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Abstract: Karakoram Highway (KKH) is an international route connecting South Asia with Central
Asia and China that holds socio-economic and strategic significance. However, KKH has extreme
geological conditions that make it prone and vulnerable to natural disasters, primarily landslides,
posing a threat to its routine activities. In this context, the study provides an updated inventory of
landslides in the area with precisely measured slope deformation (Vslope), utilizing the SBAS-InSAR
(small baseline subset interferometric synthetic aperture radar) and PS-InSAR (persistent scatterer
interferometric synthetic aperture radar) technology. By processing Sentinel-1 data from June 2021
to June 2023, utilizing the InSAR technique, a total of 571 landslides were identified and classified
based on government reports and field investigations. A total of 24 new prospective landslides
were identified, and some existing landslides were redefined. This updated landslide inventory
was then utilized to create a landslide susceptibility model, which investigated the link between
landslide occurrences and the causal variables. Deep learning (DL) and machine learning (ML)
models, including convolutional neural networks (CNN 2D), recurrent neural networks (RNNs),
random forest (RF), and extreme gradient boosting (XGBoost), are employed. The inventory was
split into 70% for training and 30% for testing the models, and fifteen landslide causative factors
were used for the susceptibility mapping. To compare the accuracy of the models, the area under
the curve (AUC) of the receiver operating characteristic (ROC) was used. The CNN 2D technique
demonstrated superior performance in creating the landslide susceptibility map (LSM) for KKH. The
enhanced LSM provides a prospective modeling approach for hazard prevention and serves as a
conceptual reference for routine management of the KKH for risk assessment and mitigation.

Keywords: convolutional neural network; recurrent neural networks; landslide susceptibility mapping;
extreme gradient boosting; random forest

1. Introduction

Landslides, one of the most common natural disasters, prevalent in mountainous
regions worldwide, pose significant threats to the ecosystem [1]. Landslides are accounted
as the downhill movement of debris, soil, and rocks under the force of gravity and can be
classified based on the materials involved (mud, rock, soil, or debris) and their movement
type (topple flow or slide) [2]. The factors leading to landslides are a combination of tecton-
ics, geomorphology, and climate change, which culminate in a critical slope evolution [3,4].
Other triggering factors contribute to landslides depending on the specific features of the
area. Natural variables such as rainfall, rapid snowmelt, earthquakes, and anthropogenic
activities, e.g., habitation construction, irrigation, etc., can play a role in the occurrence of
landslides [5]. While landslides are often regarded as a natural process, their occurrence
mostly has been influenced by anthropogenic activity [6]. In recent years, exponentially
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growing populations, a surge in infrastructure development, and settlement growth in
developing countries’ mountainous regions have increased the probability of landslides,
leading to an alarming increase in landslide-related fatalities [7].

The “China-Pakistan Economic Corridor” (CPEC), a significant project under the “One
Belt and One Road” initiative, is centered around connecting Pakistan and China via the
Karakoram Highway (KKH). The KKH was constructed from 1974 to 1978 and commenced
operation in 1979. The highway encompasses most of the route of the CPEC. However, this
vital route faces challenges due to the high mountainous terrain with overflowing loose
debris and heavy rainfall, triggering frequent and severe geological catastrophes such as
glacier debris flows, rock falls, landslides, debris and soil slippage, and avalanches [8].
Determining landslide probabilities along the KKH is a complex process influenced by
limited data availability, technical limitations, and harsh environments. Since its completion,
the reputation of the KKH has been marred by various geohazards [9]. Specifically, earth-
induced landslides in 2005 caused considerable damage to the highway [10]. Enormous
rockslides and rock avalanches have occurred, with over 115 incidents reported since
1987 [11]. Moreover, in 2010, a landslide blocked the Hunza River, inundating 19 km
of the highway with a loss of 20 lives and damaging 350 houses [12]. The geological
conditions along the KKH pose additional challenges, including fragile and weathered rock
masses, varying climates, low and high terrains, diverse stratigraphy, and local variations in
tectonic motion. Due to these factors, the study region has become a geohazard laboratory.
Enhancing precise LSM along the KKH to mitigate the risks posed by these natural hazards
is imperative.

Recently, remote sensing (RS) and geographic information systems (GIS) technology
have made remarkable technological progress. The utilization of GIS spatial analysis tools
and remote-sensing-derived data has enhanced the effectiveness of landslide suscepti-
bility mapping for accurate assessment. Here, comprehensive landslide inventory data
and knowledge of landslide conditioning factors are crucial for both data-driven spatial
modeling and knowledge-based approaches [13]. Researchers have conducted numerous
studies using bivariate analyses to quantify the spatial correlations between landslides
and specific factors that influence their dispersion [14–17]. Several other studies have
applied knowledge-based spatial approaches to produce natural risk vulnerability maps,
fuzzy logic models [18,19], the analytical hierarchy process (AHP) [20], and the eviden-
tial belief function [21], as well as data-driven spatial approaches such as support vector
machines [22–24], logistic regression methods [24,25], artificial neural network (ANN) mod-
els [26–28], alternating decision tree (ADTree) [29], principal component analysis (PCA) [30],
deep belief network (DBN) [31], decision tree [25,32], superposable neural networks [33],
and naïve Bayes [34]. Expertise-based models often encounter challenges due to their
reliance on expert opinions, which can introduce biases [35,36].

The primary strengths of probabilistic and ML approaches lie in their objective sta-
tistical foundation, consistency, capacity for precisely analyzing the factors influencing
landslide development, and capacity building for updates. In this perspective, researchers
are continuously seeking new and relatively more robust algorithms that can generalize
across different spatial scales [37,38]. Deep learning algorithms, which are specifically devel-
oped for large datasets but have seen limited application thus far, need to be implemented
and evaluated in this context. Currently, deep learning models, particularly recurrent neu-
ral networks and convolutional neural networks, have demonstrated remarkable success
across various applications, making them well suited for handling big data [39]. RNNs,
like other DL models, comprise a loss function, learnable parameters, and layers [40]. On
the other hand, CNNs differ from RNNs as they include convolutional and pooling layers
and focus solely on the current input data, while RNNs consider both the earlier provided
inputs and present input data [41]. CNNs have proven effective in tasks like semantic
segmentation and object detection [7]. Conversely, RNNs show superior performance in
tasks such as image recognition, characterization, and sequential data analysis, including
time series spatial data [42]. Despite the acceptable results achieved by CNNs and RNNs in
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various domains, their true efficiency and capabilities in landslide modeling and large-scale
landslide susceptibility mapping (LSM) on big data have not been thoroughly analyzed [13].
A few deep learning models have been utilized for natural hazard vulnerability mapping,
containing landslide susceptibility mapping and flash floods [43–45]. However, these stud-
ies have separately employed different deep learning models, and their relative proficiency
has not been evaluated yet.

In recent years, interferometric synthetic aperture radar (InSAR) methods have ac-
quired universal approval and usage as tools for landslide monitoring and mapping. Over
the past two decades, the RS technique, particularly In-SAR, has demonstrated substantial
possibility across different fields, including the study of landslide deformation [46] and
groundwater extraction [47]. PS-InSAR proves useful in automatic slow-moving landslide
mapping using a spatial statistical technique, the detection of particular landslides and
the delineation of extended unstable regions, redefining of the limits of historical land-
slides, the detection of landslides using a multitemporal analysis of SAR imagery, and
the verification of the terrain elements causing slope deformation [48]. In areas prone to
frequent and rapid large landslides, RS provides a solution through surveys and advanced
detection methods [49]. These techniques can greatly aid in assessing and creating land-
slide inventory maps. Various methods of InSAR have been effectively used in mapping
slope displacement, including that in [50], the assessment of land displacement places
identified by using SBAS-InSAR [51], the D-InSAR technique for landslide observing and
land deformation [51,52], the coherence pixel technique [53], the SqeeInSAR approach to
measuring surface motion [51], interferometric point target analysis [54], the use of StaMPS
to evaluate the displacement in a high-vegetation region [55,56], and the PSInSAR method
to compute the movement of landslides. These approaches are related to detecting and
mapping landslide events, as mentioned in [54,57,58].

In this study, a combination of optical RS analysis and the InSAR technique is utilized
to identify landslides and create an updated landslide inventory. The main goals are as
follows: (1) mapping all types of landslides along the KKH and estimating displacement
maps to identify new landslides, identify unstable places, and redefine the boundaries
of previously identified landslides based on the deformation model; (2) generating a
landslide susceptibility map using state-of-the-art ML and deep learning (DL) models,
including random forest, XGBoost, recurrent neural networks, and convolutional neural
networks; (3) comparing the performance of these advanced ML and DL models in terms
of landslide susceptibility; (4) assessing the significance and relationships of environmental
and anthropogenic factors influencing landslides and their role in evaluating landslide
susceptibility in the study area; and (5) determining the most accurate susceptible model
reliant on precision and AUC value. Despite the fact that the KKH faces significant landslide
threats every summer, previous research has not adequately addressed the issue. Therefore,
the landslide susceptibility map produced in this study will aid urban planning and disaster
reduction efforts in the area. Moreover, the final InSAR-based landslide inventory will
assist in tracking risky areas to minimize future hazards and fatalities. It is imperative to
highlight that no previous studies have applied RNNs and CNNs for LSM at KKH. As the
first study to utilize and compare these ML and DL models for LSM in this region, it will
substantially contribute to the scientific literature.

2. Materials and Methods
2.1. Study Area and Geological Settings

The KKH in northern Pakistan is significant as part of the CPEC but is prone to frequent
disruptions caused by various geological and hydro-climatological hazards. The study area
was focused along a 263 km section of the KKH, passing through different districts of Gilgit
Baltistan. A 5 km buffer around this section, covering an area of 3320 km2 (Figure 1), was
examined for the study. The terrain in the study area is rugged, with elevations ranging
from 822 to 5545 m above mean sea level. The area experiences mild summers and harsh
winters, and the yearly rainfall varies from 120 to 130 mm. The minimum and maximum



Remote Sens. 2023, 15, 4703 4 of 30

temperatures are −21 ◦C and 16 ◦C, respectively, according to data from the Meteorological
Department of Pakistan (https://www.pmd.gov.pk, accessed on 15 March 2023).
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The lithology in the research area is significant in triggering landslides. The rocks of the
area are primarily of Mesozoic and Paleozoic age. Based on the geological map produced
by Searle et al. [59], the research area comprises a diverse range of rocks, including sedi-
mentary, volcano-sedimentary, igneous, volcanic, and metamorphic rocks (Figure 2). These
rocks are further stratified into various types, such as greenschist, siliciclastic, carbonates,
basalt, andesite, granite, gabbro, and others. The Chalt schists, kilk formation, Quaternary
sediments, deformed Misgar slates, and Gujhal dolomite are the most significant among
the area’s lithologic formations. All of these lithologies have been tectonically affected and
have contributed to slope destabilization along the highway [9]. Over time, the lithologies
exposed along the KKH have undergone weathering and weakening due to anthropogenic,
hydro-climatic, and seismic events, resulting in significant landslides and surface distortion.
Structurally, the area is sophisticated because it lies in a convergent boundary, specifically
the Main Karakoram Thrust. This structural setting adds to the susceptibility of the area to
geological hazards like landslides.
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Figure 2. Regional geological map of the study region, which depicts the fault lines (MKT and MMT)
and Geological units in the research area, where CC is Chilas Complex (Mafic and Ultra-mafic rocks),
Gm is Gilgit complex metasedimentary rocks, Cv is Chalt group, Pm stands for Permian massive
Limestone, HPU is a Hunza plutonic unit, Ka stands for Komila amphibolite Complex, Sg is Sumayar
Leucogranite, KB is Kohistan Batholiths, SSm is Shyok Suture Melange, Q is Quaternary deposits,
SKm stands for southern Karakoram complex, Pz is Palaeozoic Metasedimentary rocks, Sv is Kohistan
Arc sequence, Tr is Triassic massive dolomite and limestone, and Y stands for Yasin group.

2.2. Datasets

The Alaska Satellite Facility (ASF) datasets provide an ALOS-PALSAR DEM (digital
elevation model) with a resolution of 12.5 m, which was accessed from https://search.
asf.alaska.edu/ (accessed on 10 February 2023). Additionally, Sentinel-2 images with a

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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resolution of 10 m were derived from the Copernicus dataset (https://scihub.copernicus.eu,
accessed on 10 February 2023) to produce a landcover map for the study area. Geological
maps and fault lines for the research area were processed using the ArcGIS software
10.8 to understand the geological features [59,60]. To assess the relationship between
rainfall and landslide events, annual precipitation data were obtained from the GIOVANNI
online database system (https://giovanni.gsfc.nasa.gov/giovanni/, accessed on 15 March
2023), as rainfall and landslides are found to be directly proportionally related. For this
study, two years (June 2021 to June 2023) of C-band Sentinel-1A SAR dataset imagery was
obtained from the ASF (search.asf.alaska.edu) online system. The dataset contains scenes
in descending and ascending tracks, as presented in Table 1. Figure 3 depicts the technical
route of the research.

Table 1. Datasets used in PS-InSAR and SBAS-InSAR analysis.

Data Information Ascending Descending

Product type Sentinel 1 SLC
Acquisition mode IW

Polarization VV
Wavelength (m) 0.056

No of images 63 60
Time period June 2021–June 2023

Frame 114 473
Track 100 107

Coverage (km2) 250
Incident angle Horizontal (~45◦) to vertical (~23◦)

Azimuth resolution and
range (m) 5 × 20
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2.3. Updated Landslide Inventory

Creating landslide inventory maps is a crucial step in LSM [61]. These maps provide
essential information about the landscape’s locations and types of landslides, serving as a
foundation for predicting future landslides [1]. Landslide inventory maps are generated
for a diversity of reasons, including identifying the type and location of landslides in a
particular region; showing the impact of a single landslide-triggering incident, such as
a rapid snowmelt incident, an intense rainfall event, or an earthquake; emphasizing the
quantity of mass movements; calculating the frequency area statistics of slope failures; and
providing relevant data to build landslide risk models or susceptibility models [62].

In this study, a total of 571 landslides were mapped using various techniques, including
SBAS-InSAR and PS-InSAR, past studies [12,60,63], Frontier Works Organization road
clearance logs, optical imagery analysis, Google Earth, and fieldwork in the study area. The
landslide inventory, on the other hand, was developed through the visual interpretation
of Sentinel-2 images with 10 m resolution (2022) and by using Google Earth, and it was
checked using previous documents and a field evaluation of the study region. The inventory
map was categorized into eight categories based on the material displacement, comprising
99 scree, 113 rockslides, 28 rock falls, 20 rock avalanches, 20 debris slides, 271 debris flows,
7 debris falls, and 13 complex slides (Figure 4).
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The inventory map is applied to verify the identification of landslides through InSAR
in the study area. Following the InSAR analysis, potential landslides are recognized
based on their high displacement velocity, and these newly detected landslides are then
incorporated into the updated version of the inventory map.

2.4. Landslide Conditioning Factors (LCFs)

The process of achieving high accuracy in the landslide susceptibility model and
predicting vulnerable areas heavily relies on carefully selecting and preparing the Land-
slide Conditioning Factors (LCFs) database [64]. There are no universal standards for
selecting independent variables for LSM [8,65,66]. The LCFs were chosen in this study
based on information gathered from the relevant literature, data specific to the study
area, and field investigations. Fifteen LCFs were selected for the current study, including
slope, aspect, topographic wetness index (TWI), distance to roads, lithology, distance to
rivers, roughness, distance to faults, curvature, precipitation, plan curvature, soil, profile
curvature, elevation, and landcover (Table 2). Thematic layers with a spatial resolution
of 12.5 × 12.5 m pixel size were prepared (Figures 5 and 6), all using the WGS84 Datum,
UTM-Zone 43 coordinate system.

Table 2. List of landslide causative variables used in the research.

S.NO Variables Sources Description/Extraction

1
Aspect, Elevation, Slope, Curvature,
Plan Curvature, Profile Curvature,
TWI, Distance to River, Roughness,

Digital Elevation Model
ALOS-PALSAR-DEM

(https://search.asf.alaska.edu, accessed on
10 February 2023)

2 Lithology, Distance to Fault,
Distance to road Geological Map Geological Survey of Pakistan

3 Landcover Sentinel-2 images
Land use/Landcover

(https://earthexplorer.usgs.gov/,
accessed on 10 February 2023)

4 Soil Soil map

Food and Agricultural Organization
(FAO) website

(http://www.fao.org/soils-portal/data-
hub/soil-maps-and-databases/en/,

accessed on 10 March 2023)

5 Precipitation GIOVANNI
(https:
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2.5. Multicollinearity Assessment

In landslide susceptibility prediction, selecting the right variables is a critical step that
significantly impacts the model’s performance. To improve the accuracy of hazard mapping,
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it is essential to identify and choose appropriate variables for inclusion in the model [67].
One of the main challenges in variable selection is dealing with multicollinearity, which
may arise due to the improper use of redundant or highly correlated factors [68]. To address
the issue of multicollinearity, tolerance and variance inflation factors (VIF) are calculated.
These measures help to identify closely and linearly related variables in a regression model,
which could potentially lead to a reduction in the model’s performance [69]. Through
the standard equations for VIF and tolerance, a thorough evaluation of the degree of
multicollinearity in the data is conducted. By identifying and removing variables with high
levels of multicollinearity, the precision of landslide susceptibility models can be enhanced,
and the most significant variables contributing to the prediction of landslide hazards can
be identified more accurately.

TOL = 1 − R2
j (1)

VIF =
1

1 − R2
j

(2)

where R2
j represents the regression value of j on various factors. Thus, multicollinearity

problems usually happen if the TOL value is <0.10 and the variance inflation factors value
is >10 [70].

2.6. Machine Learning Models

The modeling process included fitting, identifying, and developing an ML model.
The grid unit was used as the model unit, with a spatial resolution of 12.5 m for both

the DEM and RS data, and all evaluation factors are recalculated at this level.
The model includes 15 conditioning factors and a landslide target variable (1 indicating

landslide and 0 indicating non-landslide), with each row producing an object.
Each column illustrates an object’s characteristic, and it is modified into a two-

dimensional matrix for training (70%, 2138 samples) and testing (30%, 917 samples).
The models are constructed using training data, and predictions are made using test

data. The landslide vulnerability index maps are produced by combining the prediction
values for each model unit in each group. The results of the four models are transferred to
a geographic information system. Landslide vulnerability is classified into five categories
using Jenks natural breaks [71]: very low, low, moderate, high, and very high. The four
models are tested using the ROC curve and the AUROC curve.

2.6.1. RF

Random forest (RF) is a well-known homogeneous bagging-based ensemble model
developed by Breiman in 2001 [72]. It consists of multiple decision trees, making it an
ensemble learning technique that aggregates the outputs of these trees to produce a classifi-
cation [72–74]. The mechanism of the RF model can be outlined as follows:

I. Using the bootstrap approach, it creates numerous decision trees to randomly choose
fresh sample sets from the initial training dataset with substitution.

II. At each resampling, a set of features is randomly selected, and the decision trees are
built based on this subset of features.

III. The generated trees are combined into an RF, which is then used to categorize
new data.

The RF method exhibits robustness against missing, unbalanced, and multicollinear
data and is capable of handling high-dimensional data [75,76]. One of its primary advan-
tages is its resistance to overfitting, even when a large number of random forest trees are
grown. Additionally, there is no need to rescale, transform, or modify the data when apply-
ing the RF algorithm. In this research, the landslide susceptibility model was developed
using the “randomForest” package in R 4.0.2 software [16]. After numerous attempts, the
number of trees (ntree) was set to 500, and the mtry parameter was set to 6. To minimize
the fluctuation of the model findings and to limit overfitting, RF was conducted using a
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10-fold cross-validation technique. The hyperparameters used in the RF model are listed in
Table 3.

Table 3. List of parameters used in random forest model.

Parameters Values

Node size 14
mtry 06
ntree 500

2.6.2. XGBoost

The XGBoost supervised classification model is built on the gradient tree boosting
algorithm [77,78], which is a powerful machine learning model designed by Chen and
Guestrin in 2016 [79]. This model creates consecutive decision trees using the estimated
residuals or errors from the preceding tree rather than integrating separate trees. This
approach allows the algorithm to focus on samples with higher uncertainty, improving its
performance. XGBoost offers several advantages, including scalability for various use cases
with low computing resource essentials, fast processing speed, efficient handling of sparse
data, and smooth integration [80]. The algorithm utilizes a loss function with an additional
regularization term to smooth the final learned weights and prevent overfitting [79]. It
also employs first- and second-order gradient statistics to optimize the loss function [81].
While XGBoost shares some parameters with other tree-based models, it involves addi-
tional hyperparameters to control the overfitting concern, enhance precision, and mitigate
forecasting variance [82]. This study develops the landslide susceptibility model using the
“XGBoost” package in R 4.0.2 software, which provides powerful capabilities for classifi-
cation tasks [83]. In this research, three general parameters were chosen for us to alter in
the XGBoost algorithm for LSM application: nrounds (the maximum number of boosting
repetitions), subsample (the subsample ratio of the training instance), and colsample_bytree
(the subsample ratio of columns while constructing each tree). The hyperparameters used
in XGBoost model are listed in Table 4. The key points and usability of machine learning
models are shown in Table 5.

Table 4. List of parameters used in extreme gradient boosting model.

Parameters Values

nround 210
subsample 1

colsample_bytree 0.75
max_depth 6

gamma 0.01
eta 0.05

Table 5. The key points of RF and XGBoost models.

RF XGBoost

Bagging ensemble method Boosting ensemble method
Bagging-based algorithm where only a subset
of features are selected at random to build a

forest or collection of decision trees

Gradient boosting employs gradient descent
algorithm to minimize errors in

sequential models
Reduce risk overfitting Regularization for avoiding overfitting

Maintain precision when a large proportion of
data is missing. Efficient handling of missing data

Time-consuming process Less time-consuming process
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2.7. Deep Learning Models
2.7.1. CNN-2D

As a supervised DL approach, the CNN excels in achieving high predictive perfor-
mance in fields such as image and speech recognition. It accomplishes this by hierarchically
composing simple local features into complex models. A typical CNN comprises one or
more convolutional layers, fully associated layers, and max pooling layers, enabling it to
classify and extract features from high-dimensional data [84]. In the context of landslide
susceptibility mapping (LSM), the landslide occurrence potential in each grid cell is influ-
enced by multiple factors. Each grid cell possesses a unique set of characteristic values
that illustrate the likelihood of a landslide event. We must initialize the process to apply
the CNN for LSM by transforming the 1D input grid cell containing various characteristic
attributes into a 2D matrix.

We compared the number of landslide-impacting variables with the number of charac-
teristic values for every variable in this study. The largest of these two integers was then
chosen to define the size of the related 2D grid. For example, if the research region has
9 lithological classes and 15 landslide influencing factors, we create 9 × 9 matrices for each
grid cell. In the matrix, each column vector represents an attribute value, and the element
at the corresponding position is assigned the value of 1. In contrast, other elements in the
vector are assigned the value of 0. Some of the predictive parameters utilized in the present
research for CNN models are provided in Figure 7 and Table 6.
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Table 6. List of parameters used in CNN-2D model.

Parameters Values

Batch size 8
Epoch 250

Dropout 0.5
Learn rate 0.002

Activation function ReLU
Optimizer Adam

2.7.2. RNN

An RNN (recurrent neural network) has the ability to capture dynamic information
in sequential data by creating connections between hidden layer nodes at different time
steps. Unlike other neural networks, RNNs can effectively leverage sequential data. In
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traditional neural networks, all inputs are treated as self-reliant entities. However, in the
RNN technique, each unit is linked to other units in the hidden layer at various time
intervals, allowing data to be propagated from one layer to the next in the network [85].
This characteristic of RNNs is achieved through the concept of “loop feedback,” where
information is shared throughout the RNN. A simple RNN is typically executed using
Jordan or Elman network architectures. At time step t, let xt, yt, and ht represent the
input vector, the output vector, and the hidden state vector, respectively. By utilizing these
elements, we can acquire:

ht = σ(Whxt + Uhht−1 + bh) (3)

yt = σ
(
Wyht + by

)
(4)

where σ(·) is the training sample sequence’s loss function, U and W are variable matrices,
and b is the appropriate bias vector.

RNN is particularly adept at manipulating sequential inputs through its recurrent
hidden states. Hence, the accurate visualization of data is crucial in realizing the forecasting
capability of RNNs. This portion presents the data visualization method for landslide
susceptibility mapping using RNNs, as illustrated in Figure 8. The parameters used in the
RNN model are listed in Table 7.
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Table 7. List of parameters used in RNN model.

Parameters Values

Batch size 64
Epoch 50

Dropout 0
Learn rate 0.001
Optimizer Adam

First, each LCF is treated as a single-band image, and all variable categories are assem-
bled. Subsequently, these variable categories are then ordered in a decreasing sequence
of relevance. Hence, each pixel can be transformed into a sequential sample based on its
importance level. This approach ensures that the most significant variables are fed to the
RNN framework first, while the less crucial variables are sent to the model last. Because of
the recurrent nature of the RNN, essential data contributing to landslide occurrences are
reserved and passed to the next hidden state. This retention of important information is
advantageous for the final LSM. By organizing the data representation in this manner, we
can effectively leverage the sequential processing capabilities of the RNN to improve the
precision of the LSM. The key points and usability of DL models are in Table 8.
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Table 8. The key points of CNN-2D and RNN models.

CNN 2D RNN

Basics Most popular type of
neural networks

Most advanced and complex
neural network

Structural layout
Structure is based on multiple
layers of nodes including one

or two conventional layers

Information flows in different
direction, which gives it its

self-learning feature and memory
Spatial recognition Yes No

Recurrent connection No Yes

Drawback Large training data required Slow and complex training and
gradient concern

2.8. InSAR

The InSAR technique has proven to be highly valuable for the early identification of
landslides due to its weather independence, wide monitoring coverage, and high accuracy.
Among the various InSAR techniques, the small baseline subset (SBAS) is particularly
useful for identifying slow-moving deformations with millimeter-level precision by uti-
lizing a stack of SAR interferograms [86]. Additionally, the PS-InSAR and SBAS-InSAR
techniques are utilized to evaluate the deformation in susceptible regions as generated by
the models. This research collects and evaluates imagery from the Sentinel-1A IW sensor
with a temporal resolution of 12 days.

2.8.1. SBAS-InSAR Processing

The SBAS-InSAR technology is used in this part to verify the LSM along the KKH.
The basic data analysis chart, shown in Figure 3, incorporates the preprocessing of data,
interferometric creation, phase unwrapping, refinement and re-flattening assessment, and
displacement estimations.

The computation of time and spatial baselines between all Sentinel-1 picture pairs is
part of data preparation. Following clipping and registration, the DEM data are utilized
to finish image authorization, and the proportional conjunction that meets a particular
threshold is chosen to generate a differential SAR interferogram set [87]. This investigation
used a 30 m resolution SRTM-DEM to construct interferograms. The super primary image
utilized comes from the images acquired on 15 July 2022, and 720 interferometric image
pairings were created.

The key phase of SBAS-InSAR manipulation is an inversion, and the displacement
computation is highly dependent on the investigation of inversion findings. The displace-
ment rate and residual topography are estimated in the first inversion, and the input
interferogram is optimized in the second unwrapping [88]. The second inversion expands
upon the first by employing low-pass and high-pass filtering to calculate and eliminate
the atmospheric phase, allowing for more accurate final displacement estimates and, ulti-
mately, geocoding to determine the displacement rate dispersion in the research region. To
avoid the effects of unwrapping inaccuracies, the line-of-sight displacement velocity was
computed using a coherence threshold of 0.3 for SBAS-InSAR analysis [89].

2.8.2. PS-InSAR Processing

The PS-InSAR process analyzes the uniformity of the phase and amplitude using
multitemporal SAR images wrapped around the same area, which determines the pixels
that are not as caused by spatiotemporal decorrelation and then defines specific displace-
ment information on each component of the phase, which must be conjunctly assessed and
modeled to remove discrepancies [90,91].

The data preparation analysis steps (Figure 3) for importing SLC data with accurate
paths comprise the following:



Remote Sens. 2023, 15, 4703 15 of 30

Acquiring imagery: Images with the same rotations are obtained, and both slave
and master images are selected. The master images of the research area are obtained first,
followed by the selection of slave images that overlap the same region.

Coregistration and examination: A specific area of interest is coregistered and evalu-
ated. Various measures such as atmospheric phase screen (APS), track errors, and other
factors are corrected and measured.

Phase constancy assessment: The phase constancy of the acquired data is evaluated.
The pixels are projected to exhibit similar amplitudes and reduced phase distributions
for these acquisitions. Absolute amplitude levels are not a significant concern in terms of
manipulation disturbances.

Amplitude stability index (ASI): The ASI is used to choose persistent scatterers (PS) in
the SARPROZ software (2023) procedure. PS points with ASI values greater than 0.7 are
selected. This constraint parameter ensures that only a limited number of PS points are
considered, which is necessary for accurate atmospheric phase screen computation.

Reference network and linear model: A reference network is built by linking PS
points using Delaunay triangulation. The extracted linear model is removed, including
residual height and linear deformation velocities. The APS is analyzed using an inverse
network from the phase residual, and a single point of reference is defined to estimate the
object’s velocity.

Multi-image sparse point (MISP) processing: Second-order PS points are chosen using
the criteria of ASI > 0.6 in this step. Thicker PS points are obtained at this phase. To eliminate
APS, identical parameters and reference points used for APS estimates are applied.

Geocoding and visualization: Google Earth is used to geocode and map the PS points.
The landslide susceptibility map only includes PS points with a coherence of 0.60, indicating
their reliability [92].

3. Results
3.1. Multicollinearity Analysis

This research assumed that there are no significant linear associations among the
landslide causative variables that can negatively impact the susceptibility models. A
multicollinearity analysis is conducted on the 15 landslide conditioning variables, and the
outcomes are presented in Table 9. The rainfall variable has the highest VIF score of 4.892,
while the lowest VIF score of 1.017 is observed for Aspect. The TOL values ranged from
0.204 to 0.982.

Table 9. Multicollinearity assessment of the LCFs.

S.No. Variables
Collinearity Statistics

TOL VIF

1 Aspect 0.982 1.017
2 Landcover 0.826 1.209
3 Rainfall 0.204 4.892
4 Geology 0.549 1.821
5 TWI 0.655 1.524
6 Soil 0.284 3.509
7 Slope 0.531 1.881
8 Distance to Fault 0.979 1.021
9 Distance to Road 0.783 1.275
10 Distance to River 0.641 1.432
11 Roughness 0.637 1.542
12 Elevation 0.375 2.662
13 Profile Curvature 0.800 1.249
14 Plan Curvature 0.922 1.084
15 Curvature 0.779 1.282
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3.2. Landslide Susceptibility Mapping

The landslide susceptibility maps are generated using deep learning and machine
learning models: CNN 2D, RNN, XGBoost, and RF (Figure 9). The experiment showed
that the CNN 2D model had the best performance among the four models. The LSMs were
classified into five categories using the Jenks natural break [71] technique in ArcGIS.

The precision of the landslide susceptibility maps was assessed using the confusion
matrix proposed by [32]. Table 10 shows the performance of the CNN 2D, RNN, XGBoost,
and RF models during the training stage. The outcomes revealed that the CNN 2D model
has a high precision rate of 0.836 in the study region. Further validation was performed
using the ROC (receiver operating characteristic) method [93], which plots “sensitivity”
vs. “specificity” for different cut-off estimates. However, to understand the model’s
performance, the ROC’s AUC was used [94]. The AUC results for the CNN 2D, RNN,
XGBoost, and RF models are 82.56%, 79.43%, 76.04%, and 75.37%, respectively (Figure 10).
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Table 10. Confusion matrix of CNN 2D, RNN, XGBoost, and RF models.

Models Observation
Predicted

Precision
No Yes

CNN 2D
No 46 53 83.61

Yes 127 872

RNN
No 38 49 83.24

Yes 135 876

Extreme Gradient
Boosting

No 41 55 83.01

Yes 132 870

Random Forest
No 36 58 82.24

Yes 137 876
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3.3. Landslide Mapping Based on Deformation Velocity

A thorough landslide inventory was organized for the identification and analysis of
landslides along KKH. This inventory was built by combining data from several sources,
including displacement values acquired from both descending and ascending data gathered
from PS-InSAR and SBAS-InSAR observation.

In this study, the InSAR analysis successfully detected the majority of previously
mapped landslides. Moreover, based on the PS and SBAS data, several new landslides
with significant deformation velocity were identified, along with the boundaries, which
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were calibrated through fieldwork. The PS and SBAS techniques were applied to derive
displacement rates along the time series in a one-dimensional LOS direction using a set of
highly coherent interferograms with small spatial and temporal baselines [95,96].

3.3.1. PS-InSAR Results

Surface deformation on the Earth’s surface was calculated using a temporal coherence
threshold of 0.7 for PS-InSAR analysis. A total of 324,747 PS/DS target points were obtained,
representing the LOS deformation values ranging from −92.37 to 72.28 mm/year. These
values were converted into Vslope using the transformation formula (5), resulting in a total
of 212,373 points. The maximum slope displacement velocity was determined, with an
appropriate threshold set between 0 and −20 mm/year (Figure 11). It was ascertained that
barren terrain has a higher concentration of PS points than forested regions.

Vslope =
VLOS
cos∅

(5)

where VLOS is displacement and Ø is the incident angle.
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As a result, a total of 15 potential landslides were identified and detected based on
the PS-InSAR-identified displacement velocity. Among the 15 landslides detected using
PS-InSAR, 10 were exclusively identified using ascending Sentinel-1 datasets, while 5 were
specifically detected using descending Sentinel-1 datasets (Figure 12). This observation
demonstrates that the combination of descending and ascending datasets can overcome
the constraints of acquiring data from a single scanning posture, improving the landslide
detection process.
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In the identification and detection of landslides, the PS-InSAR identifies displacement
data and characteristics from images and field photographs, which are found valuable
when used in integration. Most of these landslides are concealed by PS-InSAR-detected
coherent targets (Figure 13). However, some landslides may not strictly meet the criteria of
higher deformation velocity to be identified as active landslides, as they might experience
lower rates of deformation due to steeper slopes or being in an actual inactive state.
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interpreted landslides.

3.3.2. SBAS-InSAR Results

In the SBAS-InSAR processing, the LOS displacement velocity (VLos) was determined
using a coherent threshold of 0.3. The slope orientation velocity (Vslope) was then derived
from the satellite LOS data, showing only unidirectional displacement. Since landslides
and Earth’s surface deformations mostly happen over steep land, Vslope is an essential
constituent used to forecast landslide evolution. The SBAS-InSAR results indicate that the
displacement velocity along the LOS ranged from −81.89 to 75.40 mm/year (as depicted in
Figure 14).
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The preliminary delineation of landslide boundaries was conducted by combining the
displacement velocity along the slope from both descending and ascending datasets with
visual analysis of optical RS images and field assessments. This involves referring to areas
with relatively high deformation velocity, topographic characteristics obtained from the
digital elevation model (DEM), and features observed in the optical images.

As a result of the SBAS-InSAR analysis, a total of 9 potential landslides were detected
and identified. Additionally, 547 landslides were represented through a combination of
information from the literature [12,60,66] and field observations (Figure 15). Among the
9 SBAS-InSAR-identified landslides, the ascending Sentinel-1 dataset identified 6, and 3
were specifically identified using the descending Sentinel-1 dataset.
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Figure 15 provides comparative examples of identified landslides, most of which are
wrapped by SBAS-InSAR-identified coherent targets. The analysis of the landslides re-
vealed that approximately 90% of them are associated with Quaternary deposits, the Hunza
plutonic unit, southern Karakorum Metamorphic Complex, Permian massive limestone,
and Chilas Complex formations. Their delineation was achieved through field investiga-
tions, analysis of optical RS images, and references to the existing literature (Figure 16).
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interpreted landslides.

The majority of KKH’s landscape is barren, with nearly 90 percent of the landslides
occurring in non-vegetated zones. While SBAS-InSAR and PS-InSAR methods may have
limitations in vegetation-covered areas, they still apply to more than 60% of the land devoid
of vegetation. This suggests that vegetation plays a critical role in controlling slope stability
in the region, consistent with previous research findings [60,97,98].

4. Discussion

The current study utilized RS techniques, such as optical RS and InSAR, for risk as-
sessment and landslide mapping along the KKH [63,99,100]. This study took benefit of the
multi-azimuth interpretation provided by the descending and ascending Sentinel-1 dataset,
allowing for more extensive monitoring of surface displacement. The PS-InSAR and SBAS-
InSAR techniques effectively captured regions with high deformation rates in most areas
along the KKH. Additionally, the comprehensive landslide inventory presented in this
study includes the latest landslides, ensuring the database is up to date and its valuable
information. By processing Sentinel-1 data from June 2021 to June 2023, utilizing the InSAR
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technique, 24 new prospective landslides were identified, and some existing landslides
were redefined. This updated landslide inventory was then utilized to create a landslide
susceptibility model, which investigated the link between landslide occurrences and the
causal variables. By combining the findings from PS-InSAR, SBAS-InSAR, and field investi-
gations, the inventory was updated with landslides that have the potential for future failure
and pose risks for the region, contributing to improved landslide susceptibility mapping.

The selected landslide influencing factors were used to construct CNN 2D and RNN
architectures for comparison with the XGBoost and RF methods. The LSMs were validated
and compared based on the AUROC curve and accuracy. CNN is known for its ability
to efficiently obtain spatial data using weight sharing and local connections, making it a
promising method for landslide modeling [101]. Earlier research has shown that combining
CNNs with additional statistical approaches can produce better accuracy in landslide
susceptibility modeling than using CNNs alone [102]. According to [103], CNN models
are an improved tool for landslide modeling due to their substantial outcomes and higher
accuracy rate in spatial landslide forecasting. The outcomes also reveal that both DL and
traditional ML algorithms give excellent precision in a variety of sectors, such as landslide
assessment and earth science studies throughout the world [104], which is in line with our
findings, which showed that the ROC for the four models varies from 82.56 to 75.37%.

In the subsequent experiments, the proposed CNN and RNN models demonstrated
enhanced predictive capability compared to the popular XGBoost and RF classifiers. Specif-
ically, CNN-2D attained the highest AUC value of 0.825 on the validation set, indicating
its effectiveness in improving prediction performance and its potential as a potential ap-
proach for future research. Various statistical and machine learning approaches have
been compared and applied for landslide spatial forecast in areas, including AHP and
Scoops 3D [105], frequency ratio (FR) and weight of evidence [106], the weighted overlay
technique and AHP [9], random forest [63], support vector classification (SVC) [107], and
XGBoost [100], but DL techniques, such as CNNs, provide powerful improvements by auto-
matically exploring representations from raw data, making them valuable in various fields,
including landslide susceptibility assessments. The experimental findings highlighted that
CNN-2D outperformed the traditional DL approach of RNNs and the classical XGBoost
and RF ML techniques. Furthermore, the suggested data representation techniques offer an
innovative approach to handling raw landslide data. By exploiting the power of DL meth-
ods and combining them with other approaches, there is enormous potential to advance
landslide susceptibility analysis in the future. The proposed 2D CNN structure includes
convolutional max pooling layers and a dropout layer. Overfitting is a common issue when
utilizing a 2D CNN in LSM. To address overfitting, each convolution layer is subsequently
followed by a dropout layer, which temporarily discards NN units during the training
process of the CNN based on a certain probability. This helps to improve classification
accuracies and enhance the model’s generalization capability.

Different LCFs influence landslide triggers and relate to each other, making the se-
lection of appropriate variables crucial for building an accurate landslide susceptibility
model. The aim is to construct models with reduced noise and greater forecast ability.
Before analyzing landslide susceptibility, it is essential to evaluate the forecasting potential
of each contributing factor. To attain this, efforts are made to select the most relevant and
impactful factors. Multicollinearity analysis is employed to evaluate correlations between
the LCFs. In this study, 15 landslide conditioning variables were chosen as independent
factors for evaluating landslide susceptibility, and the results are presented in Table 3. The
variance inflation factor (VIF) was used to test the multicollinearity between these factors.
Among the selected factors, rainfall had the highest VIF score of 4.892, while aspect had
the lowest VIF score of 1.017. The tolerance (TOL) values ranged from 0.204 to 0.982. The
outcomes revealed that there is no significant multicollinearity among the chosen variables,
allowing all variables to be integrated into the models. It is worth noting that landslides
can still occur in areas with significant vegetation due to rainfall and other external forces.
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Despite the beneficial effect of the selected factors in evaluating landslide suscepti-
bility, the current research could have been more effective if certain factors were adhered
to. One major factor is data availability. This research relied on limited data diversity
with a focus on historical landslide data, which limited the comprehensive analysis [60].
Another factor is that the input data resolution remains unpredictable during the data
preparation phase, which has been a prevalent issue in past investigations [108,109]. Terrain
condition factors were derived from a 12.5 m resolution DEM, while variables related to
geological conditions were based on a 1:500,000 scale geological map. All factor layers
were resampled at a 12.5 m resolution in ArcGIS 10.8 software to ensure data availability
and computational convenience. The analysis of model performance in this study indicates
that resampling processing was feasible. Secondly, because of restricted data availability,
we examined several types of landslides with varying triggering conditions throughout a
given time. While some investigators have previously explored this approach, a separate
investigation of distinct types of landslides is more in line with the practical and current
state factors [110,111].

5. Conclusions

The PS-InSAR and SBAS-InSAR techniques and multi-track ascending and descending
Sentinel-1 SAR datasets were used to measure surface displacement velocity along the
KKH. An updated and comprehensive landslide inventory was created by combining field
surveys, image analysis, and a literature evaluation, identifying 571 landslides, including
24 newly detected active landslides and 547 landslides from previous records. To predict
landslide susceptibility along KKH, two well-known deep learning (CNN-2D and RNN)
and machine learning (XGBoost and RF) algorithms were utilized and compared. The
CNN-2D algorithm demonstrated superior performance with an AUC of 82.56, outper-
forming RNN, XGBoost, and RF in terms of AUC, ROC, predictive power, and accuracy.
The landslide susceptibility maps generated by these models can serve as valuable tools
for decision-makers, land use planners, and various non-governmental and governmental
organizations involved in resource and disaster management, infrastructure development,
and human activity in the study area. In the future, studies can explore improved deep
learning and machine learning architectures for landslide susceptibility mapping to im-
prove accuracy and predictive capabilities utilizing this research as a baseline.

The current study is limited because of the absence of geotechnical and geophysical
data. It is suggested that the developed dataset be used in future studies to improve
algorithm prediction potency, create more precise LSM, and discover correlations between
landslide incidence and these new geo-environmental variables. It is also advised to
combine DL algorithms with metaheuristic techniques to optimize model parameters and
boost algorithm prediction capabilities.
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