Read more.
A fuel mixture of ammonia and natural gas as a low-carbon alternative for future power generation and transportation is an attractive option. In this work, a 50-species reduced mechanism, NH3NG, suitable for computational fluid dynamics simulations (CFD), is developed for ammonia–natural gas cofiring while addressing important emission issues, such as the formation of nitrogen oxides (NOx), soot, carbon monoxide, and unburnt methane/ammonia. The adoption of reduced mechanisms is imperative not only for saving computer storage and running time but also for numerical convergence for practical applications. The NH3NG reduced mechanism can predict soot emission because it includes soot precursor species. Further, it can handle heavier components in natural gas, such as ethane and propane. The absolute error is 5% for predicting NOx and CO emissions compared to the full Modified Konnov mechanism. Validation with key performance parameters (ignition delay, laminar flame speed, adiabatic temperature, and NOx and CO emissions) indicates that the predictions of the reduced mechanism NH3NG are in good agreement with published experimental data. The average prediction error of 13% for ignition delay is within typical experimental data uncertainties of 10–20%. The predicted adiabatic temperatures are within 1 °C. For laminar flame speed, the R2 between prediction and data is 0.985. NH3NG over-predicts NOx and CO emissions, similar to all other literature methods, but the NOx predictions are closer to the experimental data. Full article
(This article belongs to the Special Issue Green and Sustainable Chemistry for Energy Application)
Show Figures

Figure 1

18 pages, 6026 KiB  
Article
Efficient Adsorption and Catalytic Reduction of Phenol Red Dye by Glutaraldehyde Cross-Linked Chitosan and Its Ag-Loaded Catalysts: Materials Synthesis, Characterization and Application
by Chiara Concetta Siciliano, Van Minh Dinh, Paolo Canu, Jyri-Pekka Mikkola and Santosh Govind Khokarale
Clean Technol. 2023, 5(2), 466-483; https://doi.org/10.3390/cleantechnol5020024 - 06 Apr 2023
Cited by 1 | Viewed by 2185
Abstract
In this study, glutaraldehyde cross-linked chitosan support, as well as the catalysts obtained after loading Ag metal (Ag/Chitosan), were synthesised and applied for adsorption and reduction of phenol red dye in an aqueous solution. The Ag/chitosan catalysts were characterised by X-ray diffraction (XRD), [...] Read more.
In this study, glutaraldehyde cross-linked chitosan support, as well as the catalysts obtained after loading Ag metal (Ag/Chitosan), were synthesised and applied for adsorption and reduction of phenol red dye in an aqueous solution. The Ag/chitosan catalysts were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis techniques. The catalytic reduction and adsorption performance of phenol red dye with Ag/chitosan and cross-linked chitosan, respectively, was performed at ambient reaction conditions. The reduction of dye was carried out using sodium borohydride (NaBH4) as the reducing agent, while the progress of adsorption and reduction study was monitored with ultraviolet-visible (UV-vis) spectrophotometry technique. The reduction of the phenol red dye varied with the amount of catalyst, the concentration of NaBH4, Ag metal loading, reaction temperature, phenol red dye concentration and initial pH of the dye solution. The dye solution with a nearly-neutral pH (6.4) allowed efficient adsorption of the dye, while acidic (pH = 4) and alkaline (pH = 8, 11, 13.8) solutions showed incomplete or no adsorption of dye. The reusability of the Ag/chitosan catalyst was applied for the complete reduction of the dye, where no significant loss of catalytic activity was observed. Hence, the applicability of cross-linked chitosan and Ag/catalyst was thus proven for both adsorption and reduction of phenol red dye in an aqueous solution and can be applied for industrial wastewater treatment. Full article
(This article belongs to the Collection Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

15 pages, 2065 KiB  
Article
Bio Ethanol Production from Rice Straw Saccharification via Avicelase Gene in E. coli Recombinant Strain
by Mohamed S. Abdel-Salam, Safa S. Hafez, Mohamed Fadel, Shereen A. H. Mohamed, Wafaa K. Hegazy and Bigad E. Khalil
Clean Technol. 2023, 5(2), 451-465; https://doi.org/10.3390/cleantechnol5020023 - 03 Apr 2023
Cited by 1 | Viewed by 2135
Abstract
The most abundant organic carbon source on Earth is cellulosic materials. Its main resources are crop straws which are not commonly used and produce environmental pollution. These resources can be a site of biological hydrolysis to primary sugars by cellulase enzymes, in which [...] Read more.
The most abundant organic carbon source on Earth is cellulosic materials. Its main resources are crop straws which are not commonly used and produce environmental pollution. These resources can be a site of biological hydrolysis to primary sugars by cellulase enzymes, in which avicelase is the most efficient enzyme in the cellulase family. This work aimed to clone the avicelase gene, transfer it to E. coli, optimize its expression, saccharify rice straw to its primary sugars, and ferment it to bioethanol. The avicelase gene was cloned from the Bacillus subtilis strain and cloned into two E. coli (i.e., DH5α and Bl21) strains. The optimized avicelase activity was described by testing the effect of different media and growth conditions including different carbon and nitrogen sources, as well as pHs and shaking or static conditions. Avicelase enzyme was extracted and used to saccharify rice straw. The obtained glucose was subjected to fermentation by Saccharomyces cerevisiae F.307 under an aerobic condition growth for the production of bioethanol. The ethanol yield was 5.26% (v/v), and the fermentation efficiency was 86%. This study showed the ability to clone one of the cellulolytic genes (i.e., avicelase) for the valorization of rice straw for producing renewable energy and bioethanol from cellulolytic wastes such as rice straw. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop