Research on the Properties of Polysaccharides, Starch, Protein, Pectin, and Fibre in Food Processing

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Physics and (Bio)Chemistry".

Deadline for manuscript submissions: closed (31 May 2022) | Viewed by 102575

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


grade E-Mail Website
Guest Editor
State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
Interests: polysaccharide; functional foods; microbiome; hydrocolloids; biopolymers
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
Interests: starch; properties; structure; physical modification
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
Interests: protein; dietary fibre; functional foods; carbohydrate; high-value processing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Food components are the most widespread natural products such as polysaccharides, starch, protein, pectin, and fibre, present in all organs of most higher plants. Due to its unique physico-chemical properties (dependent on the botanical origin, geographical origin, culture conditions, etc.), they are highly valued and frequently used in various industries. With the advancement of the isolation technology, as well as with the development of enzyme engineering and the application of modern modification technologies, food components have become very important raw material for the production of numerous products in the food industry, but also in various other industries, such as paper, textile, building materials, pharmaceutical, chemical, and others.

Native components isolated from raw materials such as cereals, vegetables, meat, fruits and others have limited application due to a number of disadvantages such as solubility at lower temperatures, instability under certain conditions, viscosity change, lack of functional properties, etc. In order to overcome these problems and expand the possibilities of their application in food and non-food industries, and to obtain changed physicochemical and enhanced functional properties, chemical, physical, and enzymatic modification procedures (in combination with each other) must be performed. Although an increasing number of studies have recently addressed physical and enzymatic modification processes, the most properties and mechanism of food processing are still unknown.

Therefore, we believe that this Special Issue in the journal Foods focused on research on the properties of polysaccharides, and starch, protein, pectin, and fibre in food processing will provide an overview of the current status and future developments in the field.

The Special Issue will cover the following scientific topics:

Physico-chemical and functional properties native polysaccharides, and starch, protein, pectin, and fibre;

  • Food technology of polysaccharides, and starch, protein, pectin, and fibre;
  • Modification and application of polysaccharides, and starch, protein, pectin, and fibre;
  • Future industry of polysaccharides, starch, protein, pectin, and fibre;
  • Novel natural bioactive food carbohydrates, protein and their prospective applications;
  • Any topics that are deemed relevant to the main scope of this Special Issue.

Prof. Dr. Jianhua Xie
Dr. Yanjun Zhang
Prof. Dr. Hansong Yu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polysaccharide
  • starch
  • protein
  • pectin
  • fiber
  • properties
  • modification
  • bioactivities

Published Papers (35 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

7 pages, 220 KiB  
Editorial
Research on the Properties of Polysaccharides, Starch, Protein, Pectin, and Fibre in Food Processing
by Xin Qi, Yanjun Zhang, Hansong Yu and Jianhua Xie
Foods 2023, 12(2), 249; https://doi.org/10.3390/foods12020249 - 05 Jan 2023
Cited by 2 | Viewed by 1723
Abstract
As food components, polysaccharides, starch, protein, pectin, and fibre are often used in the food industry due to their particular functional properties, as well as their efficient, safe, and green characteristics [...] Full article

Research

Jump to: Editorial, Review

15 pages, 3014 KiB  
Article
Effect of Pre-Emulsion of Pea-Grass Carp Co-Precipitation Dual Protein on the Gel Quality of Fish Sausage
by Xiaohu Zhou, Chaohua Zhang, Liangzhong Zhao, Xiaojie Zhou, Wenhong Cao and Chunxia Zhou
Foods 2022, 11(20), 3192; https://doi.org/10.3390/foods11203192 - 13 Oct 2022
Cited by 4 | Viewed by 1480
Abstract
Currently, the processing method of introducing plant protein into meat products has attracted great attention. However, the direct addition of plant protein often leads to a decline in meat product quality. This paper aims to provide an efficient method for incorporating plant protein [...] Read more.
Currently, the processing method of introducing plant protein into meat products has attracted great attention. However, the direct addition of plant protein often leads to a decline in meat product quality. This paper aims to provide an efficient method for incorporating plant protein into fish sausage. Pea protein isolate (PPI), grass carp protein isolate (CPI) and pea-grass carp coprecipitated dual protein (Co) were derived from pea and grass carp by an isoelectric solubilisation/precipitation method. At the same time, the blended dual protein (BL) was obtained by blending PPI with CPI, and the plant and animal protein content of Co and BL was both controlled to be the same. The four proteins were combined with soybean oil and water to form a three-phase pre-emulsification system of protein-oil-water, which was added to grass carp meat as a replacement for animal fat to prepare fish sausage. The gelation properties of the four fish sausages and those without protein were analysed. The results showed that the gel quality of PPI fish sausage is poor, while the overall quality of Co fish sausage as a whole was significantly superior to that of PPI and BL, which was equivalent to CPI fish sausage. The sensory score of the Co fish sausage was slightly lower than that of CPI, but it had significantly higher water-holding capacity and hardness (p < 0.05). The Co fish sausage showed the synergistic effect of heterologous proteins, while BL had some antagonistic effects. This study shows that Co pre-emulsion is an effective strategy to introduce plant protein, so it has a good application prospect in the meat industry. Full article
Show Figures

Figure 1

18 pages, 3666 KiB  
Article
Effects of Moderate Enzymatic Hydrolysis on Structure and Functional Properties of Pea Protein
by Xixiang Shuai, Lizhi Gao, Qin Geng, Ti Li, Xuemei He, Jun Chen, Chengmei Liu and Taotao Dai
Foods 2022, 11(15), 2368; https://doi.org/10.3390/foods11152368 - 07 Aug 2022
Cited by 14 | Viewed by 3178
Abstract
Pea protein (PP) was moderately hydrolyzed using four proteolytic enzymes including flavourzyme, neutrase, alcalase, and trypsin to investigate the influence of the degree of hydrolysis (DH) with 2%, 4%, 6%, and 8% on the structural and functional properties of PP. Enzymatic [...] Read more.
Pea protein (PP) was moderately hydrolyzed using four proteolytic enzymes including flavourzyme, neutrase, alcalase, and trypsin to investigate the influence of the degree of hydrolysis (DH) with 2%, 4%, 6%, and 8% on the structural and functional properties of PP. Enzymatic modification treatment distinctly boosted the solubility of PP. The solubility of PP treated by trypsin was increased from 10.23% to 58.14% at the 8% DH. The results of SDS-PAGE indicated the protease broke disulfide bonds, degraded protein into small molecular peptides, and transformed insoluble protein into soluble fractions with the increased DH. After enzymatic treatment, a bathochromic shift and increased intrinsic fluorescence were observed for PP. Furthermore, the total sulfhydryl group contents and surface hydrophobicity were reduced, suggesting that the unfolding of PP occurred. Meanwhile, the foaming and emulsification of PP were improved after enzymatic treatment, and the most remarkable effect was observed under 6% DH. Moreover, under the same DH, the influence on the structure and functional properties of PP from large to small are trypsin, alcalase, neutrase and flavourzyme. This result will facilitate the formulation and production of natural plant-protein-based products using PP. Full article
Show Figures

Figure 1

13 pages, 503 KiB  
Article
Hygroscopic Properties of Three Cassava (Manihot esculenta Crantz) Starch Products: Application of BET and GAB Models
by Aneta Ocieczek, Dominika Mesinger and Henryk Toczek
Foods 2022, 11(13), 1966; https://doi.org/10.3390/foods11131966 - 02 Jul 2022
Cited by 8 | Viewed by 2882
Abstract
This study aimed to compare hygroscopicity properties of three cassava (Manihot esculenta Crantz) products: native starch powder (NS), fermented starch powder (FS), and starch granulate (SG). The analyzed properties were compared based on the statistical evaluation of differences in the course of [...] Read more.
This study aimed to compare hygroscopicity properties of three cassava (Manihot esculenta Crantz) products: native starch powder (NS), fermented starch powder (FS), and starch granulate (SG). The analyzed properties were compared based on the statistical evaluation of differences in the course of sorption isotherms and the identification and comparison of parameters in two theoretical models of sorption. Empirical data were generated by means of the static-desiccator method. Measurements were made using AquaLab apparatus. The size, shape, and number of tapioca particles were characterized using a Morphology automatic particle analyzer. The study demonstrated that in-depth exploration of empirical data describing hygroscopicity of samples with the use of mathematical tools allows evaluating their physical parameters. The results obtained were analyzed in terms of correlations between physical and physicochemical properties determining utility traits of cassava starch. The NS and SS featured significantly higher hygroscopicity than SG, as evidenced by the values of all parameters analyzed in this study. The study results provided new information related to the management of the production process, safety, and stability of these products. Full article
Show Figures

Figure 1

16 pages, 1151 KiB  
Article
A New Polysaccharide Carrier Isolated from Camelina Cake: Structural Characterization, Rheological Behavior, and Its Influence on Purple Corn Cob Extract’s Bioaccessibility
by Lucia Ferron, Chiara Milanese, Raffaella Colombo, Raffaele Pugliese and Adele Papetti
Foods 2022, 11(12), 1736; https://doi.org/10.3390/foods11121736 - 14 Jun 2022
Cited by 3 | Viewed by 1511
Abstract
A polysaccharide fraction obtained from camelina cake (CCP), selected as a carrier to encapsulate purple corn cob extract (MCE), was investigated. A wide population of carbohydrate polymers (with a polydispersivity index of 3.26 ± 0.07 and an average molecular weight of about 139.749 [...] Read more.
A polysaccharide fraction obtained from camelina cake (CCP), selected as a carrier to encapsulate purple corn cob extract (MCE), was investigated. A wide population of carbohydrate polymers (with a polydispersivity index of 3.26 ± 0.07 and an average molecular weight of about 139.749 × 103 ± 4.392 × 103 g/mol) with a gel-like behavior and a thixotropic feature characterized the fraction. MCE-CCP combinations (50–50 and 25–75, w/w), selected based on CCP encapsulation efficiency, were tested for their stability and MCE polyphenols’ bioaccessibility during digestion (monitored using an in vitro static procedure). During the oral and gastric phases of the digestion process, CCP gradually swelled and totally released MCE polyphenols. MCE-CCP50 had the fastest release. Moreover, anthocyanins were still detectable during the duodenal phase, in both MCE-CCP ingredients. Furthermore, CCP (5 mg/mL) exerted in vitro potential hypocholesterolemic activity via bile salts binding during digestion. Full article
Show Figures

Figure 1

13 pages, 6742 KiB  
Article
Effects of Betanin on Pasting, Rheology and Retrogradation Properties of Different Starches
by Taotao Dai, Xiaohong He, Jiahui Xu, Qin Geng, Changhong Li, Jian Sun, Chengmei Liu, Jun Chen and Xuemei He
Foods 2022, 11(11), 1600; https://doi.org/10.3390/foods11111600 - 29 May 2022
Cited by 10 | Viewed by 2019
Abstract
As a natural pigment with high antioxidative activity, betanin is underutilized owing to less attention. This study aimed to investigate the impact of betanin on pasting, rheology and retrogradation properties of rice, potato and pea starches. Betanin decreased the peak, trough and final [...] Read more.
As a natural pigment with high antioxidative activity, betanin is underutilized owing to less attention. This study aimed to investigate the impact of betanin on pasting, rheology and retrogradation properties of rice, potato and pea starches. Betanin decreased the peak, trough and final viscosity of rice and potato starches, but increased those of pea starch. Rheology measurements implied that betanin had the greatest effect on the hysteresis loops and dynamic modulus of potato starch. Betanin endowed starch pastes with a vivid red appearance and maintained the color of the starch pastes during storage. XRD analysis indicated that betanin weakened the diffraction intensities and reduced the crystallinity of the retrograded starches. Meanwhile, betanin reduced the short-range ordered structure of the retrograde starches. The results of DSC analysis found that betanin significantly depressed the retrogradation enthalpy and retrogradation rate, implying that the long-term retrogradation of starches was delayed. Furthermore, the changed morphology of the retrograded starches was observed. These results suggested that betanin could be applied as an excellent colorant and inhibitor of retrogradation in foods such as bread and pastry products. Full article
Show Figures

Figure 1

15 pages, 4817 KiB  
Article
Interaction between Gelatin and Mulberry Leaf Polysaccharides in Miscible System: Physicochemical Characteristics and Rheological Behavior
by Xiu-Xiu Zhang, Bu-Yan Liao, Zi-Jing Guan, Kiran Thakur, Mohammad Rizwan Khan, Rosa Busquets, Jian-Guo Zhang and Zhao-Jun Wei
Foods 2022, 11(11), 1571; https://doi.org/10.3390/foods11111571 - 26 May 2022
Cited by 5 | Viewed by 1834
Abstract
In this study, the miscible system was formed by mixing gelatin (G) with mulberry leaf polysaccharides (MLPs) continuously extracted with a hot buffer (HBSS), a chelating agent (CHSS), a dilute alkali (DASS), and a concentrated alkali (CASS), and the zeta potential, turbidity, particle [...] Read more.
In this study, the miscible system was formed by mixing gelatin (G) with mulberry leaf polysaccharides (MLPs) continuously extracted with a hot buffer (HBSS), a chelating agent (CHSS), a dilute alkali (DASS), and a concentrated alkali (CASS), and the zeta potential, turbidity, particle size, distribution, and rheological properties of the miscible systems were evaluated. Under acidic conditions, the miscible systems of four polysaccharides and gelatin were in a clear state; under alkaline conditions, G-HBSS and G-CHSS were clarified, and G-DASS and G-CASS changed from clarification to turbidity. The zeta potential changed from positive to negative with the increase in pH. When the pH was at 7, it increased with the increase in polysaccharide concentration but was still negative. The four miscible systems all showed polydispersity. The particle sizes of G-HBSS and G-CHSS decreased with the increase in pH, while the particle sizes of G-DASS and G-CASS were increased. The four miscible systems showed “shear thinning” behavior, and the addition of gelatin reduced the apparent viscosity of the four polysaccharide solutions. G-CHSS was highly stable, and G-CASS was more suitable as a stabilizer in the freezing process. Full article
Show Figures

Graphical abstract

13 pages, 2765 KiB  
Article
Protective Effect and Mechanism of Soybean Insoluble Dietary Fiber on the Color Stability of Malvidin-3-O-glucoside
by Yang He, Dongxia Chen, Yuheng Liu, Xiaozhen Sun, Wenrui Guo, Lingyu An, Zhenming Shi, Liankui Wen, Zhitong Wang and Hansong Yu
Foods 2022, 11(10), 1474; https://doi.org/10.3390/foods11101474 - 19 May 2022
Cited by 7 | Viewed by 1512
Abstract
Anthocyanins have great health benefits, especially malvidin. Vitis amurensis Rupr are rich in malvidin, and malvidin-3-O-glucoside (Mv3G) monomer is the most abundant. However, natural anthocyanins are unstable, which limits their wide application in the food field. Soybean insoluble dietary fiber (SIDF) [...] Read more.
Anthocyanins have great health benefits, especially malvidin. Vitis amurensis Rupr are rich in malvidin, and malvidin-3-O-glucoside (Mv3G) monomer is the most abundant. However, natural anthocyanins are unstable, which limits their wide application in the food field. Soybean insoluble dietary fiber (SIDF) has high stability, and it can be used as an inert substrate to construct a stable system, which may improve the stability of anthocyanins. The optimal condition to construct a stable system of SIDF and Mv3G at pH 3.0 was determined by an orthogonal experiment. The results indicated that SIDF effectively improved the stability of Mv3G under different pH values (1.0~7.0), high temperature (100 °C for 100 min), and sunlight (20 ± 2 °C for 30 d) conditions. The absorption peak intensity of the UV–VIS spectrum of SIDF-Mv3G was enhanced, which indicated that there was interaction between SIDF and Mv3G. Fourier transform infrared spectroscopy analyses revealed that the -OH stretching vibration peak of SIDF-Mv3G was changed, which indicated that the interaction between SIDF and Mv3G was due to hydrogen bonding. X-ray diffraction analysis showed that the crystalline morphology of SIDF was opened, which was combined with Mv3G, and SIDF made Mv3G change to a more stable state. Scanning electron microscope analysis showed that SIDF and Mv3G were closely combined to form an inclusion complex. Overall, this study provides valuable information for enhancing the color stability of anthocyanins, which will further expand the application of anthocyanins in the food field. Full article
Show Figures

Graphical abstract

16 pages, 4371 KiB  
Article
Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber
by Tianfu Cheng, Caihua Liu, Zhaodong Hu, Zhongjiang Wang and Zengwang Guo
Foods 2022, 11(10), 1433; https://doi.org/10.3390/foods11101433 - 16 May 2022
Cited by 4 | Viewed by 1915
Abstract
In this study, pea residue reserve insoluble diet fiber (hereinafter referred to as pea fiber) was used as a raw material. The effects of γ-irradiation doses (0, 0.5, 1, 2, 3, and 5 kGy) on the structural properties (main composition, particle size and [...] Read more.
In this study, pea residue reserve insoluble diet fiber (hereinafter referred to as pea fiber) was used as a raw material. The effects of γ-irradiation doses (0, 0.5, 1, 2, 3, and 5 kGy) on the structural properties (main composition, particle size and specific surface area, scanning electron microscope (SEM) microstructure, Fourier transform infrared spectroscopy, and X-ray diffraction) and functional properties (oil-holding capacity, swelling and water-holding capacity, and adsorption properties) of pea fiber were explored. The results show that, when the γ-irradiation dose was 2 kGy, compared with the untreated sample, the contents of cellulose, hemicellulose and lignin in pea fiber decreased by 1.34 ± 0.42%, 2.56 ± 0.03% and 2.02 ± 0.05%, respectively, and the volume particle size of pea fiber decreased by 17.43 ± 2.35 μm. The specific surface area increased by 23.70 ± 2.24 m2/kg and the crystallinity decreased by 7.65%. Pore and irregular particles appeared on the microstructure surface of the pea fiber treated with γ-irradiation. The results of the infrared spectrum showed that the hemicellulose and lignin in pea fiber were destroyed by γ-irradiation. These results indicate that γ-irradiation can significantly affect the structural properties of pea fiber. When the γ-irradiation dose was 2 kGy, the highest oil-holding capacity, swelling capacity and water-holding capacity of pea fiber were 8.12 ± 0.12 g/g, 19.75 ± 0.37 mL/g and 8.35 ± 0.18 g/g, respectively, and the adsorption capacities of sodium nitre, cholesterol and glucose were also the strongest. These results indicate that the functional properties of pea fiber are improved by γ-irradiation. In this study, γ-irradiation technology was used as pretreatment to provide a theoretical basis for the application of pea fiber in food processing. Full article
Show Figures

Figure 1

20 pages, 3501 KiB  
Article
Structural Characteristics of Insoluble Dietary Fiber from Okara with Different Particle Sizes and Their Prebiotic Effects in Rats Fed High-Fat Diet
by Hongliang Fan, Ying Zhang, Mohammed Sharif Swallah, Sainan Wang, Jiarui Zhang, Jiaqi Fang, Jiahong Lu and Hansong Yu
Foods 2022, 11(9), 1298; https://doi.org/10.3390/foods11091298 - 29 Apr 2022
Cited by 9 | Viewed by 2144
Abstract
Dietary fiber, which is utilized to make functional meals, is an important component for promoting human health and managing calorie consumption. In this study, three different particle sizes of OIDF (Okara insoluble dietary fiber) were characterized. Their lipid-lowering effects and the impacts on [...] Read more.
Dietary fiber, which is utilized to make functional meals, is an important component for promoting human health and managing calorie consumption. In this study, three different particle sizes of OIDF (Okara insoluble dietary fiber) were characterized. Their lipid-lowering effects and the impacts on gut microbiota were determined by OIDF intervention in high-fat diet rats. Scanning electron microscopy (SEM) results showed that the three particle sizes of OIDF have different morphologies. Fourier transform infrared spectroscopy (FT-IR) results showed that the three sources of IDF samples have similar active groups, but the thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and X-ray diffraction (XRD) showed that three different particle sizes of OIDF have different retention and crystallinity. Among the three OIDFs, OIDF-10 exhibited the stronger WSC, OHC, CAC, and SCAC. The results after the feeding showed that the OIDF of three particle sizes could improve the elevation of blood lipids and the disturbance of gut microbiota caused by the high-fat diet. Therefore, this study demonstrated the functional significance of the three particle sizes of OIDF and provided a reference for its application in functional food processing, aiming at maintaining healthy blood lipid and intestinal flora levels. Full article
Show Figures

Figure 1

12 pages, 2301 KiB  
Article
Isolation, Characterization and Antioxidant Activity of Yam Polysaccharides
by Zhedong Li, Wenhao Xiao, Jianhua Xie, Yi Chen, Qiang Yu, Weidong Zhang and Mingyue Shen
Foods 2022, 11(6), 800; https://doi.org/10.3390/foods11060800 - 10 Mar 2022
Cited by 17 | Viewed by 3007
Abstract
This study aimed to characterize the structure of Chinese yam (Dioscoreae Rhizoma) polysaccharide (CYP) and to investigate its protective effect against H2O2-induced oxidative damage in IEC-6 cells. The chemical composition and structural characteristics of the samples were [...] Read more.
This study aimed to characterize the structure of Chinese yam (Dioscoreae Rhizoma) polysaccharide (CYP) and to investigate its protective effect against H2O2-induced oxidative damage in IEC-6 cells. The chemical composition and structural characteristics of the samples were analyzed by chemical and instrumental methods, including high-performance gel permeation chromatography, high-performance anion-exchange chromatography (HPAEC), Fourier transformed infrared (FT-IR), ultraviolet (UV), and scanning electron microscopy (SEM). Antioxidant activity was evaluated by establishing a cellular model of oxidative damage. The molecular weight of CYP was 20.89 kDa. Analysis of the monosaccharide composition revealed that CYP was primarily comprised of galactose (Gal), glucose (Glu), and galacturonic acid (GalA), and the ratio between them was 28.57:11.28:37.59. Pretreatment with CYP was able to improve cell viability, superoxide dismutase (SOD) activity, and reduce intracellular reactive oxygen species (ROS) production and malondialdehyde (MDA) content after H2O2 injury. CYP also attenuated oxidative damage in cells through the mitogen-activated protein kinase (MAPK) signaling pathway. This study showed that CYP was an acidic heteropolysaccharide with a good protective effect against oxidative damage, and it thus has good prospects in food and biopharmaceutical industries. Full article
Show Figures

Figure 1

15 pages, 3070 KiB  
Article
Ultrasonic Assisted Extraction of Quinoa (Chenopodium quinoa Willd.) Protein and Effect of Heat Treatment on Its In Vitro Digestion Characteristics
by Xingfen He, Bin Wang, Baotang Zhao and Fumin Yang
Foods 2022, 11(5), 771; https://doi.org/10.3390/foods11050771 - 07 Mar 2022
Cited by 11 | Viewed by 2906
Abstract
To extract and utilise the protein in quinoa efficiently, we investigated the effect of rate of quinoa protein isolate (QPI) extraction by ultrasound-assisted alkaline extraction and traditional alkaline extraction methods using single-factor experiments and Box-Behnken design. The effect of different heat treatment temperature [...] Read more.
To extract and utilise the protein in quinoa efficiently, we investigated the effect of rate of quinoa protein isolate (QPI) extraction by ultrasound-assisted alkaline extraction and traditional alkaline extraction methods using single-factor experiments and Box-Behnken design. The effect of different heat treatment temperature and time on QPI functional properties and in vitro digestion characteristics were also investigated. The results showed that the optimal conditions of ultrasound- assisted alkaline extraction process were: ultrasonic time 99 min, solid-liquid ratio 1:20 w:v, ultrasonic temperature 47 °C, and pH 10, and its extraction rate and purity were 74.67 ± 1.08% and 87.17 ± 0.58%, respectively. It was 10.18% and 5.49% higher than that of the alkali-soluble acid precipitation method, respectively. The isoelectric point (pI) of QPI obtained by this method was 4.5. The flexibility and turbidity of QPI had maximum values at 90 °C, 30 min, and 121 °C, 30 min, which were 0.42 and 0.94, respectively. In addition, heat treatment changed the 1.77–2.79 ppm protein characteristic region in QPI’s nuclear magnetic resonance hydrogen spectroscopy (1H NMR). After heating at 90 °C and 121 °C for 30 min, the hydrolysis degree and total amino acid content at the end of digestion (121 °C, 30 min) were significantly lower than those of untreated QPI by 20.64% and 27.85%. Our study provides basic data for the efficient extraction and utilisation of QPI. Full article
Show Figures

Graphical abstract

14 pages, 8096 KiB  
Article
Disintegrating the Structure and Improving the Functionalities of Pea Fiber by Industry-Scale Microfluidizer System
by Xiaohong He, Taotao Dai, Jian Sun, Ruihong Liang, Wei Liu, Mingshun Chen, Jun Chen and Chengmei Liu
Foods 2022, 11(3), 418; https://doi.org/10.3390/foods11030418 - 31 Jan 2022
Cited by 6 | Viewed by 2290
Abstract
In the food industry, the most prominent and concerned points in the application of dietary fiber are hydration properties and oil absorption capacity. The target of this work was to investigate the impact of a novel industry-scale microfluidizer system (ISMS) on the changing [...] Read more.
In the food industry, the most prominent and concerned points in the application of dietary fiber are hydration properties and oil absorption capacity. The target of this work was to investigate the impact of a novel industry-scale microfluidizer system (ISMS) on the changing structures and functionalities of pea fiber. Different ISMS treatment intensity (0–120 MPa for one pass and 120 MPa for two passes) was applied to treat pea fiber. ISMS treatment induced the reduction in particle size and the transformation of big compact blocks to loose flakes, and the destruction of the original ordered cellulose structure caused the decline of crystallinity. Meanwhile, the hydration properties of pea fiber were improved, and pre-pulverizer and industry-scale microfluidizer treatment together increased the swelling capacity and water retention capacity of fiber. The oil holding capacity of ISMS-treated fiber was increased to more than double the original one. The elevated functionalities of pea fiber by ISMS treatment could be attributed to loosening structure, exposing more surface area, and disordering the crystalline structure, which increased the sites of water binding and oil adsorption. These findings suggested that ISMS could be applied as an effective industrial technique to the disintegrate structure and improve the functionalities of pea fiber, so as to widen the application of pea fibers in foods. Full article
Show Figures

Graphical abstract

16 pages, 2435 KiB  
Article
Effect of Grass Carp Scale Collagen Peptide FTGML on cAMP-PI3K/Akt and MAPK Signaling Pathways in B16F10 Melanoma Cells and Correlation between Anti-Melanin and Antioxidant Properties
by Zizi Hu, Xiaomei Sha, Lu Zhang, Sheng Huang and Zongcai Tu
Foods 2022, 11(3), 391; https://doi.org/10.3390/foods11030391 - 29 Jan 2022
Cited by 12 | Viewed by 2714
Abstract
Peptide Phe-Thr-Gly-Met-Leu (FTGML) is a bioactive oligopeptide with tyrosinase inhibitory activity derived from gelatin hydrolysate of grass carp scales. Previous studies have shown that FTGML addition can effectively inhibit mushroom tyrosinase activity in vitro, and also has some effect on the inhibition of [...] Read more.
Peptide Phe-Thr-Gly-Met-Leu (FTGML) is a bioactive oligopeptide with tyrosinase inhibitory activity derived from gelatin hydrolysate of grass carp scales. Previous studies have shown that FTGML addition can effectively inhibit mushroom tyrosinase activity in vitro, and also has some effect on the inhibition of melanogenesis in zebrafish in vivo, but the underlying mechanism is not fully understood. In this study, we used FTGML to treat B16F10 melanoma cells, and found a significant inhibition of tyrosinase activity and melanin synthesis. Interestingly, the treatment showed a strong correlation between antioxidant activity and anti-melanin, which was associated with FTGML reducing the involvement of reactive oxygen species in melanin synthesis. Furthermore, FTGML reduced melanogenesis in B16F10 cells by downregulating the cAMP-PI3K/Akt and MAPK pathways (p38 and JNK). These results suggested that FTGML can reduce melanin production in mouse B16F10 melanoma cells through multiple pathways. Full article
Show Figures

Graphical abstract

19 pages, 3598 KiB  
Article
Effect of Peroxyl Radical-Induced Oxidation on Functional and Structural Characteristics of Walnut Protein Isolates Revealed by High-Resolution Mass Spectrometry
by Xuechun Zhang, Xi Yang, Yunqian Li, Zhenxing Wang, Xuemei He and Jian Sun
Foods 2022, 11(3), 385; https://doi.org/10.3390/foods11030385 - 28 Jan 2022
Cited by 6 | Viewed by 2417
Abstract
The present study aims to investigate the structural and functional properties of oxidated walnut protein isolates (WPI) by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). The oxidation degree, changes in structural characteristics, processing properties, and protein modifications of WPI were measured. The results showed that oxidation [...] Read more.
The present study aims to investigate the structural and functional properties of oxidated walnut protein isolates (WPI) by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). The oxidation degree, changes in structural characteristics, processing properties, and protein modifications of WPI were measured. The results showed that oxidation significantly induced structural changes, mainly reflected by the increasing carbonyl content, and decreasing sulfhydryl and free amino groups. Moreover, the secondary structure of WPI was altered in response to oxidation, and large aggregates formed through disulfide cross-linking and hydrophobic interactions. Almost all the property indicators were significantly decreased by oxidation except the foaming property and water/oil holding capacity. Mass spectrometry analysis showed that 16 different modifications occurred in amino acid side chains, and most of the protein groups with higher numbers of modifications were found to be associated with allergies, which was further confirmed by the reduction in antigenicity of the major allergen (Jug r 1) in WPI. Meanwhile, we used oxidation-related proteins for gene ontology (GO) enrichment analyses, and the results indicated that 115, 204 and 59 GO terms were enriched in terms of biological process, molecular function, and cellular component, respectively. In conclusion, oxidation altered the groups and conformation of WPI, which in turn caused modification in the functional properties correspondingly. These findings might provide a reference for processing and storage of walnut protein foods. Full article
Show Figures

Figure 1

15 pages, 4162 KiB  
Article
Cryoprotective Roles of Carboxymethyl Chitosan during the Frozen Storage of Surimi: Protein Structures, Gel Behaviors and Edible Qualities
by Xiangwei Zhu, Minglang Zhu, Diheng He, Xueyin Li, Liu Shi, Lan Wang, Jianteng Xu, Yi Zheng and Tao Yin
Foods 2022, 11(3), 356; https://doi.org/10.3390/foods11030356 - 26 Jan 2022
Cited by 13 | Viewed by 2908
Abstract
Carboxymethyl chitosan (CMCh) is an ampholytic chitosan derivative that manifests versatile applications in food industry, such as antibacterial ingredients and nutritional additives. However, its use as a cryoprotectant remains under-researched. In this study, the cryoprotective effect of CMCh oligosaccharide (CMCO) on frozen surimi [...] Read more.
Carboxymethyl chitosan (CMCh) is an ampholytic chitosan derivative that manifests versatile applications in food industry, such as antibacterial ingredients and nutritional additives. However, its use as a cryoprotectant remains under-researched. In this study, the cryoprotective effect of CMCh oligosaccharide (CMCO) on frozen surimi (silver carp) was systematically investigated in terms of protein structures, gelling behaviors, and sensory qualities. CMCO (0.6%) was incorporated in the surimi before frozen storage (−18 °C for 60 days) while the commercial cryoprotectant (4% sucrose, 4% sorbitol) was used as a positive control. Results indicated that CMCO could inhibit the freezing-induced denaturation of myofibrillar protein, whose values of solubility, Ca2+-ATPase and sulfhydryl content were 24.8%, 64.7%, and 17.1% higher than the nonprotected sample, respectively, while the surface hydrophobicity was 21.6% lower. Accordingly, CMCO stabilized microstructure of the surimi gels associated with improved gel strength, viscoelasticity, water-holding capacities, and whiteness. Moreover, the cryoprotective effect of CMCO with higher degree of carboxymethyl substitution (DS: 1.2) was more pronounced than that of low-DS-CMCO (DS: 0.8). Frozen surimi treated with high-DS-CMCO achieved competitive gelling properties and sensory acceptability to those with the commercial counterpart. This study provided scientific insights into the development of ampholytic oligosaccharides as food cryoprotectants. Full article
Show Figures

Graphical abstract

14 pages, 4305 KiB  
Article
Protective Effect of Ganoderma atrum Polysaccharide on Acrolein-Induced Apoptosis and Autophagic Flux in IEC-6 Cells
by Yudan Wang, Xinxin Chang, Bing Zheng, Yi Chen, Jianhua Xie, Jialuo Shan, Xiaoyi Hu, Xiaomeng Ding, Xiaobo Hu and Qiang Yu
Foods 2022, 11(2), 240; https://doi.org/10.3390/foods11020240 - 17 Jan 2022
Cited by 9 | Viewed by 2124
Abstract
This study was designed to explore the beneficial effect and mechanism of Ganoderma atrum (G. atrum) polysaccharide (PSG-1) on acrolein-induced IEC-6 cells. Our results indicated that PSG-1 significantly reduced the impairment of acrolein on cell viability, decreased oxidative stress, and enabled normal expression [...] Read more.
This study was designed to explore the beneficial effect and mechanism of Ganoderma atrum (G. atrum) polysaccharide (PSG-1) on acrolein-induced IEC-6 cells. Our results indicated that PSG-1 significantly reduced the impairment of acrolein on cell viability, decreased oxidative stress, and enabled normal expression of tight junction (TJ) proteins that were inhibited by acrolein in IEC-6 cells. Furthermore, PSG-1 attenuated the elevation of microtubule-associated proteins light chain 3 (LC3) and Beclin 1-like protein 1 (Beclin 1) and increased the protein levels of phospho-mTOR (p-mTOR) and phospho-akt (p-akt), indicating that PSG-1 activated the mammalian target of rapamycin (mTOR) signaling pathway and alleviated acrolein-induced autophagy in IEC-6 cells. Moreover, PSG-1 markedly attenuated the acrolein-induced apoptosis, as evidenced by the increase in mitochondrial membrane potential (MMP) and B-cell lymphoma 2 (Bcl-2) expression, and the decrease in cysteine aspartate lyase (caspase)-3 and caspase-9. In addition, autophagy the inhibitor inhibited acrolein-induced TJ and apoptosis of IEC-6 cells, while the apoptosis inhibitor also inhibited acrolein-induced TJ and autophagy, suggesting that autophagy and apoptosis were mutually regulated. Taken together, the present study proved that PSG-1 could protect IEC-6 cells from acrolein-induced oxidative stress and could repair TJ by inhibiting apoptosis and autophagic flux, where autophagy and apoptosis were mutually regulated. Full article
Show Figures

Graphical abstract

14 pages, 2675 KiB  
Article
Effects of Superheated Steam Treatment on the Allergenicity and Structure of Chicken Egg Ovomucoid
by Ping-Wei Wen, Zong-Cai Tu, Yue-Ming Hu and Hui Wang
Foods 2022, 11(2), 238; https://doi.org/10.3390/foods11020238 - 17 Jan 2022
Cited by 18 | Viewed by 2111
Abstract
The aim of this study was to explore the effects of an emerging and efficient heating technology, superheated steam (SS), on the allergenicity and molecular structure of ovomucoid (OVM). OVM was treated with 120–200 °C of SS for 2 to 10 min. The [...] Read more.
The aim of this study was to explore the effects of an emerging and efficient heating technology, superheated steam (SS), on the allergenicity and molecular structure of ovomucoid (OVM). OVM was treated with 120–200 °C of SS for 2 to 10 min. The allergenicity (IgG/IgE binding abilities and cell degranulation assay) and molecular structure (main functional groups and amino acids modification) changes were investigated. The IgG-binding ability of OVM decreased and the releases of β-hex and TNF-γ were inhibited after SS treatment, indicating that the protein allergenicity was reduced. Significant increases in oxidation degree, free SH content and surface hydrophobicity were observed in SS-treated OVM. The protein dimer and trimer appeared after SS treatment. Meanwhile, obvious changes occurred in the primary structure. Specifically, serine can be readily modified by obtaining functional groups from other modification sites during SS treatment. Moreover, the natural OVM structure which showed resistance to trypsin digestion was disrupted, leading to increased protein digestibility. In conclusion, SS-induced OVM aggregation, functional groups and amino acids modifications as well as protein structure alteration led to reduced allergenicity and increased digestibility. Full article
Show Figures

Figure 1

16 pages, 3577 KiB  
Article
Changes in Gel Structure and Chemical Interactions of Hypophthalmichthys molitrix Surimi Gels: Effect of Setting Process and Different Starch Addition
by Xin Jiang, Qing Chen, Naiyong Xiao, Yufan Du, Qian Feng and Wenzheng Shi
Foods 2022, 11(1), 9; https://doi.org/10.3390/foods11010009 - 21 Dec 2021
Cited by 16 | Viewed by 3212
Abstract
The modifications of histological properties and chemical forces on heated surimi gels with starch addition (0–12 g/100 g surimi) were investigated. Two types of heating processes (direct heating and two-step heating) were carried out on surimi gels in order to reveal the effect [...] Read more.
The modifications of histological properties and chemical forces on heated surimi gels with starch addition (0–12 g/100 g surimi) were investigated. Two types of heating processes (direct heating and two-step heating) were carried out on surimi gels in order to reveal the effect of setting on mixed matrices. The results of transverse relaxation time showed less immobile water and free water converted into bound water in a matrix subjected to the setting process. Scanning electron microscope and light microscopy images revealed inefficient starch-swelling in two-step heated gels. Chemical interactions and forces in direct cooking gels were more vulnerable to starch addition, resulting in significant decreases in hydrophobic interaction and sulfhydryl content (p < 0.05). With the increment of starch, the disulfide stretching vibrations of the gauche–gauche–gauche conformation were reduced in both gel matrices. The structural variations of different components collectively resulted in changes in texture profile analysis and water holding capacity. Overall, the results demonstrated that starch addition had a great and positive effect on the weak gel matrix by direct heating. Full article
Show Figures

Figure 1

14 pages, 940 KiB  
Article
In Vitro Immuno-Modulatory Potentials of Purslane (Portulaca oleracea L.) Polysaccharides with a Chemical Selenylation
by Ya-Ru Lin, Qing-Yun Guan, Ling-Yu Li, Zhi-Mei Tang, Qiang Zhang and Xin-Huai Zhao
Foods 2022, 11(1), 14; https://doi.org/10.3390/foods11010014 - 21 Dec 2021
Cited by 6 | Viewed by 2730
Abstract
The soluble polysaccharides from a non-conventional and edible plant purslane (Portulaca oleracea L.), namely PSPO, were prepared by the water extraction and ethanol precipitation methods in this study. The obtained PSPO were selenylated using the Na2SeO3-HNO3 method [...] Read more.
The soluble polysaccharides from a non-conventional and edible plant purslane (Portulaca oleracea L.), namely PSPO, were prepared by the water extraction and ethanol precipitation methods in this study. The obtained PSPO were selenylated using the Na2SeO3-HNO3 method to successfully prepare two selenylated products, namely SePSPO-1 and SePSPO-2, with different selenylation extents. The assay results confirmed that SePSPO-1 and SePSPO-2 had respective Se contents of 753.8 and 1325.1 mg/kg, while PSPO only contained Se element about 80.6 mg/kg. The results demonstrated that SePSPO-1 and SePSPO-2 had higher immune modulation than PSPO (p < 0.05), when using the two immune cells (murine splenocytes and RAW 264.7 macrophages) as two cell models. Specifically, SePSPO-1 and SePSPO-2 were more active than PSPO in the macrophages, resulting in higher cell proliferation, greater macrophage phagocytosis, and higher secretion of the immune-related three cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Meanwhile, SePSPO-1 and SePSPO-2 were more potent than PSPO in the concanavalin A- or lipopolysaccharide-stimulated splenocytes in cell proliferation, or more able than PSPO in the splenocytes to promote interferon-γ secretion but suppress IL-4 secretion, or more capable of enhancing the ratio of T-helper (CD4+) cells to T-cytotoxic (CD8+) cells for the T lymphocytes than PSPO. Overall, the higher selenylation extent of the selenylated PSPO mostly caused higher immune modulation in the model cells, while a higher polysaccharide dose consistently led to the greater regulation effect. Thus, it is concluded that the employed chemical selenylation could be used in the chemical modification of purslane or other plant polysaccharides, when aiming to endow the polysaccharides with higher immuno-modulatory effect on the two immune cells. Full article
Show Figures

Graphical abstract

18 pages, 4604 KiB  
Article
A Comparative Functional Analysis of Pea Protein and Grass Carp Protein Mixture via Blending and Co-Precipitation
by Xiaohu Zhou, Chaohua Zhang, Wenhong Cao, Chunxia Zhou, Huina Zheng and Liangzhong Zhao
Foods 2021, 10(12), 3037; https://doi.org/10.3390/foods10123037 - 07 Dec 2021
Cited by 4 | Viewed by 2506
Abstract
Currently, the application of protein mixture derived from plants and animals is of great interest to the food industry. However, the synergistic effects of isolated protein blends (BL) are not well established. Herein, the development of a more effective method (co-precipitation) for the [...] Read more.
Currently, the application of protein mixture derived from plants and animals is of great interest to the food industry. However, the synergistic effects of isolated protein blends (BL) are not well established. Herein, the development of a more effective method (co-precipitation) for the production of protein mixtures from pea and grass carp is reported. Pea protein isolate (PPI), grass carp protein isolate (CPI), and pea–carp protein co-precipitates (Co) were prepared via isoelectric solubilization/precipitation using peas and grass carp as raw materials. Meanwhile, the BL was obtained by blending PPI with CPI. In addition, the subunit composition and functional properties of Co and BL were investigated. The results show that the ratios of vicilin to legumin α + β and the soluble aggregates of Co were 2.82- and 1.69-fold higher than that of BL. The surface hydrophobicity of Co was less than that of BL, PPI, and CPI (p < 0.05). The solubility of Co was greater than that of BL, PPI, and CPI (p < 0.05), and the foaming activity was higher than that of BL and CPI (p < 0.05) but slightly lower than that of PPI. In addition, based on the emulsifying activity index, particle size, microstructure, and viscosity, Co had better emulsifying properties than BL, PPI, and CPI. The study not only confirmed that co-precipitation was more effective than blending for the preparation of mixed protein using PPI and CPI but also provided a standard of reference for obtaining a mixture of plant and animal proteins. Full article
Show Figures

Graphical abstract

15 pages, 4682 KiB  
Article
Changes of High-Purity Insoluble Fiber from Soybean Dregs (Okara) after Being Fermented by Colonic Flora and Its Adsorption Capacity
by Bo Lyu, Yi Wang, Xin Zhang, Yuxi Chen, Hongling Fu, Tong Liu, Jianyu Hao, Yang Li, Hansong Yu and Lianzhou Jiang
Foods 2021, 10(10), 2485; https://doi.org/10.3390/foods10102485 - 17 Oct 2021
Cited by 2 | Viewed by 2367
Abstract
In order to explore the changes and properties of high-purity insoluble dietary fiber from okara (HPIDF) after entering the colon and be fermented by colonic flora, fermented high-purity insoluble dietary fiber (F-HPIDF) was obtained by simulated fermentation in vitro by HPIDF and colonic [...] Read more.
In order to explore the changes and properties of high-purity insoluble dietary fiber from okara (HPIDF) after entering the colon and be fermented by colonic flora, fermented high-purity insoluble dietary fiber (F-HPIDF) was obtained by simulated fermentation in vitro by HPIDF and colonic flora from C57BL/6 mice. For exploring the differences of HPIDF and F-HPIDF, the changes of structure (SEM. FTIR, XRD, particle size, specific surface area, monosaccharide composition) and adsorption properties (water, oil, heavy metal irons, harmful substances) of HPIDF/F-HPIDF were explored. The results showed that F-HPIDF had a higher water-holding capacity (19.17 g/g), water-swelling capacity (24.83 mL/g), heavy metals-adsorption capacity (Cd2+: 1.82 μmol/g; Pb2+: 1.91 μmol/g; Zn2+: 1.30 μmol/g; Cu2+: 0.68 μmol/g), and harmful substances-adsorption capacity (GAC: 0.23 g/g; CAC: 14.80 mg/g; SCAC: 0.49 g/g) than HPIDF due to the changes of structure caused by fermentation. In addition, with the fermentation of HPIDF, some beneficial substances were produced, which might be potential intestinal prebiotics. The study of F-HPIDF strengthens the speculation that HPIDF may have potential bioactivities after entering the colon, which proved that okara-HPIDF may have potential functionality. Full article
Show Figures

Graphical abstract

19 pages, 4210 KiB  
Article
The Role of Ultrasound in the Preparation of Zein Nanoparticles/Flaxseed Gum Complexes for the Stabilization of Pickering Emulsion
by Yinghao Li, Ge Xu, Weiwei Li, Lishuang Lv and Qiuting Zhang
Foods 2021, 10(9), 1990; https://doi.org/10.3390/foods10091990 - 25 Aug 2021
Cited by 11 | Viewed by 2915
Abstract
Ultrasound is one of the most commonly used methods to prepare Pickering emulsions. In the study, zein nanoparticles-flaxseed gum (ZNP-FSG) complexes were fabricated through various preparation routes. Firstly, the ZNP-FSG complexes were prepared either through direct homogenization/ultrasonication of the zein and flaxseed gum [...] Read more.
Ultrasound is one of the most commonly used methods to prepare Pickering emulsions. In the study, zein nanoparticles-flaxseed gum (ZNP-FSG) complexes were fabricated through various preparation routes. Firstly, the ZNP-FSG complexes were prepared either through direct homogenization/ultrasonication of the zein and flaxseed gum mixture or through pretreatment of zein and/or flaxseed gum solutions by ultrasonication before homogenization. The Pickering emulsions were then produced with the various ZNP-FSG complexes prepared. ZNP-FSG complexes and the final emulsions were then characterized. We found that the complex prepared by ultrasonication of zein as pretreatment followed by homogenization of the ZNP with FSG ((ZNPU-FSG)H) exhibited the smallest turbidity, highest absolute potential value, relatively small particle size, and formed the most stable complex particles. Meanwhile, complex prepared through direct ultrasonication plus homogenization on the mixture ((ZNP-FSG)HU) showed significantly decreased emulsifying properties and stability. Compared with the complex without ultrasonic treatment, the complex and emulsion, which prepared by ultrasonicated FSG were extremely unstable, and the phase separation phenomenon of the emulsion was observed 30 min after preparation. The above conclusions are also in line with the findings obtained from the properties of the corresponding emulsions, such as the droplets size, microstructure, freeze-thaw stability, and storage stability. It is, therefore, clear that to produce stable Pickering emulsion, ultrasonication should be avoided to apply together at the end of ZNP-FGS complex preparation. It is worth noticing that the emulsions prepared by complex with ultrasonicated zein (ZNPU-FSG)H are smaller, distributed more uniformly, and are able to encapsulate oil droplets well. It was found that the emulsions prepared with ZNPU-FSG remained stable without serum phase for 14 days and exhibited improved stability at low-temperature storage. The current study will provide guidance for the preparation of protein–polysaccharide complexes and Pickering emulsions for future work. Full article
Show Figures

Graphical abstract

11 pages, 1656 KiB  
Article
Beneficial Effects of Holothuria leucospilota Polysaccharides on Fermentability In Vivo and In Vitro
by Wanting Wang, Yiqiong Yuan, Jun Cao, Xuanri Shen and Chuan Li
Foods 2021, 10(8), 1884; https://doi.org/10.3390/foods10081884 - 15 Aug 2021
Cited by 8 | Viewed by 1936
Abstract
This work aimed to investigate the in-vitro and in-vivo fermentation behaviors of Holothuria leucospilota Polysaccharides (HLP) and the impact on mouse liver antioxidant activity. HLP showed excellent fermentability during in vitro experiments, which was characterized by increased levels of total sugar consumption and [...] Read more.
This work aimed to investigate the in-vitro and in-vivo fermentation behaviors of Holothuria leucospilota Polysaccharides (HLP) and the impact on mouse liver antioxidant activity. HLP showed excellent fermentability during in vitro experiments, which was characterized by increased levels of total sugar consumption and short-chain fatty acids (SCFAs). During in vitro fecal fermentation, the fucose contents in the HLP fermentation products (0.174 mg/mL) were higher than those of xylose and galactosamine during the first three hours, and fucose disappeared after 24 h. The concentrations of the generated SCFAs increased to 111.13 mmol/mL after in-vitro fermentation at 48 h. After 28 days of oral administration, the SCFA contents that were detected in the feces of mice treated with high HLP doses were significantly higher than those in the feces of mice treated with lower doses and the normal group. In addition, histological observations demonstrated that HLP increased the number of goblet cells without causing hepatocellular injury. Moreover, the increased glutathione peroxidase (GSH-Px) and superoxidase dismutase (SOD) activities and decreased malondialdehyde (MDA) contents in the mouse livers treated with HLP suggested the good performance of HLP with respect to liver antioxidants. Full article
Show Figures

Graphical abstract

14 pages, 2574 KiB  
Article
Hemp (Cannabis sativa L.) Seed Protein–EGCG Conjugates: Covalent Bonding and Functional Research
by Xin-Hui Pang, Yang Yang, Xin Bian, Bing Wang, Li-Kun Ren, Lin-Lin Liu, De-Hui Yu, Jing Yang, Jing-Chun Guo, Lei Wang, Xiu-Min Zhang, Han-Song Yu and Na Zhang
Foods 2021, 10(7), 1618; https://doi.org/10.3390/foods10071618 - 13 Jul 2021
Cited by 14 | Viewed by 2188
Abstract
In order to make HPI have a wide application prospect in the food industry, we used EGCG to modify HPI. In this study, we prepared different concentrations (1, 2, 3, 4, and 5 mM) of (−)-epigallocatechin gallate (EGCG) covalently linked to HPI and [...] Read more.
In order to make HPI have a wide application prospect in the food industry, we used EGCG to modify HPI. In this study, we prepared different concentrations (1, 2, 3, 4, and 5 mM) of (−)-epigallocatechin gallate (EGCG) covalently linked to HPI and use methods such as particle size analysis, circular dichroism (CD), and three-dimensional fluorescence spectroscopy to study the changes in the structure and functional properties of HPI after being covalently combined with EGCG. The particle size data indicated that the covalent HPI-EGCG complex was larger than native HPI, and the particle size was mainly distributed at about 200 μm. CD and three-dimensional fluorescence spectroscopy analyses showed that the conformation of the protein was changed by conjugation with EGCG. The β-sheet content decreased from 82.79% to 66.67% after EGCG bound to the protein, and the hydrophobic groups inside the protein were exposed, which increased the hydrophobicity of the protein and changed its conformation. After HPI and 1 mM of EGCG were covalently bonded, the solubility and emulsifying properties of the covalent complex were improved compared with native HPI. These results indicated that HPI-EGCG conjugates can be added in some foods. Full article
Show Figures

Graphical abstract

14 pages, 3448 KiB  
Article
Synergistic Effects of the Jackfruit Seed Sourced Resistant Starch and Bifidobacterium pseudolongum subsp. globosum on Suppression of Hyperlipidemia in Mice
by Zeng Zhang, Yuanyuan Wang, Yanjun Zhang, Kaining Chen, Haibo Chang, Chenchen Ma, Shuaiming Jiang, Dongxue Huo, Wenjun Liu, Rajesh Jha and Jiachao Zhang
Foods 2021, 10(6), 1431; https://doi.org/10.3390/foods10061431 - 21 Jun 2021
Cited by 11 | Viewed by 3756
Abstract
Approximately 17 million people suffer from cardiovascular diseases caused by hyperlipidemia, making it a serious global health concern. Among others, resistant starch (RS) has been widely used as a prebiotic in managing hyperlipidemia conditions. However, some studies have reported limited effects of RS [...] Read more.
Approximately 17 million people suffer from cardiovascular diseases caused by hyperlipidemia, making it a serious global health concern. Among others, resistant starch (RS) has been widely used as a prebiotic in managing hyperlipidemia conditions. However, some studies have reported limited effects of RS on body weight and blood lipid profile of the host, suggesting further investigation on the synergistic effects of RS in combination with probiotics as gut microbes plays a role in lipid metabolism. This study evaluated the effects of jackfruit seed sourced resistant starch (JSRS) as a novel RS on mice gut microbes and hyperlipidemia by performing 16s rRNA and shotgun metagenomic sequencing. The results showed that 10% JSRS had a limited preventive effect on bodyweight and serum lipid levels. However, the JSRS promoted the growth of Bifidobacterium pseudolongum, which indicated the ability of B. pseudolongum for JSRS utilization. In the validation experiment, B. pseudolongum interacted with JSRS to significantly reduce bodyweight and serum lipid levels and had a therapeutic effect on hepatic steatosis in mice. Collectively, this study revealed the improvements of hyperlipidemia in mice by the synergistic effects of JSRS and B. pseudolongum, which will help in the development of “synbiotics” for the treatment of hyperlipidemia in the future. Full article
Show Figures

Figure 1

13 pages, 2018 KiB  
Article
Effects of Three Types of Polymeric Proanthocyanidins on Physicochemical and In Vitro Digestive Properties of Potato Starch
by Jiahui Xu, Taotao Dai, Jun Chen, Xuemei He, Xixiang Shuai, Chengmei Liu and Ti Li
Foods 2021, 10(6), 1394; https://doi.org/10.3390/foods10061394 - 16 Jun 2021
Cited by 12 | Viewed by 2355
Abstract
The effects of three types of polymeric proanthocyanidins (PPC) with different degrees of polymerization (DP), namely PPC1 (DP = 6.39 ± 0.13), PPC2 (DP = 8.21 ± 0.76), and PPC3 (DP = 9.92 ± 0.21), on the physicochemical characteristics and in vitro starch [...] Read more.
The effects of three types of polymeric proanthocyanidins (PPC) with different degrees of polymerization (DP), namely PPC1 (DP = 6.39 ± 0.13), PPC2 (DP = 8.21 ± 0.76), and PPC3 (DP = 9.92 ± 0.21), on the physicochemical characteristics and in vitro starch digestibility of potato starch were studied. PPC addition (5%, w/w) increased the gelatinization temperature and decreased some viscosity indices of potato starch, including the peak, trough, breakdown, and setback viscosities. Starch-PPC pastes showed reduced thixotropy and improved stability and gelling properties compared to starch paste. The three types of proanthocyanidins all showed evident inhibitory effects on the digestion and retrogradation of potato starch, including short-term and long-term retrogradation. Among the three, PPC with a lower DP had stronger effects on the starch short-term retrogradation and gelling performance, whereas larger PPC molecules exhibited a greater impact on starch recrystallization and digestive characteristics. The research consequences were conducive to explore the application of functional PPC in starch-based food processing. Full article
Show Figures

Figure 1

17 pages, 3290 KiB  
Article
Dietary Fiber Modulates the Fermentation Patterns of Cyanidin-3-O-Glucoside in a Fiber-Type Dependent Manner
by Zixin Yang, Ting Huang, Ping Li, Jian Ai, Jiaxin Liu, Weibin Bai and Lingmin Tian
Foods 2021, 10(6), 1386; https://doi.org/10.3390/foods10061386 - 16 Jun 2021
Cited by 20 | Viewed by 3107
Abstract
The interactions between cell-wall polysaccharides and polyphenols in the gastrointestinal tract have attracted extensive attention. We hypothesized that dietary fiber modulates the fermentation patterns of cyanidin-3-O-glucoside (C3G) in a fiber-type-dependent manner. In the present study, the effects of four dietary fibers [...] Read more.
The interactions between cell-wall polysaccharides and polyphenols in the gastrointestinal tract have attracted extensive attention. We hypothesized that dietary fiber modulates the fermentation patterns of cyanidin-3-O-glucoside (C3G) in a fiber-type-dependent manner. In the present study, the effects of four dietary fibers (fructose-oligosaccharides, pectin, β-glucan and arabinoxylan) on the modulation of C3G fermentation patterns were investigated through in vitro fermentation inoculated with human feces. The changes in gas volume, pH, total carbohydrate content, metabolites of C3G, antioxidant activity, and microbial community distribution during in vitro fermentation were analyzed. After 24 h of fermentation, the gas volume and total carbohydrate contents of the four dietary-fiber-supplemented groups respectively increased and decreased to varying degrees. The results showed that the C3G metabolites after in vitro fermentation mainly included cyanidin, protocatechuic acid, 2,4,6-trihydroxybenzoic acid, and 2,4,6-trihydroxybenzaldehyde. Supplementation of dietary fibers changed the proportions of C3G metabolites depending on the structures. Dietary fibers increased the production of short-chain fatty acids and the relative abundance of gut microbiota Bifidobacterium and Lactobacillus, thus potentially maintaining colonic health to a certain extent. In conclusion, the used dietary fibers modulate the fermentation patterns of C3G in a fiber-type-dependent manner. Full article
Show Figures

Figure 1

14 pages, 2185 KiB  
Article
Thermal Inactivation Kinetics of Kudzu (Pueraria lobata) Polyphenol Oxidase and the Influence of Food Constituents
by Junping Liu, Jiayan Zhang, Tao Liao, Lei Zhou, Liqiang Zou, Yafei Liu, Li Zhang and Wei Liu
Foods 2021, 10(6), 1320; https://doi.org/10.3390/foods10061320 - 08 Jun 2021
Cited by 8 | Viewed by 2386
Abstract
The thermal inactivation kinetics of kudzu (Pueraria lobata) polyphenol oxidase (PPO) were investigated in model and food systems. PPO in kudzu tissue (tPPO) showed a higher thermostability than that of PPO in crude extract (cPPO) and purification fractions (pPPO). The PPO [...] Read more.
The thermal inactivation kinetics of kudzu (Pueraria lobata) polyphenol oxidase (PPO) were investigated in model and food systems. PPO in kudzu tissue (tPPO) showed a higher thermostability than that of PPO in crude extract (cPPO) and purification fractions (pPPO). The PPO inactivation rate constant (k) increased with an increase in temperature, and tPPO showed the lowest k value, followed by that of cPPO and pPPO at the same temperature, indicating that PPO in the food system was more resistant to thermal treatment. Food constituents (pectin, starch, sucrose, and bovine serum albumin) in the food system decreased the activity of PPO but increased the thermostability of PPO, among which pectin exhibited the strongest protective effect against thermal inactivation, and the influence of sucrose was much slighter than that of other macromolecules. Fluorescence emission spectra indicated that pPPO exhibited stronger interactions with pectin than sucrose, and pPPO with pectin showed a more stable conformation under thermal treatment. Full article
Show Figures

Figure 1

15 pages, 5611 KiB  
Article
Physicochemical and Structural Characterization of Potato Starch with Different Degrees of Gelatinization
by Fen Xu, Liang Zhang, Wei Liu, Qiannan Liu, Feng Wang, Hong Zhang, Honghai Hu and Christophe Blecker
Foods 2021, 10(5), 1104; https://doi.org/10.3390/foods10051104 - 17 May 2021
Cited by 33 | Viewed by 4811
Abstract
Starch gelatinization has been widely studied previously, but there is still a lack of systematical research on the relationship between the degree of starch gelatinization (DSG) and its physicochemical and structural properties. In this study, potato starch samples with DSG ranging from 39.41% [...] Read more.
Starch gelatinization has been widely studied previously, but there is still a lack of systematical research on the relationship between the degree of starch gelatinization (DSG) and its physicochemical and structural properties. In this study, potato starch samples with DSG ranging from 39.41% to 90.56% were obtained by hydrothermal treatment. The thermal, rheological, and structural properties, as well as the water-binding capacity of samples were investigated. A starch solution with a DSG of 39.41% was partially sedimented at room temperature, while starch with a DSG of 56.11% can form a stable paste with a fine shear-thinning property, as well as samples with a DSG larger than 56.11%. The endothermic enthalpy, gelatinization range, and short-range ordered structure of starch were negatively correlated with DSG, whereas onset gelatinization temperature, apparent viscosity, and water-binding capacity were positively correlated. The viscoelasticity of starch gels was negatively correlated with the DSG after full gelatinization (DSG > 39.41%). Starch granules gradually lose their typical shape and less birefringence can be observed with increasing DSG. Hydrothermal treatment has a more significant effect on the amount of exposed hydroxyl groups than the ordered and amorphous structures of partially gelatinized starch. This study built linear correlations between starch physicochemical properties and the DSG and provided comprehensive insight into the characteristics of partially gelatinized potato starch. Full article
Show Figures

Graphical abstract

10 pages, 1082 KiB  
Article
Effect of an Antibacterial Polysaccharide Produced by Chaetomium globosum CGMCC 6882 on the Gut Microbiota of Mice
by Xincheng Sun, Zichao Wang, Xuyang Hu, Chengxin Zhao, Xiaogen Zhang and Huiru Zhang
Foods 2021, 10(5), 1084; https://doi.org/10.3390/foods10051084 - 13 May 2021
Cited by 8 | Viewed by 1738
Abstract
Previously, a polysaccharide produced by Chaetomiumglobosum CGMCC 6882 was found to have antibacterial activity, but its toxic effects on body health and gut microbiota were concealed. Recent results showed that this polysaccharide was safe to Caco-2 cells and mice, while it reduced [...] Read more.
Previously, a polysaccharide produced by Chaetomiumglobosum CGMCC 6882 was found to have antibacterial activity, but its toxic effects on body health and gut microbiota were concealed. Recent results showed that this polysaccharide was safe to Caco-2 cells and mice, while it reduced the body weight gain of mice from 10.5 ± 1.21 g to 8.4 ± 1.17 g after 28 days administration. Acetate, propionate, butyrate and total short-chain fatty acids concentrations increased from 23.85 ± 1.37 μmol/g, 10.23 ± 0.78 μmol/g, 7.15 ± 0.35 μmol/g and 41.23 ± 0.86 μmol/g to 42.77 ± 1.29 μmol/g, 20.03 ± 1.44 μmol/g, 12.06 ± 0.51 μmol/g and 74.86 ± 2.07 μmol/g, respectively. Furthermore, this polysaccharide enriched the abundance of gut microbiota and the Firmicutes/Bacteroidetes ratio was increased from 0.5172 to 0.7238. Overall, this study provides good guidance for the promising application of polysaccharides as preservatives in foods and in other fields in the future. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

18 pages, 2019 KiB  
Review
Chitosan-Based Materials: An Overview of Potential Applications in Food Packaging
by Tong Liu, Junbo Li, Qilong Tang, Peng Qiu, Dongxia Gou and Jun Zhao
Foods 2022, 11(10), 1490; https://doi.org/10.3390/foods11101490 - 20 May 2022
Cited by 23 | Viewed by 7140
Abstract
Chitosan is a multifunctional biopolymer that is widely used in the food and medical fields because of its good antibacterial, antioxidant, and enzyme inhibiting activity and its degradability. The biological activity of chitosan as a new food preservation material has gradually become a [...] Read more.
Chitosan is a multifunctional biopolymer that is widely used in the food and medical fields because of its good antibacterial, antioxidant, and enzyme inhibiting activity and its degradability. The biological activity of chitosan as a new food preservation material has gradually become a hot research topic. This paper reviews recent research on the bioactive mechanism of chitosan and introduces strategies for modifying and applying chitosan for food preservation and different preservation techniques to explore the potential application value of active chitosan-based food packaging. Finally, issues and perspectives on the role of chitosan in enhancing the freshness of food products are presented to provide a theoretical basis and scientific reference for subsequent research. Full article
Show Figures

Figure 1

13 pages, 6321 KiB  
Review
A Review on the Structure and Anti-Diabetic (Type 2) Functions of β-Glucans
by Yujun Wan, Xiaojuan Xu, Robert G. Gilbert and Mitchell A. Sullivan
Foods 2022, 11(1), 57; https://doi.org/10.3390/foods11010057 - 27 Dec 2021
Cited by 9 | Viewed by 3243
Abstract
Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that β-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about [...] Read more.
Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that β-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about the antidiabetic activities of β-glucans have been published, potentially resulting from incomplete understanding of their precise structural characteristics. This review aims to increase clarity on the structure–function relationships of β-glucans in treating type 2 diabetes by examining detailed structural and conformational features of naturally derived β-glucans, as well as both chemical and instrumental methods used in their characterization, and their underlying anti-diabetic mechanisms. This may help to uncover additional structure and function relationships and to expand applications of β-glucans. Full article
Show Figures

Figure 1

41 pages, 8048 KiB  
Review
Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach
by Yuan Zhao, Bo Li, Cuicui Li, Yangfan Xu, Yi Luo, Dongwu Liang and Chongxing Huang
Foods 2021, 10(8), 1845; https://doi.org/10.3390/foods10081845 - 10 Aug 2021
Cited by 57 | Viewed by 8819
Abstract
Edible packaging is a sustainable product and technology that uses one kind of “food” (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible [...] Read more.
Edible packaging is a sustainable product and technology that uses one kind of “food” (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the “product-packaging” system, and provides a “zero-emission” scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging. Full article
Show Figures

Figure 1

19 pages, 1101 KiB  
Review
Natural Food Polysaccharides Ameliorate Inflammatory Bowel Disease and Its Mechanisms
by Yikun Wang, Haibin Zhu, Xiaoji Wang, Yue Yu and Jianhua Xie
Foods 2021, 10(6), 1288; https://doi.org/10.3390/foods10061288 - 04 Jun 2021
Cited by 28 | Viewed by 3667
Abstract
Natural polysaccharides and their metabolites’ short chain fatty acids (SCFAs) have attracted much attention. Recently, they have shown great potential in attenuating systemic inflammation activities, especially in inflammatory bowel disease (IBD). IBD is a complex pathological process and is related to epithelial damage [...] Read more.
Natural polysaccharides and their metabolites’ short chain fatty acids (SCFAs) have attracted much attention. Recently, they have shown great potential in attenuating systemic inflammation activities, especially in inflammatory bowel disease (IBD). IBD is a complex pathological process and is related to epithelial damage and microbiota imbalance in the gut. Recent studies have indicated that natural polysaccharides could improve IBD recovery by different mechanisms. They could not only influence the ratio of intestine microbiota, but also regulate the secretion levels of immunity cytokines through multiple pathways, the latter including modulation of the TLR/MAPK/NF-κB signaling pathways and stimulation of G-protein-coupled receptors. Moreover, they could increase intestinal integrity and modulate oxidative stress. In this review, recent research about how natural polysaccharides impact the pathogenesis of IBD are summarized to prove the association between polysaccharides and disease recovery, which might contribute to the secretion of inflammatory cytokines, improve intestine epithelial damage, reduce oxidative stress, sustain the balanced microenvironment of the intestines, and finally lower the risk of IBD. Full article
Show Figures

Figure 1

Back to TopTop