remotesensing-logo

Journal Browser

Journal Browser

Remote Sensing Techniques for Landslides Studies and Their Hazards Assessment

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing in Geology, Geomorphology and Hydrology".

Deadline for manuscript submissions: closed (24 November 2023) | Viewed by 21888

Special Issue Editor


E-Mail Website
Guest Editor
Civil Engineering Department, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
Interests: landslides; hazard assessment; remote sensing; active tectonics; rock mechanics; soil dynamics

Special Issue Information

Dear Colleagues,

Landslides can cause extensive property damage and human casualties and thus influence socio-economic conditions in many countries. In recent decades, there has been a significant increase in the frequency of landslides related to climate change and expansion of urbanized areas. The level of risk from landslides depends, among other things, on the distribution and typology of these processes and on the temporal probability of these processes to affect a unit of land. Therefore, a spatial mapping of these processes and the knowledge of their frequency or temporal reactivation would provide valuable information to help us predict the hazard of these geological processes and thus evaluate the associated risks in certain areas.

While it is possible to conduct landslide studies by direct ground observation, data collection in inaccessible and extensive land is time-consuming and expensive and can sometimes be very difficult. Remote sensing images (aerial, satellite or terrestrial) are increasingly used in different landslide investigations, thus allowing the spatial and multi-temporal mapping of these processes, offering detailed monitoring of changes in the ground surface and allowing data to obtain factors to be used in the assessment of landslide hazards.

This Special Issue aims to publish studies covering different applications of remote sensing in landslide investigations. We invite authors to submit research papers and technical notes in the following and other categories of landslide research:

  • Identification and inventory of landslides;
  • Monitoring of landslide activity;
  • Spatial and temporal analysis of different factors to assess landslide hazard mapping.

Prof. Dr. Rachid El Hamdouni
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • UAV, spaceborne and ground-based remote sensing techniques
  • landslide inventory mapping
  • landslide monitoring
  • surface displacement
  • landslide early warning
  • landslide hazard assessment.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 8736 KiB  
Article
Rapid Mapping of Landslides Induced by Heavy Rainfall in the Emilia-Romagna (Italy) Region in May 2023
by Maria Francesca Ferrario and Franz Livio
Remote Sens. 2024, 16(1), 122; https://doi.org/10.3390/rs16010122 - 27 Dec 2023
Cited by 2 | Viewed by 910
Abstract
Heavy rainfall is a major factor for landslide triggering. Here, we present an inventory of 47,523 landslides triggered by two precipitation episodes that occurred in May 2023 in the Emilia-Romagna and conterminous regions (Italy). The landslides are manually mapped from a visual interpretation [...] Read more.
Heavy rainfall is a major factor for landslide triggering. Here, we present an inventory of 47,523 landslides triggered by two precipitation episodes that occurred in May 2023 in the Emilia-Romagna and conterminous regions (Italy). The landslides are manually mapped from a visual interpretation of satellite images and are mainly triggered by the second rainfall episode (16–17 May 2023); the inventory is entirely original, and the mapping is supplemented with field surveys at a few selected locations. The main goal of this paper is to present the dataset and to investigate the landslide distribution with respect to triggering (precipitation) and predisposing (land use, lithology, slope and distance from roads) factors using a statistical approach. The landslides occurred more frequently on steeper slopes and for the land use categories of “bare rocks and badlands” and woodlands. A weaker positive correlation is found for the lithological classes: silty and flysch-like units are more prone to host slope movements. The inventory presented here provides a comprehensive picture of the slope movements triggered in the study area and represents one of the most numerous rainfall-induced landslide inventories on a global scale. We claim that the inventory can support the validation of automatic products and that our results on triggering and predisposing factors can be used for modeling landslide susceptibility and more broadly for hazard purposes. Full article
Show Figures

Figure 1

17 pages, 36391 KiB  
Article
Deformation Behavior and Reactivation Mechanism of the Dandu Ancient Landslide Triggered by Seasonal Rainfall: A Case Study from the East Tibetan Plateau, China
by Sanshao Ren, Yongshuang Zhang, Jinqiu Li, Zhenkai Zhou, Xiaoyi Liu and Changxu Tao
Remote Sens. 2023, 15(23), 5538; https://doi.org/10.3390/rs15235538 - 28 Nov 2023
Cited by 1 | Viewed by 678
Abstract
In recent years, numerous ancient landslides initially triggered by historic earthquakes on the eastern Tibetan Plateau have been reactivated by fault activity and heavy rainfall, causing severe human and economic losses. Previous studies have indicated that short-term heavy rainfall plays a crucial role [...] Read more.
In recent years, numerous ancient landslides initially triggered by historic earthquakes on the eastern Tibetan Plateau have been reactivated by fault activity and heavy rainfall, causing severe human and economic losses. Previous studies have indicated that short-term heavy rainfall plays a crucial role in the reactivation of ancient landslides. However, the deformation behavior and reactivation mechanisms of seasonal rainfall-induced ancient landslides remain poorly understood. In this paper, taking the Dandu ancient landslide as an example, field investigations, ring shear experiments, and interferometric synthetic aperture radar (InSAR) deformation monitoring were performed. The cracks in the landslide, formed by fault creeping and seismic activity, provide pathways for rainwater infiltration, ultimately reducing the shear resistance of the slip zone and causing reactivation and deformation of the Dandu landslide. The deformation behavior of landslides is very responsive to seasonal rainfall, with sliding movements beginning to accelerate sharply during the rainy season and decelerating during the dry season. However, this response generally lags by several weeks, indicating that rainfall takes time to infiltrate into the slip zone. These research results could help us better understand the reactivation mechanism of ancient landslides triggered by seasonal rainfall. Furthermore, these findings explain why many slope failures take place in the dry season, which typically occurs approximately a month after the rainy season, rather than in the rainy season itself. Full article
Show Figures

Figure 1

30 pages, 14688 KiB  
Article
Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data
by Muhammad Afaq Hussain, Zhanlong Chen, Ying Zheng, Yulong Zhou and Hamza Daud
Remote Sens. 2023, 15(19), 4703; https://doi.org/10.3390/rs15194703 - 26 Sep 2023
Cited by 3 | Viewed by 2440
Abstract
Karakoram Highway (KKH) is an international route connecting South Asia with Central Asia and China that holds socio-economic and strategic significance. However, KKH has extreme geological conditions that make it prone and vulnerable to natural disasters, primarily landslides, posing a threat to its [...] Read more.
Karakoram Highway (KKH) is an international route connecting South Asia with Central Asia and China that holds socio-economic and strategic significance. However, KKH has extreme geological conditions that make it prone and vulnerable to natural disasters, primarily landslides, posing a threat to its routine activities. In this context, the study provides an updated inventory of landslides in the area with precisely measured slope deformation (Vslope), utilizing the SBAS-InSAR (small baseline subset interferometric synthetic aperture radar) and PS-InSAR (persistent scatterer interferometric synthetic aperture radar) technology. By processing Sentinel-1 data from June 2021 to June 2023, utilizing the InSAR technique, a total of 571 landslides were identified and classified based on government reports and field investigations. A total of 24 new prospective landslides were identified, and some existing landslides were redefined. This updated landslide inventory was then utilized to create a landslide susceptibility model, which investigated the link between landslide occurrences and the causal variables. Deep learning (DL) and machine learning (ML) models, including convolutional neural networks (CNN 2D), recurrent neural networks (RNNs), random forest (RF), and extreme gradient boosting (XGBoost), are employed. The inventory was split into 70% for training and 30% for testing the models, and fifteen landslide causative factors were used for the susceptibility mapping. To compare the accuracy of the models, the area under the curve (AUC) of the receiver operating characteristic (ROC) was used. The CNN 2D technique demonstrated superior performance in creating the landslide susceptibility map (LSM) for KKH. The enhanced LSM provides a prospective modeling approach for hazard prevention and serves as a conceptual reference for routine management of the KKH for risk assessment and mitigation. Full article
Show Figures

Figure 1

38 pages, 27768 KiB  
Article
Landslide Susceptibility Analysis on the Vicinity of Bogotá-Villavicencio Road (Eastern Cordillera of the Colombian Andes)
by María Camila Herrera-Coy, Laura Paola Calderón, Iván Leonardo Herrera-Pérez, Paul Esteban Bravo-López, Christian Conoscenti, Jorge Delgado, Mario Sánchez-Gómez and Tomás Fernández
Remote Sens. 2023, 15(15), 3870; https://doi.org/10.3390/rs15153870 - 04 Aug 2023
Cited by 2 | Viewed by 2405
Abstract
Landslide occurrence in Colombia is very frequent due to its geographical location in the Andean mountain range, with a very pronounced orography, a significant geological complexity and an outstanding climatic variability. More specifically, the study area around the Bogotá-Villavicencio road in the central [...] Read more.
Landslide occurrence in Colombia is very frequent due to its geographical location in the Andean mountain range, with a very pronounced orography, a significant geological complexity and an outstanding climatic variability. More specifically, the study area around the Bogotá-Villavicencio road in the central sector of the Eastern Cordillera is one of the regions with the highest concentration of phenomena, which makes its study a priority. An inventory and detailed analysis of 2506 landslides has been carried out, in which five basic typologies have been differentiated: avalanches, debris flows, slides, earth flows and creeping areas. Debris avalanches and debris flows occur mainly in metamorphic materials (phyllites, schists and quartz-sandstones), areas with sparse vegetation, steep slopes and lower sections of hillslopes; meanwhile, slides, earth flows and creep occur in Cretaceous lutites, crop/grass lands, medium and low slopes and lower-middle sections of the hillslopes. Based on this analysis, landslide susceptibility models have been made for the different typologies and with different methods (matrix, discriminant analysis, random forest and neural networks) and input factors. The results are generally quite good, with average AUC-ROC values above 0.7–0.8, and the machine learning methods are the most appropriate, especially random forest, with a selected number of factors (between 6 and 8). The degree of fit (DF) usually shows relative errors lower than 5% and success higher than 90%. Finally, an integrated landslide susceptibility map (LSM) has been made for shallower and deeper types of movements. All the LSM show a clear zonation as a consequence of the geological control of the susceptibility. Full article
Show Figures

Graphical abstract

39 pages, 25018 KiB  
Article
Characterization and Analysis of Landslide Evolution in Intramountain Areas in Loja (Ecuador) Using RPAS Photogrammetric Products
by Belizario A. Zárate, Rachid El Hamdouni and Tomás Fernández del Castillo
Remote Sens. 2023, 15(15), 3860; https://doi.org/10.3390/rs15153860 - 03 Aug 2023
Cited by 3 | Viewed by 958
Abstract
This case study focuses on the area of El Plateado near the city of Loja, Ecuador, where landslides with a high impact on infrastructures require monitoring and control. The main objectives of this work are the characterization of the landslide and the monitoring [...] Read more.
This case study focuses on the area of El Plateado near the city of Loja, Ecuador, where landslides with a high impact on infrastructures require monitoring and control. The main objectives of this work are the characterization of the landslide and the monitoring of its kinematics. Four flights were conducted using a remotely piloted aerial vehicle (RPAS) to capture aerial images that were processed with SfM techniques to generate digital elevation models (DEMs) and orthoimages of high resolution (0.05 m) and sufficient accuracy (below 0.05 m) for subsequent analyses. Thus, the DEM of differences (DoD) and profiles are obtained, but a morphometric analysis is conducted to quantitatively characterize the landslide’s elements and study its evolution. Parameters such as slope, aspect, topographic position index (TPI), terrain roughness index (TRI), and topographic wetness index (TWI) are analyzed. The results show a higher slope and roughness for scarps compared to stable areas and other elements. From TPI, slope break lines have been extracted, which allow the identification of landslide features such as scarps and toe tip. The landslide shows important changes in the landslide body surface, the retraction of the main scarp, and advances of the foot. A general decrease in average slope and TRI and an increase in TWI are also observed due to the landslide evolution and stabilization. The presence of fissures and the infiltration of rainfall water in the unsaturated soil layers, which consist of high-plasticity clays and silts, contribute to the instability. Thus, the study provides insights into the measurement accuracy, identification and characterization of landslide elements, morphometric analysis, landslide evolution, and the relationship with geotechnical factors that contribute to a better understanding of landslides. A higher frequency of the RPAS surveys and quality of geotechnical and meteorological data are required to improve the instability analysis together with a major automation of the GIS procedures. Full article
Show Figures

Figure 1

21 pages, 19226 KiB  
Article
Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China
by Zongji Yang, Bo Pang, Wufan Dong and Dehua Li
Remote Sens. 2023, 15(5), 1323; https://doi.org/10.3390/rs15051323 - 27 Feb 2023
Cited by 7 | Viewed by 2120
Abstract
On 5 September 2022, an Mw 6.6 earthquake occurred in Luding County in China, resulting in extensive surface rupture and casualties. Sufficient study on distribution characteristics and susceptibility regionalization of the earthquake-induced disasters (especially coseismic landslides) in the region has great significance to [...] Read more.
On 5 September 2022, an Mw 6.6 earthquake occurred in Luding County in China, resulting in extensive surface rupture and casualties. Sufficient study on distribution characteristics and susceptibility regionalization of the earthquake-induced disasters (especially coseismic landslides) in the region has great significance to mitigation of seismic hazards. In this study, a complete coseismic landslide inventory, including 6233 landslides with 32.4 km2 in area, was present through multi-temporal satellite images. We explored the distribution and controlling conditions of coseismic landslides induced by the 2022 Luding event from the perspective of epicentral distance. According to the maximum value of landslide area density, the geographical location with the strongest coseismic landslide activity intensity under the influence of seismic energy, the macro-epicenter, was determined, and we found a remarkable relationship with the landslide distribution and macro-epicentral distance, that is, both the landslide area and number density associatively decreased with the increase in macro-epicentral distance. Then, a fast and effective method for coseismic landslide intensity zoning based on the obvious attenuation relationship was proposed, which could provide theoretical reference for susceptibility mapping of coseismic landslides induced by earthquakes in mountainous areas. Additionally, to quantitatively assess the impact of topographic, seismogenic and lithological factors on the spatial pattern of coseismic landslides, the relationships between the occurrences of coseismic landslides and influencing factors, i.e., elevation, slope angle, local relief, aspect, distance to fault and lithology, were examined. This study provides a fresh perspective on intensity zoning of coseismic landslides and has important guiding significance for post-earthquake reconstruction and land use in the disaster area. Full article
Show Figures

Figure 1

20 pages, 26470 KiB  
Article
Monitoring Seasonal Movement Characteristics of the Landslide Based on Time-Series InSAR Technology: The Cheyiping Landslide Case Study, China
by Yiting Gou, Lu Zhang, Yu Chen, Heng Zhou, Qi Zhu, Xuting Liu and Jiahui Lin
Remote Sens. 2023, 15(1), 51; https://doi.org/10.3390/rs15010051 - 22 Dec 2022
Cited by 6 | Viewed by 1816
Abstract
Landslides are one of the extremely high-incidence and serious-loss geological disasters in the world, and the early monitoring and warning of landslides are of great importance. The Cheyiping landslide, located in western Yunnan Province, China, added many cracks and dislocations to the surface [...] Read more.
Landslides are one of the extremely high-incidence and serious-loss geological disasters in the world, and the early monitoring and warning of landslides are of great importance. The Cheyiping landslide, located in western Yunnan Province, China, added many cracks and dislocations to the surface of the slope due to the severe seasonal rainfall and rise of the water level, which seriously threaten the safety of residents and roads located on the body and foot of the slope. To investigate the movement of the landslide, this paper used Sentinel-1A SAR data processed by time-series interferometric synthetic aperture radar (InSAR) technology to monitor the long-time surface deformation. The landslide boundary was defined, then the spatial distribution of landslide surface deformation from 5 January 2018 to 27 December 2021 was obtained. According to the monthly rainfall data and the temporal deformation results, the movement of the landslide was highly correlated with seasonal rainfall, and the Cheyiping landslide underwent seasonal sectional accelerated deformation. Moreover, the water level change of the Lancang River caused by the water storage of the hydropower station and seasonal rainfall accelerates the deformation of the landslide. This case study contributes to the interpretation of the slow deformation mechanism of the Cheyiping landslide and early hazard warning. Full article
Show Figures

Figure 1

21 pages, 19272 KiB  
Article
The Suitability of UAV-Derived DSMs and the Impact of DEM Resolutions on Rockfall Numerical Simulations: A Case Study of the Bouanane Active Scarp, Tétouan, Northern Morocco
by Ali Bounab, Younes El Kharim and Rachid El Hamdouni
Remote Sens. 2022, 14(24), 6205; https://doi.org/10.3390/rs14246205 - 07 Dec 2022
Cited by 3 | Viewed by 1294
Abstract
Rockfall simulations constitute the first step toward hazard assessments and can guide future rockfall prevention efforts. In this work, we assess the impact of digital elevation model (DEM) resolution on the accuracy of numerical rockfall simulation outputs. For this purpose, we compared the [...] Read more.
Rockfall simulations constitute the first step toward hazard assessments and can guide future rockfall prevention efforts. In this work, we assess the impact of digital elevation model (DEM) resolution on the accuracy of numerical rockfall simulation outputs. For this purpose, we compared the simulation output obtained using 1 m, 2 m and 3 m resolution UAV-derived DEMs, to two other models based on coarser topographic data (a 5 m resolution DEM obtained through interpolating elevation contours and the Shuttle Radar Topographic Mission 30m DEM). To generate the validation data, we conducted field surveys in order to map the real trajectories of three boulders that were detached during a rockfall event that occurred on 1 December 2018. Our findings suggest that the use of low to medium-resolution DEMs translated into large errors in the shape of the simulated trajectories as well as the computed runout distances, which appeared to be exaggerated by such models. The geometry of the runout area and the targets of the potential rockfall events also appeared to be different from those mapped on the field. This hindered the efficiency of any prevention or correction measures. On the other hand, the 1m UAV-derived model produced more accurate results relative to the field data. Therefore, it is accurate enough for rockfall simulations and hazard research applications. Although such remote sensing techniques may require additional expenses, our results suggest that the enhanced accuracy of the models is worth the investment. Full article
Show Figures

Graphical abstract

28 pages, 41965 KiB  
Article
Comparison of Three Mixed-Effects Models for Mass Movement Susceptibility Mapping Based on Incomplete Inventory in China
by Yifei He and Yaonan Zhang
Remote Sens. 2022, 14(23), 6068; https://doi.org/10.3390/rs14236068 - 30 Nov 2022
Cited by 1 | Viewed by 2101
Abstract
Generating an unbiased inventory of mass movements is challenging, particularly in a large region such as China. However, due to the enormous threat to human life and property caused by the increasing number of mass movements, it is imperative to develop a reliable [...] Read more.
Generating an unbiased inventory of mass movements is challenging, particularly in a large region such as China. However, due to the enormous threat to human life and property caused by the increasing number of mass movements, it is imperative to develop a reliable nationwide mass movement susceptibility model to identify mass movement-prone regions and formulate appropriate disaster prevention strategies. In recent years, the mixed-effects models have shown their unique advantages in dealing with the biased mass movement inventory, yet there are no relevant studies to compare different mixed-effects models. This research compared three mixed-effects models to explore the most plausible and robust susceptibility mapping model, considering the inherently heterogeneously complete mass movement information. Based on a preliminary data analysis, eight critical factors influencing mass movements were selected as basis predictors: the slope, aspect, profile curvature, plan curvature, road density, river density, soil moisture, and lithology. Two additional factors, namely, the land use and geological environment division, representing the inventory bias were selected as random intercepts. Subsequently, three mixed-effects models—Statistical-based generalized linear mixed-effects model (GLMM), generalized additive mixed-effects model (GAMM), and machine learning-based tree-boosted mixed-effects model (TBMM)—were adopted. These models were used to evaluate the susceptibility of three distinct types of mass movements (i.e., 28,814 debris flows, 54,586 rockfalls and 108,432 landslides), respectively. The results were compared both from quantitative and qualitative perspectives. The results showed that TBMM performed best in all three cases with AUROCs (Area Under the Receiver Operating Characteristic curve) of cross-validation, spatial cross-validation, and predictions on simulated highly biased inventory, all exceeding 0.8. In addition, the spatial prediction patterns of TBMM were more in line with the natural geomorphological underlying process, indicating that TBMM can better reduce the impact of inventory bias than GLMM and GAMM. Finally, factor contribution analysis showed the key role of topographic factors in predicting the occurrence of mass movements, followed by road density and soil moisture. This study contributes to assessing China’s overall mass movement susceptibility situation and assisting policymakers in master planning for risk mitigation. Further, it demonstrates the tremendous potential of TBMM for mass movement susceptibility assessment, despite inherent biases in the inventory. Full article
Show Figures

Graphical abstract

19 pages, 6581 KiB  
Article
Superpixel and Supervoxel Segmentation Assessment of Landslides Using UAV-Derived Models
by Ioannis Farmakis, Efstratios Karantanellis, D. Jean Hutchinson, Nicholas Vlachopoulos and Vassilis Marinos
Remote Sens. 2022, 14(22), 5668; https://doi.org/10.3390/rs14225668 - 10 Nov 2022
Cited by 3 | Viewed by 1849
Abstract
Reality capture technologies such as Structure-from-Motion (SfM) photogrammetry have become a state-of-the-art practice within landslide research workflows in recent years. Such technology has been predominantly utilized to provide detailed digital products in landslide assessment where often, for thorough mapping, significant accessibility restrictions must [...] Read more.
Reality capture technologies such as Structure-from-Motion (SfM) photogrammetry have become a state-of-the-art practice within landslide research workflows in recent years. Such technology has been predominantly utilized to provide detailed digital products in landslide assessment where often, for thorough mapping, significant accessibility restrictions must be overcome. UAV photogrammetry produces a set of multi-dimensional digital models to support landslide management, including orthomosaic, digital surface model (DSM), and 3D point cloud. At the same time, the recognition of objects depicted in images has become increasingly possible with the development of various methodologies. Among those, Geographic Object-Based Image Analysis (GEOBIA) has been established as a new paradigm in the geospatial data domain and has also recently found applications in landslide research. However, most of the landslide-related GEOBIA applications focus on large scales based on satellite imagery. In this work, we examine the potential of different UAV photogrammetry product combinations to be used as inputs to image segmentation techniques for the automated extraction of landslide elements at site-specific scales. Image segmentation is the core process within GEOBIA workflows. The objective of this work is to investigate the incorporation of fully 3D data into GEOBIA workflows for the delineation of landslide elements that are often challenging to be identified within typical rasterized models due to the steepness of the terrain. Here, we apply a common unsupervised image segmentation pipeline to 3D grids based on the superpixel/supervoxel and graph cut algorithms. The products of UAV photogrammetry for two landslide cases in Greece are combined and used as 2D (orthomosaic), 2.5D (orthomosaic + DSM), and 3D (point cloud) terrain representations in this research. We provide a detailed quantitative comparative analysis of the different models based on expert-based annotations of the landscapes and conclude that using fully 3D terrain representations as inputs to segmentation algorithms provides consistently better landslide segments. Full article
Show Figures

Figure 1

18 pages, 9080 KiB  
Article
2D Phase-Based RFID Localization for On-Site Landslide Monitoring
by Arthur Charléty, Mathieu Le Breton, Eric Larose and Laurent Baillet
Remote Sens. 2022, 14(15), 3577; https://doi.org/10.3390/rs14153577 - 26 Jul 2022
Cited by 12 | Viewed by 1949
Abstract
Passive radio-frequency identification (RFID) was recently used to monitor landslide displacement at a high spatio-temporal resolution but only measured 1D displacement. This study demonstrates the tracking of 2D displacements, using an array of antennas connected to an RFID interrogator. Ten tags were deployed [...] Read more.
Passive radio-frequency identification (RFID) was recently used to monitor landslide displacement at a high spatio-temporal resolution but only measured 1D displacement. This study demonstrates the tracking of 2D displacements, using an array of antennas connected to an RFID interrogator. Ten tags were deployed on a landslide for 12 months and 2D relative localization was performed using a phase-of-arrival approach. A period of landslide activity was monitored through RFID and displacements were confirmed by reference measurements. The tags showed displacements of up to 1.2 m over the monitored period. The centimeter-scale accuracy of the technique was confirmed experimentally and theoretically for horizontal localization by developing a measurement model that included antenna and tag positions, as well as multipath interference. This study confirms that 2D landslide displacement tracking with RFID is feasible at relatively low instrumental and maintenance cost. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

57 pages, 8940 KiB  
Review
Recent Phenomenal and Investigational Subsurface Landslide Monitoring Techniques: A Mixed Review
by Kyrillos M. P. Ebrahim, Sherif M. M. H. Gomaa, Tarek Zayed and Ghasan Alfalah
Remote Sens. 2024, 16(2), 385; https://doi.org/10.3390/rs16020385 - 18 Jan 2024
Cited by 1 | Viewed by 1550
Abstract
Landslides are a common and challenging geohazard that may be caused by earthquakes, rainfall, or manmade activity. Various monitoring strategies are used in order to safeguard populations at risk from landslides. This task frequently depends on the utilization of remote sensing methods, which [...] Read more.
Landslides are a common and challenging geohazard that may be caused by earthquakes, rainfall, or manmade activity. Various monitoring strategies are used in order to safeguard populations at risk from landslides. This task frequently depends on the utilization of remote sensing methods, which include the observation of Earth from space, laser scanning, and ground-based interferometry. In recent years, there have been notable advancements in technologies utilized for monitoring landslides. The literature lacks a comprehensive study of subsurface monitoring systems using a mixed review approach that combines systematic and scientometric methods. In this study, scientometric and systematic analysis was used to perform a mixed review. An in-depth analysis of existing research on landslide-monitoring techniques was conducted. Surface-monitoring methods for large-scale landslides are given first. Next, local-scale landslide subsurface monitoring methods (movement, forces and stresses, water, temperature, and warning signs) were examined. Next, data-gathering techniques are shown. Finally, the physical modeling and prototype field systems are highlighted. Consequently, key findings about landslide monitoring are reviewed. While the monitoring technique selection is mainly controlled by the initial conditions of the case study, the superior monitoring technique is determined by the measurement accuracy, spatiotemporal resolution, measuring range, cost, durability, and applicability for field deployment. Finally, research suggestions are proposed, where developing a superior distributed subsurface monitoring system for wide-area monitoring is still challenging. Interpolating the complex nonlinear relationship between subsurface monitoring readings is a clear gap to overcome. Warning sign systems are still under development. Full article
Show Figures

Figure 1

Back to TopTop