Advance in Biological Activities of Functional Food

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Nutraceuticals, Functional Foods, and Novel Foods".

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 40717

Special Issue Editors


E-Mail Website
Guest Editor
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
Interests: nutritional biochemistry; bioactive compounds; phenolic compounds; cholesterol intestinal absorption; herbal infusions; macroalga bioactivity; metabolomics; enzyme activity
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
2. Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
Interests: biochemistry; bioactive compounds; phenolic compounds; cholesterol intestinal absorption; herbal infusions; macroalga bioactivity; enzyme activity; cell FTIR spectroscopy; membrane separation processes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Functional foods have experienced a strong increase in consumption during the last decade. Today, more and more people are concerned with their health and how nutrition is related to human well-being. The search to disclose the biological effects of the several functional foods consumed in human diet as well as that of its constituents, different from the nutritional components, have been the target of countless studies. To accept these foods as functional, their health beneficial claims must be demonstrated, mainly through in vivo studies and with the use of cutting-edge technologies. Advances in research on the effect of functional foods and their bioactive molecules at cellular level are welcome. The aim is to identify the effect of the food whole matrix in the way it is usually consumed and of their bioactive compounds in the several biochemical pathways, in the cell metabolism of both healthy and laboratory model diseases cells. It is hoped that these studies can pave the way to understand functional foods’ claims in order to regulate their human consumption, and the findings may support the development of new functional foods.

Prof. Dr. Maria Luisa Serralheiro
Prof. Dr. Rita Isabel Pacheco
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • post-digestion bioactivity
  • bioactive compounds bioavailability
  • disease prevention
  • health benefits
  • bioactivities
  • cell proteomic effect
  • cell metabolomic effect

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2123 KiB  
Article
Chenopodium quinoa’s Ingredients Improve Control of the Hepatic Lipid Disturbances Derived from a High-Fat Diet
by Aurora Garcia Tejedor, Claudia Monika Haros and José Moisés Laparra Llopis
Foods 2023, 12(17), 3321; https://doi.org/10.3390/foods12173321 - 04 Sep 2023
Cited by 1 | Viewed by 1132
Abstract
This study explored the effects of Chenopodium quinoa’s ingredients on the major lipids’ hepatic profile and the functional selective differentiation of monocyte-derived macrophages and innate lymphoid cells in mice on a high-fat diet. Six-week-old Rag2-/- and Rag2-/-Il2-/- mice [...] Read more.
This study explored the effects of Chenopodium quinoa’s ingredients on the major lipids’ hepatic profile and the functional selective differentiation of monocyte-derived macrophages and innate lymphoid cells in mice on a high-fat diet. Six-week-old Rag2-/- and Rag2-/-Il2-/- mice received (12 days) a low-molecular-weight protein fraction (LWPF) or the lipid fraction (qLF) obtained from the cold pressing of C. quinoa’s germen. At the end of the experiment, mouse serum and liver tissue were collected. The differences in triglycerides, phospholipids, and the major lipids profile were analyzed. Infiltrated monocyte-derived macrophages and innate lymphoid cells (ILCs) and the expression of liver metabolic stress-related mRNA were measured. In the Rag2-/- mice, feeding them LWPF appeared to improve, to a larger extent, their hepatic capacity to utilize fatty acids in comparison to the qLF by preventing the overwhelming of triglycerides (TGs), despite both reducing the hepatic lipid accumulation. An analysis of the hepatic major lipids profile revealed significant increased variations in the PUFAs and phospholipid composition in the Rag2-/- mice fed with the LWPF or LF. The Rag2-/-Il2-/- mice, lacking innate and adaptive lymphocytes, seemed resistant to mobilizing hepatic TGs and unresponsive to lipid accumulation when fed with the LF. Notably, only the Rag2-/- mice fed with the LWPF showed an increased proportion of hepatic CD68+F4/80+ cells population, with a better controlled expression of the innate immune ‘Toll-like’ receptor (TLR)-4. These changes were associated with an oriented expansion of pluripotential CD117+ cells towards ILC2s (CD117+KLRG1+). Thus, C. quinoa’s ingredients resulted in being advantageous for improving the mechanisms for controlling the hepatic lipotoxicity derived from a high-fat diet, promoting liver macrophage and ILCs expansion to a selective functional differentiation for the control of HFD-driven immune and metabolic disturbances. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

14 pages, 3461 KiB  
Article
The Hypocholesterolemic Potential of the Edible Algae Fucus vesiculosus: Proteomic and Quantitative PCR Analysis
by Rebeca André, Rita Pacheco, Ana Catarina Alves, Hugo M. Santos, Mafalda Bourbon and Maria Luísa Serralheiro
Foods 2023, 12(14), 2758; https://doi.org/10.3390/foods12142758 - 20 Jul 2023
Viewed by 1366
Abstract
A brown seaweed consumed worldwide, Fucus vesiculosus, has been used to prevent atherosclerosis and hypercholesterolemia, among other uses. However, the mechanisms of action that lead to these effects are not yet fully understood. This work aims to study the in vitro effect [...] Read more.
A brown seaweed consumed worldwide, Fucus vesiculosus, has been used to prevent atherosclerosis and hypercholesterolemia, among other uses. However, the mechanisms of action that lead to these effects are not yet fully understood. This work aims to study the in vitro effect of an aqueous extract of F. vesiculosus, previously characterized as rich in phlorotannins and peptides, on the expression of different proteins involved in the synthesis and transport of cholesterol. A proteomic analysis, Western blot, and qRT-PCR analysis were performed to identify protein changes in HepG2 cells exposed to 0.25 mg/mL of the F. vesiculosus extract for 24 h. The proteomic results demonstrated that, in liver cells, the extract decreases the expression of four proteins involved in the cholesterol biosynthesis process (CYP51A1, DHCR24, HMGCS1 and HSD17B7). Additionally, a 12.76% and 18.40% decrease in the expression of two important transporters proteins of cholesterol, NPC1L1 and ABCG5, respectively, was also observed, as well as a 30% decrease in NPC1L1 mRNA levels in the cells exposed to the extract compared to control cells. Our study reveals some of the mechanisms underlying the actions of bioactive compounds from F. vesiculosus that may explain its previously reported hypocholesterolemic effect, future prospecting its use as a functional food. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

24 pages, 3565 KiB  
Article
Royal Jelly and Chlorella vulgaris Mitigate Gibberellic Acid-Induced Cytogenotoxicity and Hepatotoxicity in Rats via Modulation of the PPARα/AP-1 Signaling Pathway and Suppression of Oxidative Stress and Inflammation
by Sally M. Khadrawy, Doaa Sh. Mohamed, Randa M. Hassan, Mohamed A. Abdelgawad, Mohammed M. Ghoneim, Sultan Alshehri and Nema S. Shaban
Foods 2023, 12(6), 1223; https://doi.org/10.3390/foods12061223 - 13 Mar 2023
Cited by 2 | Viewed by 2139
Abstract
Gibberellic acid (GA3) is a well-known plant growth regulator used in several countries, but its widespread use has negative effects on both animal and human health. The current study assesses the protective effect of royal jelly (RJ) and Chlorella vulgaris (CV) on the [...] Read more.
Gibberellic acid (GA3) is a well-known plant growth regulator used in several countries, but its widespread use has negative effects on both animal and human health. The current study assesses the protective effect of royal jelly (RJ) and Chlorella vulgaris (CV) on the genotoxicity and hepatic injury induced by GA3 in rats. Daily oral administration of 55 mg/kg GA3 to rats for 6 constitutive weeks induced biochemical and histopathological changes in the liver via oxidative stress and inflammation. Co-administration of 300 mg/kg RJ or 500 mg/kg CV with GA3 considerably ameliorated the serum levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALP (alkaline phosphatase), γGT (gamma-glutamyl transferase), total bilirubin, and albumin. Lowered malondialdehyde, tumor necrosis factor α (TNF-α), and nuclear factor κB (NF-κB) levels along with elevated SOD (superoxide dismutase), CAT (catalase), and GPx (glutathione peroxidase) enzyme activities indicated the antioxidant and anti-inflammatory properties of both RJ and CV. Also, they improved the histological structure and reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions along with up-regulating peroxisome proliferator activated receptor α (PPARα) and down-regulating activator protein 1 (AP-1) gene expression. Additionally, chromosomal abnormalities and mitotic index were nearly normalized after treatment with RJ and CV. In conclusion, RJ and CV can protect against GA3-induced genotoxicity and liver toxicity by diminishing oxidative stress and inflammation, and modulating the PPARα/AP-1 signaling pathway. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Graphical abstract

15 pages, 3800 KiB  
Article
Research on Anthocyanins from Rubus “Shuofeng” as Potential Antiproliferative and Apoptosis-Inducing Agents
by Fengyi Zhao, Huifang Zhao, Wenlong Wu, Weifan Wang and Weilin Li
Foods 2023, 12(6), 1216; https://doi.org/10.3390/foods12061216 - 13 Mar 2023
Cited by 5 | Viewed by 2197
Abstract
Blackberries have high nutritional value and strong biological activities, such as antiproliferative activity. Anthocyanins are important functional components in blackberries. We collected 25 kinds (lines) of blackberries from our nursery to investigate antiproliferative agents in natural foods. Among them, the Shuofeng variety had [...] Read more.
Blackberries have high nutritional value and strong biological activities, such as antiproliferative activity. Anthocyanins are important functional components in blackberries. We collected 25 kinds (lines) of blackberries from our nursery to investigate antiproliferative agents in natural foods. Among them, the Shuofeng variety had the highest anthocyanin content, with 2.54 mg/g of fresh fruit, which increased to 357.75 mg/g of dried powder through ultrasound-assisted solvent extraction and macroporous resin adsorption. Additional experiments showed that Shuofeng’s anthocyanin content had high anti-HepG2 activity in vitro and in vivo, as well as activity against Hela (68.62 μg/mL), HepG2 (55.85 μg/mL), MCF-7 (181.21 μg/mL), and A549 cells (82.01 μg/mL), as determined by MTT assay. It also had no apparent toxic effects. The combination of DDP and DOX significantly enhanced the antiproliferative activity of the four cell lines. The IC50 value of Shuofeng’s anthocyanin content combined with DOX in HepG2 cells was the lowest at only 0.08 μg/mL, indicating that the combination of drugs had additive and synergistic effects. Shuofeng’s anthocyanin content might intercalate into DNA and alter or destroy DNA, causing apoptosis and inhibiting cell proliferation. Our results show that blackberry anthocyanins can inhibit the proliferation of cancer cells and their possible mechanisms. However, we must study the deeper mechanism and explore its targeting effects in the future. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

15 pages, 2280 KiB  
Article
An Innovative Mei-Gin Formula Exerts Anti-Adipogenic and Anti-Obesity Effects in 3T3-L1 Adipocyte and High-Fat Diet-Induced Obese Rats
by Hsin-Lin Cheng, Wei-Tang Chang, Jiun-Ling Lin, Ming-Ching Cheng, Shih-Chien Huang, Shiuan-Chih Chen, Yue-Ching Wong and Chin-Lin Hsu
Foods 2023, 12(5), 945; https://doi.org/10.3390/foods12050945 - 23 Feb 2023
Viewed by 1645
Abstract
Background: To investigate the potential anti-obesity properties of an innovative functional formula (called the Mei-Gin formula: MGF) consisting of bainiku-ekisu, Prunus mume (70% ethanol extract), black garlic (water extract), and Mesona procumbens Hemsl. (40% ethanol extract) for reducing lipid accumulation in 3T3-L1 adipocytes [...] Read more.
Background: To investigate the potential anti-obesity properties of an innovative functional formula (called the Mei-Gin formula: MGF) consisting of bainiku-ekisu, Prunus mume (70% ethanol extract), black garlic (water extract), and Mesona procumbens Hemsl. (40% ethanol extract) for reducing lipid accumulation in 3T3-L1 adipocytes in vitro and obese rats in vivo. Material and Methods: The prevention and regression of high-fat diet (HFD)-induced obesity by the intervention of Japan Mei-Gin, MGF-3 and -7, and positive health supplement powder were investigated in male Wistar rats. The anti-obesity effects of MGF-3 and -7 in rats with HFD-induced obesity were examined by analyzing the role of visceral and subcutaneous adipose tissue in the development of obesity. Results: The results indicated that MGF-1-7 significantly suppressed lipid accumulation and cell differentiation through the down-regulation of GPDH activity, as a key regulator in the synthesis of triglycerides. Additionally, MGF-3 and MGF-7 exhibited a greater inhibitory effect on adipogenesis in 3T3-L1 adipocytes. The high-fat diet increased body weight, liver weight, and total body fat (visceral and subcutaneous fat) in obese rats, while these alterations were effectively improved by the administration of MGF-3 and -7, especially MGF-7. Conclusion: This study highlights the role of the Mei-Gin formula, particularly MGF-7, in anti-obesity action, which has the potential to be used as a therapeutic agent for the prevention or treatment of obesity. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

13 pages, 1347 KiB  
Article
The Antiproliferative Activity of a Mixture of Peptide and Oligosaccharide Extracts Obtained from Defatted Rapeseed Meal on Breast Cancer Cells and Human Fibroblasts
by Romina Lis Ferrero, Caroline Ruth Weinstein-Oppenheimer, Zaida Cabrera-Muñoz and María Elvira Zúñiga-Hansen
Foods 2023, 12(2), 253; https://doi.org/10.3390/foods12020253 - 05 Jan 2023
Cited by 1 | Viewed by 1630
Abstract
Oligosaccharide and peptide extracts obtained separately from defatted rapeseed meal (DRM) have shown antiproliferative activities on the MCF-7 breast cancer cell line. However, oligosaccharide extracts were not tested on human fibroblasts and have low yields. The objective of the present study was to [...] Read more.
Oligosaccharide and peptide extracts obtained separately from defatted rapeseed meal (DRM) have shown antiproliferative activities on the MCF-7 breast cancer cell line. However, oligosaccharide extracts were not tested on human fibroblasts and have low yields. The objective of the present study was to combine two antiproliferative extracts, the peptides and oligosaccharides, that were obtained independently with commercial enzymes from DRM, allowing improvement of the mass yield and antiproliferative activity. The DRM was solubilized in an alkaline medium to obtain an insoluble meal residue (IMR) and an alkaline extract (RAE). To produce the oligosaccharide extract from IMR, three enzymes and different enzyme/substrate ratios were used. The oligosaccharide extract (molecular weight <30 kDa) recovered with the commercial enzyme. Endogalacturonase showed an 80% inhibition on MCF-7 cells at 20 mg/mL. The combination of this oligosaccharide extract with the peptide extract (obtained with Alkalase 2.4 L from a RAE at 10 mg/mL) inhibited 84.3% of MCF-7 cells proliferation at a concentration of 20 mg/mL, exhibiting no cytotoxic effects on fibroblasts. The mass yield of the extract pool was 27.07% (based on initial DRM). It can be concluded that a mixture of antiproliferative extracts was produced from DRM which was selective against MCF-7 cells. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Graphical abstract

15 pages, 2618 KiB  
Article
Alginate Oligosaccharides Prevent Dextran-Sulfate-Sodium-Induced Ulcerative Colitis via Enhancing Intestinal Barrier Function and Modulating Gut Microbiota
by Axue Wu, Yuan Gao, Ruotong Kan, Pengfei Ren, Changhu Xue, Biao Kong and Qingjuan Tang
Foods 2023, 12(1), 220; https://doi.org/10.3390/foods12010220 - 03 Jan 2023
Cited by 10 | Viewed by 2676
Abstract
Alginate oligosaccharides are degradation products of alginate and have attracted increasing attention due to their versatile biological functions. In the present study, C57BL/6 mice were used to assess the ameliorative effects and mechanisms of guluronate oligosaccharides (GAOS), mannuronic oligosaccharides (MAOS), and heterozygous alginate [...] Read more.
Alginate oligosaccharides are degradation products of alginate and have attracted increasing attention due to their versatile biological functions. In the present study, C57BL/6 mice were used to assess the ameliorative effects and mechanisms of guluronate oligosaccharides (GAOS), mannuronic oligosaccharides (MAOS), and heterozygous alginate oligosaccharides (HAOS), which are the three alginate oligosaccharides of dextran sulfate sodium (DSS)-induced ulcerative colitis. The study showed that alginate oligosaccharides alleviated pathological histological damage by slowing down weight loss, inhibiting colonic length shortening, and reducing disease activity index (DAI) and histopathological scores. Alginate oligosaccharides modulated the colonic inflammatory response by reducing colonic MPO levels and downregulating the expression of IL-6 and IL-1β. Alginate oligosaccharides reduced intestinal permeability and reversed intestinal barrier damage by increasing the number of goblet cells, decreasing LPS levels, downregulating Bax protein levels, upregulating Bcl-2 protein levels, and enhancing the expression of the E-cadherin. Furthermore, alginate oligosaccharides modulated the composition of the gut microbiota and restored the production of short-chain fatty acids (SCFAs), especially acetate and butyrate. In conclusion, our study provides a scientific basis for the role of alginate oligosaccharides in relieving ulcerative colitis. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

15 pages, 3485 KiB  
Article
Freshwater Clam Extract Attenuates Indomethacin-Induced Gastric Damage In Vitro and In Vivo
by Fuad Sauqi Isnain, Nai-Chen Liao, Hui-Yun Tsai, Yu-Jie Zhao, Chien-Hua Huang, Jue-Liang Hsu, Agustin Krisna Wardani and Yu-Kuo Chen
Foods 2023, 12(1), 156; https://doi.org/10.3390/foods12010156 - 28 Dec 2022
Cited by 2 | Viewed by 2055
Abstract
Contemporary pharmacological studies have reported that freshwater clam (Corbicula fluminea) can provide a broad spectrum of bioactivities, including antioxidant, anticancer, antihypertensive, hepatoprotective, and hypocholesterolemic effects. The aim of this study was to evaluate the gastroprotective effects of water extract of freshwater [...] Read more.
Contemporary pharmacological studies have reported that freshwater clam (Corbicula fluminea) can provide a broad spectrum of bioactivities, including antioxidant, anticancer, antihypertensive, hepatoprotective, and hypocholesterolemic effects. The aim of this study was to evaluate the gastroprotective effects of water extract of freshwater clam (WEC) on indomethacin (IND)-induced gastric mucosal cell damage in vitro and gastric ulcer in vivo. The cell viability of rat gastric mucosa RGM-1 cells was markedly decreased by 0.8 mM of IND treatment, and pre-treated with various concentration of WEC significantly restored IND-induced cell damage in a dose-dependent manner. WEC also significantly attenuated the elevated reactive oxygen species (ROS) levels, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, and nuclear factor-κB (NF-κB) p65 nuclear translocation induced by IND. In the in vivo study, IND caused severe gastric ulcer in Wistar rats, while WEC pretreatment effectively reduced the ulcer area and edema in the submucosa. We found that WEC significantly restored glutathione (GSH) content in gastric mucosa in a dose-dependent manner (p < 0.05). The reduction of prostaglandin E2 (PGE2) caused by IND was also improved with higher doses of WEC administration. Moreover, the overexpression of COX-2, iNOS, and tumor necrosis factor-α (TNF-α) proteins in gastric mucosa was downregulated by administration of WEC. Consequently, WEC can be used as a potential nutritional supplement to improve NSAIDs-caused gastric mucosal lesions. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

15 pages, 1822 KiB  
Article
Impact of Gastrointestinal Digestion Simulation on the Formation of Angiotensin-I-Converting Enzyme Inhibitory (ACE-I) Peptides from Germinated Lamtoro Gung Flour
by Aprilia Fitriani, Retno Indrati, Yustinus Marsono and Supriyadi Supriyadi
Foods 2022, 11(23), 3769; https://doi.org/10.3390/foods11233769 - 23 Nov 2022
Cited by 3 | Viewed by 1313
Abstract
The germination of lamtoro gung has been shown to increase the angiotensin-I-converting enzyme inhibitory (ACE-I) activity in previous studies. The 48 h germinated flour had the highest ACE-I activity. Administration of the gastrointestinal digestion (GID) simulation with commercial enzymes was expected to increase [...] Read more.
The germination of lamtoro gung has been shown to increase the angiotensin-I-converting enzyme inhibitory (ACE-I) activity in previous studies. The 48 h germinated flour had the highest ACE-I activity. Administration of the gastrointestinal digestion (GID) simulation with commercial enzymes was expected to increase the ACE-I activity. However, the GID simulation to increase ACE-I in the germinated lamtoro gung flour has not been found. Therefore, this study aimed to evaluate the GID simulation of ACE-I peptides in sprouted lamtoro gung flour. This study also identified and characterised the peptide with the ACE-I activity. The GID simulation was performed using commercial pepsin (pH 2) and pancreatin (pH 7.5). Both simulations occurred at 37 °C for 240 min. The degree of hydrolysis, peptide concentration, and ACE-I activity was analysed. Samples with the highest ACE-I activity were then fractionated and identified, to determine the peptide responsible for the ACE-I activity. The 180 min GID simulation in the test sample showed the highest ACE-I activity (89.70%). This result was supported by an increased degree of hydrolysis (DH) and peptide concentrations throughout the GID simulation. The <1 kDa peptide fraction had the highest inhibitory activity and had the most elevated peptide portion (54.69%). Peptide sequences containing crucial amino acids were found in the <1 kDa peptide fraction. PRPPKPP, PPPPPGARAP, and PFPPSNPPP had proline in the C and N terminal residues. The peptides obtained also had other biological activities, such as a DPP IV inhibitor, an alpha-glucosidase inhibitor, and antioxidative activity. Based on the toxicity prediction, those peptides are non-toxic and safe to consume. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Graphical abstract

17 pages, 2886 KiB  
Article
Hypoglycemic Effect of Exopolysaccharide from Lactiplantibacillus plantarum JLAU103 on Streptozotocin and High-Fat Diet-Induced Type 2 Diabetic Mice
by Yuan Qi, Danyang Wang, Li Fang, Xiaoting Liu, Chunlei Liu, Fanrui Zhao, Dan Wu, Xiyan Wang, Ji Wang and Weihong Min
Foods 2022, 11(22), 3571; https://doi.org/10.3390/foods11223571 - 09 Nov 2022
Cited by 2 | Viewed by 1482
Abstract
Two doses (300 mg/kg bw and 600 mg/kg bw) of the Lactiplantibacillus plantarum JLAU103 exopolysaccharide (EPS103) were orally administered to a type 2 diabetic (T2DM) mouse model induced by streptozotocin and a high-fat diet. The hypoglycemic, hypolipidemic and neuroprotective effects of EPS103 on [...] Read more.
Two doses (300 mg/kg bw and 600 mg/kg bw) of the Lactiplantibacillus plantarum JLAU103 exopolysaccharide (EPS103) were orally administered to a type 2 diabetic (T2DM) mouse model induced by streptozotocin and a high-fat diet. The hypoglycemic, hypolipidemic and neuroprotective effects of EPS103 on T2DM mice were evaluated. The results indicated that administration of EPS103 could alleviate insulin resistance, reduce the levels of fasting blood glucose, glycosylated hemoglobin A1c, leptin and fasting serum insulin, improve glucose tolerance, protect pancreas and liver, and modulate blood lipid disorders. EPS103 promoted hepatic glycogen synthesis by upregulating the phosphorylation of GSK3β. Meanwhile, it upregulated the phosphorylation of IRS-1, PI3K and Akt, as well as the expression of IRS-2 and GLUT4, and downregulated the expression of PEPCK, G6Pase and PGC-1α, indicating that EPS103 promotes the uptake and transport of glucose and inhibits gluconeogenesis, which might be related to the activation of the IRS-1/PI3K/Akt pathway. Additionally, EPS103 can protect against brain nerve damage through improving oxidative stress injury, restoring the expression of IRS-2, alleviating neuronal apoptosis and inhibiting inflammation in the hippocampus of T2DM mice. Taken together, our results demonstrated that EPS103 may be a potential therapeutic agent for the treatment of T2DM. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

13 pages, 811 KiB  
Article
Blood Sugar, Haemoglobin and Malondialdehyde Levels in Diabetic White Rats Fed a Diet of Corn Flour Cookies
by Nur Aini, Budi Sustriawan, Nadia Wahyuningsih and Ervina Mela
Foods 2022, 11(12), 1819; https://doi.org/10.3390/foods11121819 - 20 Jun 2022
Cited by 6 | Viewed by 8536
Abstract
The purpose of the study was to analyse the chemical composition of corn cookies containing different types of sugar and fat, and determine their effect on physiological parameters in diabetic rats. The experimental animals were studied using a randomised block design with seven [...] Read more.
The purpose of the study was to analyse the chemical composition of corn cookies containing different types of sugar and fat, and determine their effect on physiological parameters in diabetic rats. The experimental animals were studied using a randomised block design with seven groups of rats. The test groups were as follows: group 1, negative control rats (normal) fed standard; group 2, positive control rats (diabetic) fed standard; group 3, diabetic rats fed wheat cookies; group 4, diabetic rats fed C1 corn cookies; group 5, diabetic rats fed C2 corn cookies; group 6, diabetic rats fed C3 corn cookies; and group 7, diabetic rats fed C4 corn cookies. The tests on the rats revealed that the cookies had significant effects on blood sugar, malondialdehyde (MDA) and haemoglobin levels as well as body weight parameters. Corn cookies containing crystalline coconut sugar and virgin coconut oil (VCO) were effective at lowering blood sugar and MDA levels while increasing haemoglobin and body weight in diabetic rats. Significantly, after four weeks on this diet, rats with diabetes mellitus were in the same overall condition as normal rats. These findings suggest that these cookies may be gluten-free functional foods suitable for diabetics. These findings suggest that diabetics can safely consume maize cookies. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

12 pages, 848 KiB  
Article
In Vitro Determination of Inhibitory Effects of Humic Substances Complexing Zn and Se on SARS-CoV-2 Virus Replication
by Polett Hajdrik, Bernadett Pályi, Zoltán Kis, Noémi Kovács, Dániel Sándor Veres, Krisztián Szigeti, Ferenc Budán, Imre Hegedüs, Tibor Kovács, Ralf Bergmann and Domokos Máthé
Foods 2022, 11(5), 694; https://doi.org/10.3390/foods11050694 - 26 Feb 2022
Cited by 10 | Viewed by 3559
Abstract
(1) Background: Humic substances are well-known human nutritional supplement materials and they play an important performance-enhancing role as animal feed additives. For decades, ingredients of humic substances have been proven to carry potent antiviral effects against different viruses. (2) Methods: Here, the antiviral [...] Read more.
(1) Background: Humic substances are well-known human nutritional supplement materials and they play an important performance-enhancing role as animal feed additives. For decades, ingredients of humic substances have been proven to carry potent antiviral effects against different viruses. (2) Methods: Here, the antiviral activity of a humic substance containing ascorbic acid, Se and Zn2+ ions intended as a nutritional supplement material was investigated against SARS-CoV-2 virus B1.1.7 Variant of Concern (“Alpha Variant”) in a VeroE6 cell line. (3) Results: This combination has a significant in vitro antiviral effect at a very low concentration range of its intended active ingredients. (4) Conclusions: Even picomolar concentration ranges of humic substances, Vitamin C and Zn/Se ions in the given composition, were enough to achieve 50% viral replication inhibition in the applied SARS-CoV-2 virus inhibition test. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Graphical abstract

19 pages, 5004 KiB  
Article
Influence of Gender and Age of Brown Seaweed (Fucus vesiculosus) on Biochemical Activities of Its Aqueous Extracts
by Diogo Nunes, Rebeca André, Asma Ressaissi, Bernardo Duarte, Ricardo Melo and Maria Luísa Serralheiro
Foods 2022, 11(1), 39; https://doi.org/10.3390/foods11010039 - 24 Dec 2021
Cited by 2 | Viewed by 2614
Abstract
Fucus vesiculosus L. is a common coastal brown seaweed associated with various benefits to human health due to its phenolic content and nutrients and is used as food through different methods of consumption. This study aims to evaluate the influence of the seaweed’s [...] Read more.
Fucus vesiculosus L. is a common coastal brown seaweed associated with various benefits to human health due to its phenolic content and nutrients and is used as food through different methods of consumption. This study aims to evaluate the influence of the seaweed’s gender and growth stage on different types of biological activities as well as its chemical constitution and elements present. Akin to food preparation, aqueous extracts of the seaweed were prepared at 25 °C (salad) and 100 °C (soup). Biological activities were determined by measuring total phenol content (TPC), antioxidant activity and inhibition of acetylcholinesterase (AChE). Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS/MS) was used for compound identification, and elemental analysis was carried out by using Total Reflection X-ray Fluorescence Spectrometry (TXRF). Older females and males had higher TPC compared to the new ones at 100 °C. Antioxidant activity depended on the extraction temperature but was higher for the youngest male at 100 °C. AChE inhibitory activity was higher for older males at 25 °C, but at 100 °C it was higher for older females. Primary metabolites and various phloroglucinol were the main compounds identified. Additionally, since this seaweed is often harvested in estuarine systems with high anthropogenic impacts, its safety was evaluated through the evaluation of the sample’s metal content. The heavy metals detected are within the limits established by various regulating entities, pointing to a safe food source. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Graphical abstract

21 pages, 4118 KiB  
Article
Hepatoprotective Effects of Sweet Cherry Extracts (cv. Saco)
by Ana C. Gonçalves, José D. Flores-Félix, Ana R. Costa, Amílcar Falcão, Gilberto Alves and Luís R. Silva
Foods 2021, 10(11), 2623; https://doi.org/10.3390/foods10112623 - 29 Oct 2021
Cited by 10 | Viewed by 2374
Abstract
Cancer is the second cause of death worldwide. Among cancers, hepatocellular carcinoma is one of the most prevalent. Evidence indicates that the daily consumption of fruits and vegetables can prevent the onset of various cancers due to the presence of bioactive compounds. Sweet [...] Read more.
Cancer is the second cause of death worldwide. Among cancers, hepatocellular carcinoma is one of the most prevalent. Evidence indicates that the daily consumption of fruits and vegetables can prevent the onset of various cancers due to the presence of bioactive compounds. Sweet cherries are known for their richness in phenolics, including anthocyanins, which are the major constituents, and presumably, the key contributors to their biological activity. Therefore, the present study aimed to evaluate the effects of three different cherry fractions on human hepatocellular carcinoma (HepG2) cells viability and effectiveness to improve the redox status of these cells under oxidative damage induced by nitric oxide radicals and hydrogen peroxide. Phenolic characterization of fractions was performed by Fourier transform infrared spectroscopy. The obtained results indicated that enriched phenolic fractions of sweet cherries (cv. Saco, can impair cell viability and suppress cells growth after 72 h of exposure, promoting necrosis at the highest tested concentrations (>50 µg/mL). Additionally, fractions also showed the capacity to protect these cells against oxidative injury by capturing radicals before they can attack cells’ membrane and by modulating reactive oxygen and nitrogen species generation, as demonstrated by bioinformatic tools. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

16 pages, 1192 KiB  
Article
Yogurt Enriched with Isochrysis galbana: An Innovative Functional Food
by Joana Matos, Cláudia Afonso, Carlos Cardoso, Maria L. Serralheiro and Narcisa M. Bandarra
Foods 2021, 10(7), 1458; https://doi.org/10.3390/foods10071458 - 24 Jun 2021
Cited by 19 | Viewed by 3880
Abstract
Microalgae are a valuable and innovative emerging source of natural nutrients and bioactive compounds that can be used as functional ingredients in order to increase the nutritional value of foods to improve human health and to prevent disease. The marine microalga Isochrysis galbana [...] Read more.
Microalgae are a valuable and innovative emerging source of natural nutrients and bioactive compounds that can be used as functional ingredients in order to increase the nutritional value of foods to improve human health and to prevent disease. The marine microalga Isochrysis galbana has great potential for the food industry as a functional ingredient, given its richness in ω3 long chain-polyunsaturated fatty acids (LC-PUFAs), with high contents of oleic, linoleic, alpha-linolenic acid (ALA), stearidonic, and docosahexaenoic (DHA) acids. This study focuses on the formulation of a functional food by the incorporation of 2% (w/w) of I. galbana freeze-dried biomass and 2% (w/w) of I. galbana ethyl acetate lipidic extract in solid natural yogurts preparation. In the functional yogurt enriched with microalgal biomass, the ω3 LC-PUFA’s content increased (to 60 mg/100 g w/w), specifically the DHA content (9.6 mg/100 g ww), and the ω3/ω6 ratio (augmented to 0.8). The in vitro digestion study showed a poor bioaccessibility of essential ω3 LC-PUFAs, wherein linoleic acid (18:2 ω6) presented a bioaccessibility inferior to 10% and no DHA or eicosapentaenoic acid (EPA) was detected in the bioaccessible fraction of the functional yogurts, thus indicating a low accessibility of lipids during digestion. Notwithstanding, when compared to the original yogurt, an added value novel functional yogurt with DHA and a higher ω3 LC-PUFAs content was obtained. The functional yogurt enriched with I. galbana can be considered important from a nutritional point of view and a suitable source of essential FAs in the human diet. However, this needs further confirmation, entailing additional investigation into bioavailability through in vivo assays. Full article
(This article belongs to the Special Issue Advance in Biological Activities of Functional Food)
Show Figures

Figure 1

Back to TopTop