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Abstract: A fuel mixture of ammonia and natural gas as a low-carbon alternative for future power
generation and transportation is an attractive option. In this work, a 50-species reduced mechanism,
NH3NG, suitable for computational fluid dynamics simulations (CFD), is developed for ammonia–
natural gas cofiring while addressing important emission issues, such as the formation of nitrogen
oxides (NOx), soot, carbon monoxide, and unburnt methane/ammonia. The adoption of reduced
mechanisms is imperative not only for saving computer storage and running time but also for numeri-
cal convergence for practical applications. The NH3NG reduced mechanism can predict soot emission
because it includes soot precursor species. Further, it can handle heavier components in natural gas,
such as ethane and propane. The absolute error is 5% for predicting NOx and CO emissions compared
to the full Modified Konnov mechanism. Validation with key performance parameters (ignition
delay, laminar flame speed, adiabatic temperature, and NOx and CO emissions) indicates that the
predictions of the reduced mechanism NH3NG are in good agreement with published experimental
data. The average prediction error of 13% for ignition delay is within typical experimental data
uncertainties of 10–20%. The predicted adiabatic temperatures are within 1 ◦C. For laminar flame
speed, the R2 between prediction and data is 0.985. NH3NG over-predicts NOx and CO emissions,
similar to all other literature methods, but the NOx predictions are closer to the experimental data.

Keywords: reduced mechanism; ammonia; natural gas; combustion; soot; nitrogen oxides

1. Introduction

Since wind and solar power sources are intermittent in nature and are generally far
from urban centers, there is a compelling need to store large quantities of renewable energy
with a faster response. The popular power from hydrogen concept via a water splitter can
be used to create ammonia by reacting hydrogen with nitrogen in an air separation unit
(ASU). Ammonia is currently manufactured at a large scale as an industrial chemical and
fertilizer. Owing to its various merits—ammonia (1) is easy to store as a liquid; similar to
propane; (2) has a high energy density; and (3) handling experience and infrastructure are
already available—nowadays, ammonia is widely considered as an important hydrogen-
carrier for future marine shipping or commercial aviation to drive turbines or engines,
Figure 1. Ammonia can be easily cracked back to pure hydrogen for those applications that
use pure hydrogen or a mix of hydrogen with other fuels, including ammonia itself [1–6].

However, through fuel NOx mechanisms, nitrogen-containing ammonia can lead to
significant NOx emissions. Further, there are also concerns about unburnt ammonia and
slow ammonia kinetics at low temperatures. On the other hand, using natural gas (NG) as
a fuel has distinct advantages, such as
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(1) Higher hydrogen content relative to gasoline, diesel, and coal;
(2) High adiabatic flame temperature and high laminar flame speed;
(3) Well-established infrastructure;
(4) Abundance of natural gas reserves in the US.
(5) A worldwide increase in liquefied natural gas (LNG) plants and terminals.

Because of the above-mentioned advantages, cofiring ammonia with natural gas
has gained significant attention as a clean source of energy in gas turbines for power
generation as well as in internal combustion engines (ICE) for transportation. Even though
cofiring ammonia with natural gas can ease the above-mentioned emission concerns of
combusting ammonia alone, additional emissions, such as soot, carbon monoxide, unburnt
hydrocarbons, and Volatile Organic Compounds (VOCs), still need to be addressed [7–19].
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Figure 1. Ammonia energy density chart [3].

There are full mechanisms in the literature that address combustion involving ammo-
nia in the air. The detailed Konnov mechanism for ammonia consists of 129 species and
957 reactions [11]. A new version of the Konnov model targeting the ammonia flame and an
improved hydrocarbon subset has also been reported [13,14]. The CEU-NH3 mechanism for
ammonia and methane/methanol/ethanol contains 91 species and 444 reactions [15]. The
UC San Diego mechanisms are a suite of mechanisms, including nitrogen and hydrocarbon-
based chemistry [16]. The USCII full mechanism, developed by Professor Hai Wang, is a
detailed kinetic mechanism tailored for hydrogen and C1 to C4 combustion with 111 species
in 784 reversible reactions [17–19].

The objective of this study is to develop a reaction mechanism that can be used in com-
putational fluid dynamics’ (CFD) modeling to predict NOx/soot/unburnt NH3/unburnt
hydrocarbons/volatile organic compound (VOC) emissions under gas turbine and internal
combustion engine (ICE) conditions. The Konnov and the USCII mechanisms [10,17–19]
were combined to become the full mechanism (Modified Konnov Mechanism). The full
Konnov mechanism has 129 species. Additional species (C4H10, pC4H9, and nC3H7) and
associated mechanisms from USCII were added to the Konnov mechanism to make the
Modified Konnov Mechanism, which has 132 species and 1238 reactions.
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Reduced mechanisms are required for practical turbine/ICE applications due to the
complexity of 3D computational fluid dynamics’ (CFD) simulations. The CFD simula-
tions are widely used in turbine, engine, and furnace design for analyzing flame stability,
autoignition zone, temperature/velocity profiles, fuel/oxidizer mixing patterns, and emis-
sion rates. However, coupling detailed reaction mechanisms with momentum, heat, mass
transport equations, and stiff differential equations proved to be a serious burden on com-
putational speed and numerical convergence. Thus, it is imperative to adopt reduced
mechanisms not only for saving computer storage and running time but also for numerical
convergence for practical applications. For instance, ANSYS Fluent sets the maximum
number of species in the reactions to 50. One of the goals of this paper is to contribute an
ammonia–methane cofiring reduced mechanism that can handle heavier hydrocarbons (C2
and C3) in natural gas streams, Table 1. Further, many existing reduced mechanisms for
ammonia and methane mixtures are unsuitable for predicting soot emissions. Therefore,
the developed reduced mechanism NH3NG also included soot precursor species C2H2 and
C2H4 to facilitate soot emission estimation. NH3NG compares well with the full mechanism
and existing reduced mechanisms when validated against experimental ignition delay,
adiabatic temperature, laminar flame speed, and NOx/CO emissions [20–33].

Table 1. Natural gas composition [4].

Component Typical (%) Range (Mole)

Methane 94.9 87.0–96.0
Ethane 2.5 1.8–5.1
C3+ 0.3 0.1–2.3
Nitrogen 1.6 1.3–5.6
Carbon 0.7 0.1–1.0

2. Methodology

The mechanism reduction was performed using Chemkin 2019 R2 [33–36]. The fol-
lowing steps were taken to determine the 50 species to be included in the reduced mecha-
nism NH3NG:

1. The species in the reduced mechanism should be suitable for the targeted applications
in turbine/engine design with CFD. In this study, the reduced mechanism should in-
clude fuel species, emission species (NO, NO2, NH3, HCN, N2O), and soot precursors
(C2H2, C2H4).

2. The next step is to utilize the Reaction Path Analyzer (RPA) tool in Chemkin. RPA
provides a visualization of the inner relationships of the chemistry model, as shown
in Figure 2.

3. The final step in species selection is to apply the Reaction Rate Analysis (RRA) tool. In
this Chemkin analysis, the Perfectly Stirred Reactor (PSR) model is adopted. In these
PSR runs, the species with a higher rate of production or destruction are expected to
be dominant in the reaction mechanism and, thus, are ranked higher. Both RPA and
RRA are needed to identify important intermediate species for NH3NG to represent
the essential elements of the full Modified Konnov Mechanism.
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2.1. Preliminary Species Selection

Mechanism reduction was conducted at a temperature of 1500 K and pressure of
300 bar, using Chemkin 2019 R2 [36]. For the reduced mechanism, the initial species list
included Fuel Species (NH3, CH4, C2H6, C3H8), NOX and NOy (NO, NO2, HONO), Soot
Precursors (C2H2, C2H4), and Air (O2, N2, Ar).

The soot precursor species C2H2 and C2H4 are important in that the soot emission
can be predicted with precursor-based soot models, such as the Moss–Brookes’ equation
(with the built-in Fenimore–Jones soot oxidation model) listed in ANSYS Fluent [26–32].
Additional species (C, CH, CH2, C3H3, and C4H4) were also included as they were part of
the reaction intermediates.

2.2. Reaction Path Analyzer (RPA)

The reaction path analyzer (RPA) displays reaction pathways connecting the species.
Since the path width is proportional to its rate of production, RPA helps identify the
main intermediates during reactions and eliminates any species with negligible contri-
butions [28]. In this study, reaction paths between fuel components and the major inter-
mediates/products (CO, CO2, NO, NO2, C2H4) were analyzed. The major contributing
reactions and participating species were identified. Figure 2 shows the reaction pathways
for CO production.

2.3. Reaction Rate Analysis (RRA)

The important intermediate species were selected based on the active participation
of the species in the reaction. To determine the key intermediate species, the production
and destruction rates were added and sorted to obtain the ranks of the species. The species
with a higher rate of production or destruction were ranked higher. From the rankings list,
it was observed that most of the species were already included in the reduced mechanism.
However, some species, such as C, CH, CH2, C3H3, and C4H4, were still needed (e.g., for
soot production). Therefore, they were subsequently added to the list, and the mechanism
was reduced further. Figure 3 gives the reaction rate analysis for the key intermediate C2H4,
a soot precursor species. Table 2 shows the final 50 selected species.
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Table 2. Fifty (50) species of the NH3NG combustion mechanism.

50 Species

Ar N2 H H2 O O2 OH HO2 H2O CO CO2 HCO CH3 CH4 C2H6
CH2O C2H5 CH2 CH3O CH2OH CH C2H2 C2H4 C2H3 CH3OH
CH2CO HCCO C CH2HCO NH NO NCO N2O NH2 HNO NO2
NNH NH3 HONO CNN H2NO C3H6 C3H8 iC3H7 nC3H7 C3H3

C3H5 C3H4 C4H4 iC4H3

3. Results
3.1. Comparison with the Full Mechanism

The new reduced mechanism was compared against the full modified Konnov mecha-
nism at a residence time of 1 s and ignition temperature of 1500 K, and pressure of 300 bar.
The predicted mole fractions of the important combustion products obtained from the
Chemkin simulation of the reduced mechanism at various residence times were recorded.
Table 3 summarizes the prediction errors at a 1 s residence time for an ammonia–methane
mixture. The predicted mole fraction differed from the full Modified Konnov Mechanism
mole fractions by an average absolute error of 1.90 × 10−6 for the major species.
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Table 3. Comparison of prediction errors of reduced mechanisms for the mole fraction of the major
species at a residence time of 1 s for CH4-NH3 fuel.

Species Konnov
(Modified) NH3NG Absolute Error Absolute %

Error

CH4 4.85 × 10−7 5.34 × 10−7 1.10122 × 10−9 9.99
NH3 1.59 × 10−6 1.78 × 10−6 1.8799 × 10−7 11.79
CO 5.14 × 10−6 5.51 × 10−6 3.6462 × 10−7 7.09
CO2 6.06 × 10−2 6.06 × 10−2 3 × 10−7 0
H2 1.37 × 10−7 1.46 × 10−7 9.101 × 10−9 6.65
NO2 1.34 × 10−5 1.37 × 10−5 2.315 × 10−7 1.72
HNO 2.84 × 10−9 2.82 × 10−9 1.612 × 10−11 0.57
NO 2.48 × 10−4 2.34 × 10−4 1.41 × 10−5 5.69
Average 1.90 × 10−6 5.44

The average absolute % error of 5.44% between the NH3NG reduced mechanism
and modified Konnov full mechanism is reasonable, considering the goals of NH3NG
are to accommodate soot prediction and to handle C2-C3 hydrocarbon species. All in all,
NH3NG offers a simple mechanism (with 50 species) suitable for CFD applications. The
larger absolute % error of 11.79% for NH3 represents the compromise between the original
Konnov mechanism designed for NH3 combustion and the USC II mechanism designed
for hydrocarbon combustion.

3.2. Validation with Experimental Data

The 50 species reduced mechanism for ammonia–natural gas cofiring NH3NG was
validated against key experimental performance indicators such as laminar flame speed,
ignition delay, adiabatic temperature, and NOx and CO emissions [16,20,21]. The reduced
mechanism containing 50 species and reactions, along with the thermodynamics file, was
preprocessed using the Chemkin-Pro preprocessor. The validated reduced mechanism,
NH3NG, can then be used in other ANSYS FLUENT CFD simulations [20–46].

3.2.1. Laminar Flame Speed

Flame speed is a fundamental property of the fuel–air mixture that influences the
design of combustion equipment. Laminar flame speed is the speed at which a laminar
flame propagates through a pre-mixture of fuel and air. The flame speed depends on the
properties of the fuel mixture and the thermodynamic conditions, such as temperature and
pressure, when ignited.

The flame speed calculation model in Chemkin was used to evaluate the performance
of the reduced mechanism against the experimental values of the NH3/CH4/air system
found in Rocha et al. [20]. The experimental results were used to validate the mechanism for
different mixtures of ammonia and methane in the air. During validation, the temperature
and pressure inside the reactor were set at 423 K and 1–3 atm., respectively. The equivalence
ratio varied between 0.8 and 1.2 for all fuel mixtures. The ammonia blending fractions
in the binary fuel mixtures were also varied, as shown in Table 4. The equivalence ratio
is defined as the ratio of the actual fuel/oxidizer ratio to the fuel/oxidizer ratio in the
stoichiometric equation. Many properties of combustion processes strongly depend on
the stoichiometry of the combustion mixture. Table 4 shows an average absolute error of
7.7%, which is well within the reported experimental uncertainty of 10% [28]. As shown in
Figure 4, the predicted results from the NH3NG mechanism agreed with the experimental
data very well, with an R2 = 0.985.
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Table 4. Laminar flame speed predictions versus experimental data of NH3/CH4/air system [28].

Sr. No. Pressure
(Bar) xNH3

Equivalence
Ratio

Experimental
(cm/s)

NH3NG
(cm/s) Error (%)

1 3 0.2 0.8 26.6 26.6 0.1%
2 1 0.2 1 51.8 51.8 0.0%
3 2 0.2 1 41.6 42.6 2.5%
4 3 0.2 1 35.7 37.3 4.5%
5 1 0.2 1.2 43.2 45.8 6.0%
6 2 0.2 1.2 33.3 37.1 11.5%
7 3 0.2 1.2 27.9 31.9 14.3%
8 3 0.4 1.2 23.6 26.5 12.2%
9 3 0.6 1.2 19.3 22.0 14.0%

10 3 0.8 1.2 16.4 18.4 12.4%
Avg. 7.7%
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3.2.2. Ignition Delay

The period between the creation of a combustible mixture when the fuel is injected
into an oxidizing environment and the sustained onset of the rapid reaction phase leading
to a rise in temperature and pressure is defined as the ignition delay time. For ignition delay
time calculations, a closed homogeneous reactor model was used. The reduced mechanism
was compared against the experimental data from J. Huang et Al. [30]. For validation in
Chemkin, the pressure was taken as 16 atm. and the temperature varied between 1227 and
1307 K. The fuel composition was CH4/C2H6/O2/N2 (8.93–0.34–19.05–71.68%). Table 5
shows the numerical comparison between the predictions and lab data with an average
absolute error of 13%, which is well within the combined temperature/concentration
uncertainties (8%) [30] and typical experimental data uncertainties (10–20%) [33]. Figure 5
shows the graphical representation of the experimental and simulation results between
ignition delay time and for the said mixture with the new mechanism at the conditions
mentioned above.
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Table 5. Ignition delay time predictions versus experimental data of NH3/CH4/air system [21].

8.93% CH4, 0.34% C2H6 Mixture

Pressure
(atm) Temp (K) 1000/T Ignition Time

NH3NG (s)
Ignition Time

Experimental (s) Absolute Error Absolute Error %

16.3 1307 0.76511 3.15 × 10−4 3.83 × 10−4 6.85 × 10−5 18%
15.8 1271 0.78678 4.67 × 10−4 5.28 × 10−4 6.15 × 10−5 12%
16.2 1227 0.815 7.52 × 10−4 6.92 × 10−4 6.03 × 10−5 9%

Average 13%
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3.2.3. Adiabatic Temperature

The adiabatic flame temperature is the maximum temperature when a particular gas
mixture reaches equilibrium under an adiabatic combustion condition. In a real system,
due to heat losses and chemical kinetic/mass transport limitations, the flame temperature
is likely to be lower. In this validation, the adiabatic temperature was estimated with
the Chemkin equilibrium model. The inlet composition of fuel and air mixtures was set
at 0.8 equivalence ratios. The initial temperature and pressure were set at 293 K and
1 atm., respectively, for both fuel and air. An adiabatic flame temperature comparison
of the Chemkin simulation and experimental data for ammonia and methane flames at
different mole fractions of NH3 is shown in Figure 6 and Table 6 [9]. As seen in Table 6,
the predictions were right on target, which indicates the quality of the thermodynamic
properties used in the NH3NG mechanism.

Table 6. Comparison of adiabatic temperature predictions and data [9].

Fuel Mixture NH3 Mole
Fraction

Initial
Temperature (K)

Adiabatic
Temperature Exp.

Data (◦C) [7]

Adiabatic
Temperature

Prediction (◦C)

NH3/CH4 0.3 293 1698 1698.4
0.5 293 1679 1678.8
0.7 293 1651 1651.6
0.8 293 1634 1633.7
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Figure 6. Adiabatic temperature (experimental vs. NH3NG reduced mechanism) [9].

3.2.4. NOx and CO Emissions

In this section, we compared the predicted NOx and CO emissions from NH3NG
reduced mechanism with the experimental emission data, as well as those from different
mechanisms in the literature [9,16,20,21]. These reactions were carried out in an adiabatic
reactor with different CH4/NH3 ratios, as shown in Table 6. The NOx and CO measure-
ments and predictions for a thermal input of 1200 W and an equivalence ratio of 0.8 are
shown in Figures 7 and 8.
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Figure 8. Comparison of CO emission predictions versus CO data for a thermal input of 1200 W and
equivalence ratio of 0.8 [9,16,20,21].

As shown in Figures 7 and 8, all mechanisms, including the present work, over-predict
NOx and CO emissions in relation to the published data available [9,16,20,21]. Overall, the
predictions from the NH3NG mechanism were in line with other literature mechanisms.
Compared to other mechanisms in the literature, the predicted CO emissions from NH3NG
were higher (further from the experimental data). In comparison, the predicted NOx
emissions were lower (closer to the experimental data).

4. Discussion

Even though the mechanism reduction with Chemkin was conducted at a temperature
of 1500 K and pressure of 300 bar for the purpose of developing a reduced mechanism
that is useful for high-efficiency turbine and engine applications, the reduced mechanism
NH3NG did remarkably well in validation at a wide range of experimental conditions,
including those conducted at lower temperatures and pressures (e.g., laminar flame speed
data at 423 K and 1–3 atm. [28] and ignition delay data at 16 atm. and 1227–1307 K [36]).

The Moss–Brookes model for soot prediction is applicable to higher hydrocarbon
species (ethane and propane) by including appropriate soot precursors and participat-
ing surface growth species. In our earlier work of the LU 3.0.1 reduced mechanism for
combustion of C1 to C4 light hydrocarbons, three precursor and surface growth species
C2H2, C2H4, and C6H6, were involved. In this work, due to the limitation of the number
of species and the addition of ammonia fuel, only two soot precursor species, C2H2 and
C2H4, were included in NH3NG. However, these two precursor/surface growth species
were deemed sufficient to predict soot emission because even if neither is present, curve
fitting can be used in Fluent to determine the precursor and surface growth species’ mass
fractions [37–40].

The reactor used in Rocha et al.’s 2019 experiments [9] was a porous media flat burner
type, while in the Chemkin simulation, the available types were the batch, constant volume,
constant pressure reactor, perfectly/partially stirred, and plugged flow reactors. In our
predictions, we assumed an equilibrium (adiabatic) perfectly stirred reactor for simplicity.
However, NH3NG predictions still largely agreed with the literature values. Another
feature that differentiates our work from other literature mechanisms (i.e., those shown in
Figures 7 and 8) is that the full mechanism (the Modified Konnov Mechanism, 132 species
and 1238 reactions) used in this work was a combination of Konnov’s mechanism and the
USCII mechanism, while others are in the family of the Konnov mechanism for ammo-
nia/methane combustion. NH3NG allowed the simulation of heavier hydrocarbons, such
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as ethane and propane, and also had a better capability to predict soot emission with soot
precursors C2H2 and C2H4 using the Moss–Brookes’ equation in ANSYS Fluent [38,39].

In future work, NH3NG can be used in ANSYS Fluent CFD simulations to further
study the combustion process. For example, 3-D CFD simulations for various types of low
NOx and 2-stage burners that are suitable for modern gas/supercritical-CO2 turbines and
ICE applications can be performed [43,44]. NOx/soot/CO/unburnt fuel/VOC emissions
under various equivalence ratios, NH3 to NG, NG composition, fuel flow rate, and air/fuel
mixing patterns, can be estimated using ANSYS Fluent. CFD features, such as lean blow-off
(LBO), can be used to investigate injection patterns and flame stability [46].

The developed NH3NG Chemkin files are available from the corresponding author
upon request.

5. Conclusions

A fuel mixture of ammonia and natural gas provides clean, low-carbon energy to
run gas turbines and internal combustion engines for power generation, railroad/truck
transportation, marine shipping, and commercial aviation. Reduced mechanisms are
required in certain CFD software and can save computer time and storage in others for
3D CFD combustion applications. The newly proposed NH3NG reduced mechanism can
be employed in CFD works for the prediction of NOx, CO, and soot emissions involving
ammonia and natural gas combustion. Soot emission can be predicted by applying the
Moss–Brookes–Hall model using soot precursor species.

The prediction errors for NOx and CO emissions associated with the use of the
NH3NG mechanism for ammonia–natural gas mixtures were also minimal (abs. error
5%) in comparison to the full Modified Konnov mechanism (a combination of the Konnov
mechanism and the USCII mechanism). The NH3NG reduced mechanism was validated
with experimental laminar flame speed, ignition delay, adiabatic temperature, and NOx
and CO emissions’ data.

The effect of ammonia in such fuel mixtures was also analyzed by comparing the
Laminar flame speeds of the reduced mechanism to values found in the literature. An
increase in the ammonia concentration in such a fuel mixture decreased the laminar flame
speed of the combustion flame. An average absolute error of 7.7% was obtained for the
laminar flame speed prediction, which is well within the reported experimental uncertainty
of 10% [28]. The R2 between prediction and data was 0.985. The ignition delay time of
the NH3NG mechanism also agrees with the experimental data found in literature. An
increase in the ammonia concentration in such a fuel mixture increased the ignition delay
of the combustion flame. An average ignition delay prediction error of 13% was also
within typical experimental data uncertainties (10–20%). The predictions of adiabatic
temperatures were within 1 ◦C. Similar to all mechanisms in the literature, the present work
overpredicted NOx and CO emissions in relation to the published data [9,16,20,21]. Overall,
the predictions from the NH3NG mechanism are in line with other literature mechanisms.
Compared to other mechanisms in the literature, the predicted CO emissions from NH3NG
were higher (further from the experimental data), while the predicted NOx emissions were
lower (closer to the experimental data).

Author Contributions: A.R.K. performed the literature review, validation of the reduced mechanism,
and writing. V.D.D. contributed to the reduction of the full Modified Konnov Mechanism to NH3NG.
D.H.C. worked on the discussion, conclusion, and writing. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Texas Air Research Center (TARC Grant #110LUB0179A).
TARC was not involved in study design, in the collection, analysis, and interpretation of data, in the
writing of the report, and in the decision to submit the article for publication.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Clean Technol. 2023, 5 495

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary
ICE Internal Combustion Engines
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