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Abstract: On 5 September 2022, an Mw 6.6 earthquake occurred in Luding County in China, resulting
in extensive surface rupture and casualties. Sufficient study on distribution characteristics and sus-
ceptibility regionalization of the earthquake-induced disasters (especially coseismic landslides) in the
region has great significance to mitigation of seismic hazards. In this study, a complete coseismic land-
slide inventory, including 6233 landslides with 32.4 km2 in area, was present through multi-temporal
satellite images. We explored the distribution and controlling conditions of coseismic landslides
induced by the 2022 Luding event from the perspective of epicentral distance. According to the
maximum value of landslide area density, the geographical location with the strongest coseismic
landslide activity intensity under the influence of seismic energy, the macro-epicenter, was deter-
mined, and we found a remarkable relationship with the landslide distribution and macro-epicentral
distance, that is, both the landslide area and number density associatively decreased with the increase
in macro-epicentral distance. Then, a fast and effective method for coseismic landslide intensity
zoning based on the obvious attenuation relationship was proposed, which could provide theoretical
reference for susceptibility mapping of coseismic landslides induced by earthquakes in mountainous
areas. Additionally, to quantitatively assess the impact of topographic, seismogenic and lithological
factors on the spatial pattern of coseismic landslides, the relationships between the occurrences of
coseismic landslides and influencing factors, i.e., elevation, slope angle, local relief, aspect, distance
to fault and lithology, were examined. This study provides a fresh perspective on intensity zoning of
coseismic landslides and has important guiding significance for post-earthquake reconstruction and
land use in the disaster area.

Keywords: coseismic landslides; Luding earthquake; spatial distribution; micro-epicenter; macro-epicenter

1. Introduction

On 5 September 2022, at 12:52 p.m. local time, an Mw6.6 earthquake struck Luding,
China [1]. The Luding event’s epicenter is at 29.59◦N, 102.08◦E with a focus depth of
16 km. This earthquake damaged a vast amount of infrastructure, resulting in 88 deaths
and over 400 injuries. Simultaneously, significant disasters such as coseismic landslides
and collapses were induced, seriously endangering the personal security of local residents
as well as reconstruction efforts.

Coseismic landslides are a geological disaster induced by earthquakes with strong
destruction [2]. Thus, analyzing the distribution of coseismic landslides, investigating
the correlations between coseismic landslides and triggering factors, and assessing the
vulnerability of coseismic landslides are all crucial for guiding post-disaster reconstruction
and secondary disaster prevention [3–5]. The landslide inventory serves as the foundation
for analyzing and evaluating the mechanism of formation and spatial distribution of
coseismic landslides, and many scholars have cataloged the coseismic landslide inventories
for different earthquakes, such as the 1994 Mw6.7 Northridge event, America [6]; the
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1999 Mw7.6 Chi-Chi event, China [7]; the 2008 Mw7.9 Wenchuan event, China [8] and the
2013 Mw6.6 Lushan event, China [9–11].

Coseismic landslide science research has become a focused issue, and numerous
studies have been carried out on coseismic landslides of different earthquake magnitudes
worldwide [12–20]. The findings indicate that the spatial pattern of coseismic landslides is
attributed to the ground motion mode, vibration energy, geological environment and land
type [21–25]. Without the restriction of geological environment, it is generally believed
that the larger the earthquake energy level is, the more landslides there are with closer
epicenter distance [26,27]. Keefer [28] discovered that the spatial frequency density of
the coseismic landslides caused by the 1989 California earthquake decayed exponentially
with the focal fault distance. Landslide susceptibility mapping and landslide sensitivity
models considering different influencing factors are conducive to understanding landslide
hazard risk [29]. Su et al. [30] found that the spatial distribution of the coseismic landslides
induced by the 2008 Wenchuan event in Qingchuan County was mainly determined by
lithology by using the logistic regression model. Zhao et al. [31] discovered that the
majority of the coseismic landslides caused by the 2008 Wenchuan event and the 2013
Lushan event were concentrated in the Longmenshan fault’s hanging wall, revealing the
effect of tectonic mechanism on landslide distribution. All of these studies indicate that
the controlling factors make great contributions to the occurrence and distribution of
coseismic landslides. Thus, a thorough understanding of the interaction between coseismic
landslides and controlling factors is critical for analyzing the formation mechanism of the
distribution pattern [32].

Coseismic landslides are essentially the surface deformation caused by earthquakes [33],
and their spatial distribution features are often associated with release of the seismic energy.
However, there is no effective reference point that can indirectly reflect the release and
spread of seismic energy on the surface. The epicenter of the earthquake can hardly reflect
the location of the largest release of seismic energy, because some cases have shown that
the coseismic landslide distribution is not strongly interrelated with the distance from the
epicenter; for example, coseismic landslides induced by the Mw6.1 Ludian event in China
were not concentrated at the epicenter but 5 km away [2], and many other earthquakes have
similar deviations [18,24,32,34–36]. Consequently, it is very necessary to find a benchmark
observation point that can reflect the intensity of the earthquake energy on the surface.

In this study, we focused on analyzing the spatial distribution pattern of coseismic
landslides with elevation, slope angle, local relief, aspect, distance to fault and lithology. The
maximum value of landslide area density (LAD) was utilized to determine the geographic
location with the strongest landslide activity intensity affected by the Luding earthquake,
which could be used as a key parameter to evaluate the impact of earthquake energy on
the spatial pattern of coseismic landslides. Then, based on the landslide number density
(LND) and landslide area density (LAD) with the grading threshold, the landslide intensity
zoning was divided. The spatial pattern and formation mechanism of coseismic landslides
were surveyed from the perspective of macro-epicentral distance. Our study gives detailed
distribution characteristics of coseismic landslides induced by the 2022 Luding event which
benefit ecological restoration and disaster management in the local region. Furthermore,
we provide a novel reference for susceptibility zoning of coseismic landslides.

2. Materials and Methods
2.1. Study Area

The 2022 Luding event occurred in Luding County in China (Figure 1), at the south-
eastern margin of the Tibetan Plateau. Affected by the Indian Ocean monsoon climate,
the earthquake area is rainy in autumn and summer, providing sufficient hydrodynamic
conditions for the occurrence of post-earthquake geological disasters. The bedrock adjacent
to the river is constantly eroded for a long term, reducing the stiffness of the unloaded rock
mass exposed to the air. In this case, the broken rock layers and weathered fracture on the
valley slopes are conducive to the failure of the coseismic landslides. With regard to the
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plate structure, the study region is situated at the intersection of the Indian Ocean plate
and the Eurasian plate, which is the junction of the Longmenshan fault, the Xianshuihe
fault and the Anninghe fault. The Indian Ocean plate continues to squeeze the Tibetan
Plateau at a rate of 40–50 mm/a to the Eurasian plate every year, causing the crust in this
area to move toward WE at a rate of 5–15 mm/a recorded by the global positioning system
(GPS) [34]. The active crustal and tectonic movements in this area lay the groundwork for
earthquake susceptibility, which is also the reason for the 2008 Wenchuan earthquake. The
2022 Luding event’s epicenter, sited in the south of the Xianshuihe fault zone, is located
in the Hailuogou scenic area of Moxi Town, only about 110 km away from the 2013 Ms7.0
Lushan earthquake [10]. The Xianshuihe fault, located in the famous Y-shaped fault region,
is a sizable left-lateral strike-slip fault with considerable activity and NNW strike. It is
about 400 km long and less than 300 km away from the Longmenshan fault in the north-
east [37]. The 2022 Luding event is characteristic with a sinistral strike slip earthquake,
and the seismogenic fault dips westward with a strike of 160◦ and an inclination of 80◦.
The maximum slip near the epicenter is about 184 cm, and the rupture duration is about
18 s. The earthquake gave rise to wide-ranging house damage and surface failure, affecting
82 townships of 12 counties. The intensity of the earthquake is elliptically distributed with
the Xianshuihe fault as the long axis.
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Figure 1. Location of the 2022 Luding earthquake in the southeastern Tibetan Plateau (the seismic in-
tensity is from https://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml; accessed
on 15 September 2022).

2.2. Data and Methodology

It is not feasible to conduct a detailed on-site investigation for each coseismic land-
slide induced by the earthquake because of the rugged terrain in the region, so multi-
temporal satellite images play a significant part in procuring coseismic landslide inventory

https://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml
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data [34,38,39]. To compile a comprehensive landslide inventory database, we conducted
spot observations and satellite image interpretation. The post-earthquake satellite images
included GF-2 (access time: 10 September 2022; resolution: 3.2 m), GF-6 (access time: 10
September 2022; resolution: 8 m) and Beijing-3 (access time: 10 September 2022; resolution:
3 m), covering an area of about 2 × 104 km2 (Figure 2). Coseismic landslides caused by the
Luding event could be visually captured by comparing with pre-earthquake satellite images.
The pre-earthquake satellite images included ZY-1 (access time: 8 July 2022; resolution: 2 m)
and Sentinel-2 (access time: 29 April 2021; resolution: 10 m). We identified 6233 coseismic
landslides according to the discrepancy in hue, texture, forest cover and other information
of the satellite images (Figure 3). We outlined the profile of the coseismic landslide in
ArcGIS platform to calculate the area of each coseismic landslide. Meanwhile, the field
investigation gave great help for us to understand the coseismic landslide morphology
more specifically.
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Figure 3. Coseismic landslides obtained from pre- (A,B) and post- (C,D) seismic satellite images.

In addition, to evaluate the impact of geology, seismic faults and topography on
the spatial pattern of coseismic landslides, we collected elevation, slope angle, aspect,
local relief, distance to seismogenic fault and lithology data. Slope angle, aspect and
distance to seismogenic fault were collected from digital elevation model (DEM) data with
30 m resolution (http://www.gscloud.cn/; accessed on 15 September 2022). Geological
data including lithology and faults were extracted from a geological map digitized to
1:250,000 scale. Subsequently, the spatial pattern of coseismic landslides with different
factors was statistically analyzed in ArcGIS platform.

Landslide abundance is a commonly used indicator to measure the distribution scale
of coseismic landslides [37,40]. We analyzed landslide area density (LAD) and landslide
number density (LND) of the coseismic landslide inventory through the grid-based maps
produced by small squares of 1 km in length and width with an area of 1 km2 (LAD refers to
the total area of coseismic landslides per km2; LND refers to the total number of coseismic
landslides per km2).

3. Results
3.1. Landslide Inventory

The energy aroused by the Mw6.6 Luding event is dozens of times smaller than that
of the 2008 Wenchuan event [41], so the type of landslide differs from that of the Wenchuan
event dominated by a large landslide. The spot survey reveals that the type of coseismic
landslide is mainly shallow landslide including natural slopes and cut slopes, manifested
as mountain peeling. Affected by seismic amplification effect along the slope and shear
vibration, coseismic landslides are mainly developed in the steep and gentle slope break
section of watershed, ridge and mountainside, mainly including soil collapses, strongly
weathered bedrocks (mainly granite in lithology) and rockfalls (Figure 4).

http://www.gscloud.cn/
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The coseismic landslides triggered by the 2022 Luding event are primarily concen-
trated along the Moxi–Wanggangping section and distributed along both sides of the
seismogenic fault. The coseismic landslides are most concentrated about 10 km to the south
of Moxi Town, which is also a severe disaster area of coseismic landslides. However, there
are relatively few coseismic landslides at the epicenter (Figure 5A,B). Landslide densities
(LAD and LND) are mainly located south of the epicenter and are asymmetrically dis-
tributed along the fault. Over a 3545 km2 affected region, the 2022 Luding event caused
6233 coseismic landslides at a minimum. In accordance with the correlations between the
area affected by coseismic landslides and earthquake magnitude, most events are located at
the lower side of the envelope (dashed and solid lines) [26,27]. The 2022 Luding earthquake
follows the criteria as well (Figure 6A). For the landslide number and total area, the Luding
event is as close to the trend line as the previous earthquakes and is located below the fitting
line, demonstrating the coseismic landslides are more numerous and larger in area than
the earthquakes with same magnitude (Figure 6B,C) [33,42]. With regard to the coseismic
landslide frequency density p, Figure 6D compares the distribution frequency of the land-
slide area with other earthquakes near the fault: the 2008 Wenchuan event (Mw 7.9), the
2013 Lushan event (Mw 6.6) and the 2017 Jiuzhaigou event (Mw 6.5) [18]. The 2022 Luding
earthquake also fits the inverse gamma distribution, i.e., log(p) = −1.56 × log(A) + 3.0. For
the size distribution, we divided the coseismic landslides into five scales in Table 1.
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Figure 6. Comparison of landslide inventory caused by the 2022 Luding event with other events.
(A) the earthquake magnitude and the area affected by coseismic landslides (the black circle represents
other earthquake cases from [26,27]); (B) the earthquake magnitude and the number of landslides
(other cases are referred from [33,42]); (C) the total area of landslides and earthquake magnitude;
(D) the correlations of landslide area frequency density for the 2022 Luding event, the 2008 Wenchuan
event, the 2013 Lushan event and the 2017 Jiuzhaigou event. The base map of (C,D) are referred
from [18].
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Table 1. Distribution characteristics of coseismic landslides in different scales.

Classification Landslide Area/m2 Landslide Number Total Ratio %

I areas < 1000 2337 37.50
II 1000 ≤ areas < 5000 2409 38.64
III 5000 ≤ areas < 10,000 720 11.56

IV 10,000 ≤ areas <
50,000 688 11.04

V areas ≥ 50,000 79 1.26
Total 6233 100

3.2. Spatial Pattern of Coseismic Landslides with Epicentral Distance

The epicentral distance for a coseismic landslide is considered as the distance from
the coseismic landslide point to the seismogenic epicenter [2,34]. The spatial distribution
of coseismic landslides is significantly impacted by the epicentral distance as well [28,43].
However, the initial rupture site of the Xianshuihe fault which is regarded as the micro-
epicenter of the 2022 Luding event is not the most intensive zone of the coseismic landslides
(Figure 7A). The pertinence between the distribution of the coseismic landslide and the
micro-epicentral distance is not correlative; the closer to the micro-epicenter of the earth-
quake, the lower occurrence probability of the coseismic landslides is, manifesting that the
initial rupture point of the seismogenic fault cannot generate the energy that can trigger
the occurrence of large-scale coseismic landslides. Since landslide concentration can assess
earthquake damage to the ground [44], we set the geographical location at the maximum
landslide area density as the macro-epicenter (located in 29.5◦N, 102.15◦E). Figure 7B
clearly demonstrates that coseismic landslides are concentrated near the macro-epicenter,
and the coseismic landslide number decreases inch by inch with the extension of the
macro-epicentral distance. Notably, coseismic landslides with large area (red circle) appear
sporadically far away from the macro-epicenter on the Xianshuihe fault’s hanging wall,
indicating that the spatial distribution of coseismic landslides caused by the 2022 Luding
event is not only driven by the magnitude of seismic energy, but may be related to other
influencing factors as well, such as terrain and stratum [43].

In order to quantitatively obtain the relationships between the spatial pattern of
coseismic landslides and the epicentral distance, we compared the correlations between
LAD and LND with the micro- and macro-epicenter, respectively, where the distance from
the epicenter is the Euclidean distance [3]. The LAD and LND of coseismic landslides have
no obvious correlation with micro-epicenter distance (Figure 8A,B), but are quantitatively
related with macro-epicenter distance, i.e., y = 216881 × x(−0.69) with R2 = 0.956 for LAD
and y = 0.011x2 − 0.89x + 18.78 with R2 = 0.791 for LND (Figure 8C,D). Therefore, the
macro-epicentral distance, as a metric, can better indicate the degree of harm on the
surface in the process of seismic energy diffusion when exploring the spatial pattern of
coseismic landslides triggered by earthquakes compared with the micro-epicentral distance.
Emphatically, the reason why two different functions were used is that we wanted to
obtain a best goodness-of-fit of each LAD and LND with satisfying R2 to ensure that the
subsequent quantitative analysis had a smaller deviation.
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landslide abundance, we proposed a fast and effective landslide intensity zoning method.
The partition thresholds were calculated by the fitting function of LAD and LND with
macro-epicenter distance in Table 2. Figure 9 is the landslide intensity map, depicting the
spatial pattern of coseismic landslides in high-, mid- and low-prone area. According to
statistics, the landslide number induced by the 2022 Luding earthquake in the high-, mid-
and low-prone areas is 3829, 2164 and 240, respectively, with areas for 18.78 km2, 12.30 km2

and 1.34 km2, respectively.

Table 2. Zoning value for landslide intensity.

Intensity Level LAD (m2/km2) LND Macro-Epicentral
Distance (km)

high-prone 50,000 10 11.5
mid-prone 25,000 5 22.9
low-prone 18,000 1 39.0
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3.3. Controlling Factors of Coseismic Landslide Distribution

Earlier research has found the nonuniformity in the coseismic landslide spatial pat-
tern [20,45]. In this part, we aim to analyze the related influencing factors that lead to the
phenomenon. Six related factors were taken into account to thoroughly understand the
impact of controlling factors on the spatial pattern of coseismic landslides.
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3.3.1. Topographic Factors

Elevation is a crucial topographic feature that affects the occurrence of coseismic
landslides [24]. The spatial pattern of coseismic landslides caused by the 2022 Luding
event with elevation was statistically analyzed based on DEM data (Figure 10A). For the
landslide abundance, the LAD and LND are mainly concentrated in the range of 0–10 km
from the macro epicenter and 10–35 km from the micro epicenter, and the larger values
of the LAD and LND correspond to the elevation of 1400–1800 m (Figure 10B,C). For the
individual landslide, the regions with the elevation ranking from 1000 to 2300 m are more
prevalent for coseismic landslides (Figure 10D), with 5518 in total, accounting for 88.5% of
the total. This prone area is a concentrated area of human activities (housing construction,
mining, road construction and water conservancy projects), manifesting that these activities
have a significant effect on the susceptibility of coseismic landslides. After the elevation
exceeds 1500 m, the landslide number decreases gradually as the elevation rises. With
the increasing elevation, the landslide area expands inch by inch, and the relationship is
approximately Log (y) = 0.52x + 2.35 (where y is landslide area, x is elevation of landslide).
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As is known, the slope angle has a massive effect on the distribution pattern of
coseismic landslides. The shear stress of the rock mass along the slope increases with
the increasing angle, in which case slope failure occurs in steep places even without
earthquake. Numerous studies have found that most landslides are concentrated around
20–50◦ [8,46]. Figure 11A–C shows that the most intensive landslide abundance (LAD and
LND) occurs in the range of 30–40◦, and the epicentral distance has little influence on the
angle. Throughout the whole affected region, most of the landslide cluster is in the range
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of 30 to 40◦, totaling 4211, accounting for 67.6% of the total (Figure 11D). The landslide
number shows a Gaussian distribution with the slope angle, reaching a peak at 35◦.
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Local relief reflects the surface distortion and is also a quantitative indicator of the
gravity potential energy in the region. Figure 12A depicts the coseismic landslide distribu-
tion with the local relief as the background (the local relief map is extracted in GIS platform
based on 5 × 5 km window). As shown in Figure 12B,C, the most intensive LAD and LND
are primarily gathered at the elevation difference ranking from 1400 to 1800 m. In addition,
90.7% of the landslides occurred in the elevation of 1200–2000 m, 5654 in total (Figure 12D).

During seismic wave propagation, the development of coseismic landslides would be
impacted by the aspect of slope [40,45,47]. In addition, the influence of climate on slopes
with different aspect is also not consistent, resulting in different sensitivity to the instability
of slopes of different aspect. For example, the slope on the windward side is more prone
to runoff due to rain erosion, and these unstable slopes are more likely to be triggered by
earthquakes [13]. The spatial pattern of landslides in various slope aspects is shown in
Figure 13A. Statistical analysis indicates that the aspect distribution presents primarily S-E
predominance, consistent with the Xianshuihe fault’s strike and the travelling direction of
seismic waves, which can be explained by the stronger amplification effect on the slopes
that are back to the seismic wave’s propagation direction (Figure 13B,C) [48]. The coseismic
landslides in N, NE, E, SE, S, SW, W and NW are 292, 740, 1081, 1245, 908, 737, 684 and 546,
respectively, accounting for 4.7%, 11.9%, 17.3%, 20.0%, 14.6%, 11.8%, 11.0% and 8.7% of
total, respectively.
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3.3.2. Seismogenic Factor

The distribution of coseismic landslides is predominantly controlled by the seismo-
genic fault, confirmed in other cases [28,37]. In general, coseismic landslides occur on both
sides of the seismogenic fault, and the landslide number exponentially decreases as the
distance to fault increases [49]. Figure 14A shows the landslide distribution pattern with
different distance to fault. The landslide distributed in 0–5 km, 5–10 km, >10 km counts
4652, 1242 and 339, respectively, occupy 74.7%, 19.9 and 5.4% of total, respectively, and
follows an exponential distribution y = 1613 × e(−x/4.2) − 17.5 (Figure 14B). Furthermore,
the area of the coseismic landslides increases with the increase in the distance to fault,
following a relationship of approximately Log(y) = 0.04x + 3.05.
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3.3.3. Geological Factor

Figure 15A shows the landslide spatial distribution pattern related to different stra-
tums. The potential impact areas of landslides have complex controlling lithologies, mainly
including sedimentary rocks and intrusive rocks. Statistically, there are 2261, 1358, 956, 745,
369, 227 and 177 landslides occurring in granite, quartz diorite, tuff sandstone, metasand-
stone, quartz sandstone, carbonatite and ultrabasic rock, accounting for 36.3%, 21.9%,
15.3%, 12.0%, 5.9% and 2.3% of the total, respectively (Figure 15B). Granite is the main
factor affecting the distribution of coseismic landslides. This “weakening effect” may be
that the granite rock mass has very developed fissure joints due to the long-term tectonic
activity in this area, leading to the decline of rock mass stability [40,50].
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4. Discussion
4.1. Landslide Intensity Mapping

Typically, seismic events cause varying extents of damage to the site. The Environmen-
tal Macroseismic Scale (EMS-98) can evaluate the level of ground damage of earthquakes,
mainly determined by the damage to objects or buildings and the feelings of people in the
epicentral area [51]. However, the EMS-98 is limited in a sparsely populated mountain
area. Subsequently, the Environmental Seismic Intensity Scale (ESI-07) was exclusively
developed to evaluate the impact of earthquakes in mountain areas on the natural en-
vironment [52]. The ESI-07 defines earthquake damage by considering the occurrence
and area distribution of earthquake environmental effect (EEE), including surface fault,
geological uplift and settlement, landslide, rockfall, liquefaction, surface subsidence and
tsunami [53]. Gosar [54] determined the seismic intensity map of the 1998 Mw 5.6 Krn
Mountains earthquake by investigating the spatial pattern of 78 rockfalls triggered by the
earthquake, indicating that the seismic damage can be reflected by the spatial pattern of
coseismic landslides/rockfalls when the geo-disasters caused by the seismic event are
dominated by slope movements. The intensity isoseism can be determined by the distribu-
tion probability of landslides/rockfalls of different sizes. However, it is not easy to gauge
the intensity isoseism and coseismic landslide regional intensity when there are mixed
numerous coseismic landslides/rockfalls with various size. The 2022 Luding event also
conforms to this characteristic.

The intensity zoning map of coseismic landslides developed in this paper reflected
the concentration of coseismic landslides from the distribution abundance, which could
therefore avoid some uncertainty caused by non-uniform landslide distribution with vari-
able size using ESI-07. The threshold values of different partition levels are determined
according to the specific distribution of coseismic landslides induced by earthquakes with
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different magnitudes. Emphatically, the landslide intensity map may not accurately reflect
the macro earthquake intensity, but provide a suggestion. The landslide intensity map is
the manifestation of the joint control of topographic conditions, seismogenic faults and
stratum lithology, which is helpful for people to better comprehend the damage caused by
seismic events on the spatial scale. The intensity mapping of coseismic landslides is not
only applicable to the 2022 Luding event, but is also worth exploring in other earthquakes
in the future. The zoning method based on macro-epicentral distance has better guiding
significance for post-earthquake landslide prevention, rapid evaluation of seismic intensity
and land-use planning.

4.2. Tectonic Genesis for the Discrepancy of Landslide Distribution

Many earthquakes have occurred on the Xianshuihe fault in history due to abundant
tectonic activities (Figure 16). According to the record, the GPS horizontal displacement
velocity in the seismogenic fault’s hanging wall is significantly larger than that in the
footwall and the direction of velocity is nearly parallel, which contributes to a sinistral
strike-slip earthquake for the 2022 Luding event. The spatial pattern of coseismic landslides
is profoundly affected by the fault slip mode. Coseismic landslides caused by strike-
slip earthquakes, particularly deep landslides, are often localized within 5 km of the
seismogenic fault [55]. The coseismic landslide spatial pattern of the Luding event also
conforms to this rule. The majority of coseismic landslides towards SE also reveal that
there is a strong correlation between the direction of seismic waves and the distribution of
coseismic landslides. Additionally, the preponderance of the coseismic landslides localized
in the hanging wall implies that the Xianshuihe fault’s hanging wall exhibits more robust
vibrational characteristics than the footwall wall [1].
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The location of the micro-epicenter, projection point from source to surface, is deter-
mined by inversion from nearby stations based on seismic waves released by the initial
rupture of the fault. Seen in Figure 17A, the distance between the fault and the micro-
epicenter is a particular amount related to dip angle of the fault, slip angle and focal
depth. The accumulated stress in the process of plate compression is released suddenly
after an earthquake, and the fault plane releases seismic energy onto the surrounding
area (Figure 17B). During energy transmission, the seismic energy attenuates along the
path [56], resulting that the micro-epicenter is not the place with the largest surface energy,
which explains why the coseismic landslide spatial pattern is more closely related to the
macro-epicentral distance, and the macro-epicenter has more control over the occurrence
and spatial pattern of coseismic landslides than the micro-epicenter. In fact, the specific
position of the macro-epicenter depends vastly on the rupture direction of the seismogenic
fault during an earthquake. On account of the southward rupture of the seismogenic fault
during the Luding event [57], the macro-epicenter is located on the south side of the micro-
epicenter. This phenomenon is also confirmed in the 2008 Wenchuan earthquake because
the controlled area of coseismic landslides induced by the Wenchuan earthquake is just on
the northward rupture of the seismogenic fault, rather than the micro-epicenter [24]. The
impact of tectonics on spatial pattern of coseismic landslides induced by the 2022 Luding
event is emphasized, which differs from the combination of topography and tectonics
proposed by Zhao et al. [1]. Thus, we propose that more focus should be placed on the
macro-epicentral distance rather than the micro-epicentral distance in the future study of
the spatial characteristics of coseismic landslides controlled by epicentral distance.
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4.3. Limitations

This study aims to compile a thorough coseismic landslide inventory for the 2022
Luding event and analyze the impact of potential controlling factors on the distribution
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pattern of coseismic landslides. However, there are still a few drawbacks in landslide
mapping and corresponding analysis.

For landslide mapping, we extracted 6233 landslides totaling 32.4 km2 in size, cov-
ering the area 50 km away from the epicenter. However, some small landslides may not
be effectively identified due to the inadequate resolution of satellite images and lush veg-
etation, resulting in a modest undercount of landslides compared to the actual situation.
Despite the fact that the data for the landslide inventory is overestimated, the present data
of coseismic landslides covered the whole meizoseismal region and will not change the
assessment results.

In addition, the mismatch between the DEM data (resolution: 30 m × 30 m) and
the geological map at 1:250,000 scale may lead to deviation in results, but this can be
avoided because it is not our main research purpose. The weathering of granite can also
be considered in the spatial pattern of coseismic landslides to obtain more comprehensive
outcomes, which requires more detailed geological and lithological mapping at a scale
larger than 1:250,000 (such as 1:25,000, 1:10,000 or 1:5000). These further studies are able to
add to our awareness of the relationship between geology and coseismic landslides and
additional details of granite weathering grade maps as a predisposing factor [58], which
contributes to our comprehension of landslide distribution for further landslide risk and
hazard assessment.

With regard to the analysis of epicentral distance, we took the place with the maximum
value of LAD in the study region as the macro-epicenter of the earthquake. However,
whether this location is the projection point on the surface where the maximum energy
is released when the fault breaks remains to be debated. Surely, the macro-epicenter, the
location where the surface is most affected by the earthquake, is related to the release
of earthquake stress. Moreover, we solely explored the correlation between epicentral
distance and spatial pattern of coseismic landslides from the macroscopic phenomenon
on the surface, without considering the intrinsic influence of seismic physical parameters
on landslides, such as seismic attenuation acceleration (α), ground motion period (T),
seismic vibration duration (t), etc. because these not only involve the research content of
the earthquake itself, but also involve the relationship between seismic physical parameters
and landslide material characteristic parameters. If the seismic physical parameters and the
coseismic landslide physical parameters are studied together, there will be many complex
functional relationships, and no satisfactory solution can be obtained.

5. Conclusions

In order to clarify the spatial pattern characteristics of coseismic landslides caused
by the 2022 Luding event, we provided a complete landslide inventory containing 6233
coseismic landslides through remote sensing interpretation and field investigation. The
associations between the spatial pattern of coseismic landslides and six potential controlling
factors encompassing elevation, slope angle, slope aspect, local relief, distance to the
seismogenic fault and lithology were analyzed. We found that mostly coseismic landslides
are primarily concentrated on the slopes at elevation from 1000 to 2300 m with slope of
30–40◦, an E–S aspect and local relief from 1200 to 2000 m. The main coseismic landslide
occurred in granite, accounting for the largest proportion (36.3%). Within 5 km from the
fault, there is an intensive concentration of coseismic landslides, clustered along both sides
of the fault. The seismogenic fault and focal mechanism play an important role in the
spatial pattern of coseismic landslides in this earthquake.

Through the maximum value of LAD of coseismic landslides, the position of the
macro-epicenter is established. The LAD and LND of coseismic landslides exhibit a
fairly satisfactory function relationship with the macro-epicentral distance (compared
with the micro epicenter) as follows: y = 216,881 × x(−0.69) for LAD with R2 = 0.956;
y = 0.011x2 − 0.89x + 18.78 for LND with R2 = 0.791. Then, the intensity distribution map
of coseismic landslides was proposed. The intensity distribution of landslides can reveal
the dissipation process of seismic energy propagation and provide information on the
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damage of the earthquake to mountain areas. In addition, we also revealed the reason
why the spatial pattern of coseismic landslides deviated from the micro-epicenter in the
2022 Luding earthquake from the perspective of tectonic activities, assisting us in better
comprehending the distribution mechanism of earthquake-induced landslides.
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