Food Bioactive Compounds as Functional Ingredient

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Nutrition".

Deadline for manuscript submissions: closed (10 March 2022) | Viewed by 26515

Special Issue Editors

Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
Interests: nutrigenomics; obesity; bioactive compounds; lipid metabolism; metabolic syndromes
Special Issues, Collections and Topics in MDPI journals
Department of Food Science and Biotechnology, Kyung Hee University, Seoul, Republic of Korea
Interests: bioactive compounds; immunology; inflammation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Functional foods containing bioactive compounds showed the potential for preventive and therapeutic treatment of nutrients. The research of bioactive compounds is evolving into a high-level data-driven field by introducing a variety of advanced techniques. This Special Issue is designed to invite researches on recent advances in bioactive compounds related to nutrigenomics, metabolic syndromes, obesity, type 2 diabetes mellitus, dyslipidemia. Ultimately, this Special Issue aims to provide the most trustworthy information of the latest bioactive compounds not only to food scientists and nutritionists but also to experts in the discovery of new therapeutic drugs. Hopefully, leading scientists in these fields will be able to engage actively with creative results.

Dr. Gwang-Woong Go
Dr. Wooki Kim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Nutrigenomics
  • Metabolic syndromes
  • Bioactive compounds
  • Functional foods
  • Obesity
  • Type 2 diabetes mellitus
  • Inflammation
  • Dyslipidemia

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3323 KiB  
Article
Proteomics and Molecular Docking Analyses Reveal the Bio-Chemical and Molecular Mechanism Underlying the Hypolipidemic Activity of Nano-Liposomal Bioactive Peptides in 3T3-L1 Adipocytes
Foods 2023, 12(4), 780; https://doi.org/10.3390/foods12040780 - 10 Feb 2023
Cited by 1 | Viewed by 2029
Abstract
Obesity is a global health concern. Physical activities and eating nutrient-rich functional foods can prevent obesity. In this study, nano-liposomal encapsulated bioactive peptides (BPs) were developed to reduce cellular lipids. The peptide sequence NH2-PCGVPMLTVAEQAQ-CO2H was chemically synthesized. The limited [...] Read more.
Obesity is a global health concern. Physical activities and eating nutrient-rich functional foods can prevent obesity. In this study, nano-liposomal encapsulated bioactive peptides (BPs) were developed to reduce cellular lipids. The peptide sequence NH2-PCGVPMLTVAEQAQ-CO2H was chemically synthesized. The limited membrane permeability of the BPs was improved by encapsulating the BPs with a nano-liposomal carrier, which was produced by thin-layer formation. The nano-liposomal BPs had a diameter of ~157 nm and were monodispersed in solution. The encapsulation capacity was 61.2 ± 3.2%. The nano-liposomal BPs had no significant cytotoxicity on the tested cells, keratinocytes, fibroblasts, and adipocytes. The in vitro hypolipidemic activity significantly promoted the breakdown of triglycerides (TGs). Lipid droplet staining was correlated with TG content. Proteomics analysis identified 2418 differentially expressed proteins. The nano-liposomal BPs affected various biochemical pathways beyond lipolysis. The nano-liposomal BP treatment decreased the fatty acid synthase expression by 17.41 ± 1.17%. HDOCK revealed that the BPs inhibited fatty acid synthase (FAS) at the thioesterase domain. The HDOCK score of the BPs was lower than that of orlistat, a known obesity drug, indicating stronger binding. Proteomics and molecular docking analyses confirmed that the nano-liposomal BPs were suitable for use in functional foods to prevent obesity. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Figure 1

12 pages, 1994 KiB  
Article
Potential Relationship between the Changes in Circulating microRNAs and the Improvement in Glycaemic Control Induced by Grape Pomace Supplementation
Foods 2021, 10(9), 2059; https://doi.org/10.3390/foods10092059 - 01 Sep 2021
Cited by 2 | Viewed by 2119
Abstract
MicroRNAs (miRNAs) represent important tools in medicine and nutrition as new biomarkers, and can act as mediators of nutritional and pharmacological interventions. The aim of the present study was to analyse the effect of grape pomace supplementation on the expression of seven selected [...] Read more.
MicroRNAs (miRNAs) represent important tools in medicine and nutrition as new biomarkers, and can act as mediators of nutritional and pharmacological interventions. The aim of the present study was to analyse the effect of grape pomace supplementation on the expression of seven selected miRNAs and their potential relationship with the observed positive effect on glycaemic control, in order to shed light on the mechanism underlying the beneficial effect of this dietary intervention. For this purpose, plasma samples were obtained from 49 subjects with metabolic syndrome. After supplementation with grape pomace (6 weeks), these subjects were categorised as responders (n = 23) or non-responders (n = 26) according to the changes in their fasting insulin rate. MiRNA expression at baseline and at the end of the supplementation was analysed by RT-PCR, and the MiRecords Database was used to identify potential target genes for the studied miRNAs. The increase observed in miR-23a in the whole cohort was present in both subgroups of participants. The increase in miR-181a was significant among non-responders but not responders. The decrease in miR-30c and miR-222 was found in the responders, but not in the non-responders. No changes were observed in miR-10a, miR-151a, miR-181a, and miR-let-7a expressions. After analysing these results, a potential involvement of the reduced expression of miR-30c and miR-222, two microRNAs associated with insulin resistance and diabetes, in the improvement of glycaemic control produced by grape pomace administration, can be proposed. Further research is needed to confirm the involvement of glycolytic enzymes, PI3K, AMPK, and IRS-1 in the effect of grape pomace, as suggested by the changes induced in microRNAs. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Figure 1

15 pages, 2368 KiB  
Article
Technological Potential of a Lupin Protein Concentrate as a Nutraceutical Delivery System in Baked Cookies
Foods 2021, 10(8), 1929; https://doi.org/10.3390/foods10081929 - 19 Aug 2021
Cited by 7 | Viewed by 1766
Abstract
Previous reports have shown that lupin protein extracts (LE) contain a polypeptide named deflamin with a potent matrix metalloproteinase (MMP)-9 inhibitory activity. The aim of our study was to develop an efficient delivery method for incorporating deflamin into cookies using different alternative flours. [...] Read more.
Previous reports have shown that lupin protein extracts (LE) contain a polypeptide named deflamin with a potent matrix metalloproteinase (MMP)-9 inhibitory activity. The aim of our study was to develop an efficient delivery method for incorporating deflamin into cookies using different alternative flours. A lupin protein concentrate (10 g protein/100 g cookie dough) was added to gluten and gluten-free flours to produce savoury cookies, and its impacts on the physical properties of doughs and cookies, as well on the maintenance of deflamin’s anti-MMP-9 activity, were analysed. The results showed that the biochemical compositions of all cookies with LE presented higher protein and ash contents when compared to the control cookies. Rice, buckwheat and oat doughs were firmer than the others, whereas the addition of LE to kamut and buckwheat flours made cookies significantly firmer than the controls. Additionally, strong interactions between LE and several flours were observed, yielding different impacts on the MMP-9 bioactivity. Overall, the only flour that did not interfere with the desired nutraceutical activities was buckwheat, with 60% MMP-9 inhibitory activity and a concomitant reduction of colon cancer migration; hence, buckwheat flour was revealed to be a good vehicle to deliver bioactive deflamin, showing strong potential as a functional food to be used in preventive or curative approaches to gastrointestinal diseases. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Figure 1

11 pages, 1654 KiB  
Article
Black Soybean and Adzuki Bean Extracts Lower Blood Pressure by Modulating the Renin-Angiotensin System in Spontaneously Hypertensive Rats
Foods 2021, 10(7), 1571; https://doi.org/10.3390/foods10071571 - 06 Jul 2021
Cited by 15 | Viewed by 3512
Abstract
Hypertension, causing cardiovascular disease, stroke, and heart failure, has been a rising health issue worldwide. Black soybeans and adzuki beans have been widely consumed throughout history due to various bioactive components. We evaluated the antihypertensive effects of black soybean and adzuki bean ethanol [...] Read more.
Hypertension, causing cardiovascular disease, stroke, and heart failure, has been a rising health issue worldwide. Black soybeans and adzuki beans have been widely consumed throughout history due to various bioactive components. We evaluated the antihypertensive effects of black soybean and adzuki bean ethanol extracts on blood pressure, renin-angiotensin system (RAS), and aortic lesion in spontaneously hypertensive rats. A group of WKY (normal) and six groups of spontaneously hypertensive rats were administered with saline (SHR), 50 mg/kg of captopril (CAP), 250 and 500 mg/kg of black soybean extracts (BE250 and BE500), 250 and 500 mg/kg of adzuki bean extracts (AE250 and AE500) for eight weeks. BE250, BE500, AE250, and AE500 significantly (p < 0.05) reduced relative liver weight, AST, ALT, triglyceride, total cholesterol, systolic blood pressure, and angiotensin-converting-enzyme level compared to SHR. The angiotensin II level in AE500 and renin mRNA expression in BE500 and AE500 were significantly (p < 0.05) decreased compared to SHR. The lumen diameter was significantly (p < 0.05) reduced in only CAP. Furthermore, systolic and diastolic blood pressure and angiotensin II level in AE500 were lower than those of BE500. These results suggest that AE exhibit more antihypertensive potential than BE in spontaneously hypertensive rats. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Figure 1

18 pages, 1034 KiB  
Article
Efficacy and Safety of Aronia, Red Ginseng, Shiitake Mushroom, and Nattokinase Mixture on Insulin Resistance in Prediabetic Adults: A Randomized, Double-Blinded, Placebo-Controlled Trial
Foods 2021, 10(7), 1558; https://doi.org/10.3390/foods10071558 - 05 Jul 2021
Cited by 4 | Viewed by 3100
Abstract
We determined whether oral consumption of Aronia, red ginseng, shiitake mushroom, and nattokinase mixture (3.4: 4.1: 2.4: 0.1 w/w; AGM) improved glucose metabolism and insulin resistance in prediabetic adults in a 12-week randomized, double-blinded clinical trial. Participants with fasting serum [...] Read more.
We determined whether oral consumption of Aronia, red ginseng, shiitake mushroom, and nattokinase mixture (3.4: 4.1: 2.4: 0.1 w/w; AGM) improved glucose metabolism and insulin resistance in prediabetic adults in a 12-week randomized, double-blinded clinical trial. Participants with fasting serum glucose concentrations of 100–140 mg/dL were recruited and randomly assigned to an AGM or placebo group. Participants of the AGM group (n = 40) were given an AGM granule containing 4 g of freeze-dried Aronia, red ginseng, shiitake mushroom, and nattokinase (3.4: 4.1: 2.4: 0.1 w/w) twice daily for 12 weeks, and the placebo group participants (n = 40) were provided with corn starch granules identical in appearance, weight, and flavor for 12 weeks. Serum glucose and insulin concentrations were measured during oral-glucose tolerance tests (OGTT) after administering 75 g of glucose in a fasted state. HOMA-IR, liver damage, and inflammation indices were determined, and safety parameters and adverse reactions were assessed. As determined by OGTT, serum glucose concentrations were not significantly different between the AGM and placebo groups after the intervention. However, changes in serum insulin concentrations in the fasted state and Homeostatic model assessment-insulin resistance (HOMA-IR) index after the intervention were significantly lower in the AGM group than in the placebo group (−3.07 ± 7.06 vs. 0.05 ± 6.12, p = 0.043 for serum insulin; −0.85 ± 2.14 vs. 0.07 ± 1.92, p = 0.049 for HOMA-IR). Serum adiponectin concentrations were reduced by intervention in the placebo group but not in the AGM group. Changes in liver damage indexes, including serum activities of the γ-glutamyl transferase, alanine aminotransferase, and aspartate aminotransferase, were lower in the AGM group and significantly reduced in the AGM group more than in the placebo group (p < 0.05). Changes in serum high sensitive-C-reactive protein concentrations in AGM and placebo groups were significantly different (−0.12 ± 0.81 vs. 0.51 ± 1.95, p = 0.06). In conclusion, AGM possibly improves insulin sensitivity and β-cell function and reduces liver damage and inflammation in prediabetic adults. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Graphical abstract

13 pages, 1088 KiB  
Article
Rice Bran Oil Attenuates Chronic Inflammation by Inducing M2 Macrophage Switching in High-Fat Diet-Fed Obese Mice
Foods 2021, 10(2), 359; https://doi.org/10.3390/foods10020359 - 07 Feb 2021
Cited by 7 | Viewed by 2343
Abstract
Macrophages are involved in all inflammatory processes from killing pathogens to repairing damaged tissue. In the obese state, macrophages infiltrate into enlarged adipose tissue and polarize into pro-inflammatory M1 macrophages, resulting in chronic low-grade inflammation due to the secretion of inflammatory mediators. Rice [...] Read more.
Macrophages are involved in all inflammatory processes from killing pathogens to repairing damaged tissue. In the obese state, macrophages infiltrate into enlarged adipose tissue and polarize into pro-inflammatory M1 macrophages, resulting in chronic low-grade inflammation due to the secretion of inflammatory mediators. Rice bran oil (RBO) is an edible oil containing tocopherols, tocotrienols, and γ-oryzanol. Previous research in normal diet-fed mice suggested that RBO mitigates inflammatory responses by modulating mitochondrial respiration of macrophages. Therefore, we investigated if RBO had an anti-inflammatory effect in diet-induced obese mice by assessing the expression of inflammatory markers in epididymal white adipose tissue (eWAT) and polarization of bone marrow-derived macrophages (BMDMs). Rice bran oil exerted a local anti-inflammatory effect in white adipose tissue by suppressing the production of inflammatory mediators and upregulating transcription of anti-inflammatory genes. Rice bran oil also promoted anti-inflammatory M2 macrophage polarization in BMDMs thereby affecting systemic inflammation. Overall, our in vivo and ex vivo results highlight the potential of RBO as a dietary mediator that can ameliorate obesity-induced chronic low-grade inflammation by mediating the expression of inflammation-related factors and macrophage polarization. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Figure 1

13 pages, 1949 KiB  
Article
Combined Extract of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi Improved Hot Flashes and Depression in an Ovariectomized Rat Model of Menopause
Foods 2021, 10(1), 180; https://doi.org/10.3390/foods10010180 - 18 Jan 2021
Cited by 8 | Viewed by 3721
Abstract
Menopause leads to ovarian hormone loss, which causes symptoms such as weight gain, hot flashes, and depression. Exploring nutraceuticals is important for treating menopausal symptoms that extensively impact women’s quality of life. We hypothesized that a combination of Leonurus japonicus Houtt, Eclipta prostrata [...] Read more.
Menopause leads to ovarian hormone loss, which causes symptoms such as weight gain, hot flashes, and depression. Exploring nutraceuticals is important for treating menopausal symptoms that extensively impact women’s quality of life. We hypothesized that a combination of Leonurus japonicus Houtt, Eclipta prostrata L., and Pueraria lobata Ohwi (LEPE) would alleviate menopausal symptoms in an ovariectomized menopausal rat model. Bilateral ovariectomy was performed and animals were assigned to five groups: (1) Sham, (2) Vehicle, (-) Control, (3) LEPE (100 mg/kg bw), (4) LEPE (200 mg/kg bw), and (5) Estradiol (3 μg/kg bw). LEPE was orally administered daily for 12 weeks. LEPE supplementation did not affect growth performance (body weight and feed intake) or body composition (lean mass and fat in tissue). LEPE did not cause deviations in aspartate aminotransferase, alanine aminotransferase, estradiol, and follicle-stimulating hormone levels, indicating no hepatotoxicity or endocrine disturbance. LEPE decreased type I collagen (CTX-1) but did not affect bone mineral density or osteocalcin. LEPE decreased tail temperature and increased rectal temperature, improving menopause-related vasomotor symptoms. Furthermore, LEPE ameliorated depression-related behavior, including in forced swimming and tail suspension tests. Thus, LEPE may improve menopausal symptoms by enhancing vasomotor symptoms and depression in an ovariectomized rat menopause model. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 3603 KiB  
Review
The Role of Bioactive Peptides in Diabetes and Obesity
Foods 2021, 10(9), 2220; https://doi.org/10.3390/foods10092220 - 18 Sep 2021
Cited by 28 | Viewed by 6746
Abstract
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts [...] Read more.
Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes. Full article
(This article belongs to the Special Issue Food Bioactive Compounds as Functional Ingredient)
Show Figures

Graphical abstract

Back to TopTop