Piezoelectric MEMS/NEMS—Materials, Devices, and Applications

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "E:Engineering and Technology".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 30860

Special Issue Editor

Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA
Interests: MEMS; microrobotics; smart materials; energy harvesting
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Piezoelectric materials have been playing a crucial role in a large number of devices and applications that have promoted a variety of today’s technological progress and impacted modern society. They are widely used as sensors and actuators, and they can be deposited as thin films over standard silicon substrates or flexible substrates. Typically, piezoelectric sensors feature high sensitivity, a wide dynamic range, and self-powering; piezoelectric actuators enable high resolution, large force, and/or large displacement generation. The strong electromechanical coupling, simple geometric implementation, and high energy density endow the piezoelectric device with the capability of energy harvesting. The appeal of piezoelectric materials for MEMS/NEMS has been constantly growing, in particular, with the witness of increasing commercial success of piezoelectric MEMS/NEMS devices. The upcoming era of Big Data, sensors, the Internet of Things (IoT), and Artificial Intelligence (AI) has been offering new opportunities and challenges to piezoelectric MEMS/NEMS devices, and we are seeing researchers throughout the world actively tapping into the state-of-the-art micro/nano-fabrication process, promoting advanced integration techniques, and exploring innovative applications to unleash the potential of piezoelectric MEMS/NEMS devices. In this Special Issue, we invite submissions exploring the latest advances in the field of piezoelectric MEMS/NEMS devices.

Dr. Wei Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • piezoelectric sensors and actuators
  • micro/nanofabrication
  • microrobotics
  • application of smart materials in MEMS
  • energy-harvesting technologies

Related Special Issue

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 5042 KiB  
Article
Simulation and Experimental Study of a Piezoelectric Stack Energy Harvester for Railway Track Vibrations
by Zhaowei Min, Chengwei Hou, Guangdong Sui, Xiaobiao Shan and Tao Xie
Micromachines 2023, 14(4), 892; https://doi.org/10.3390/mi14040892 - 21 Apr 2023
Cited by 2 | Viewed by 2219
Abstract
As one of the most important modes of transportation, the safety of running trains and railway tracks is significant. It is essential to power sensors that detect and track health in remote areas. The vibration energy of the track structure is enormous, stable, [...] Read more.
As one of the most important modes of transportation, the safety of running trains and railway tracks is significant. It is essential to power sensors that detect and track health in remote areas. The vibration energy of the track structure is enormous, stable, and not limited by weather factors such as the sun and wind. A new type of arch beam piezoelectric stack energy harvester for railway systems is studied in this paper. Through simulation analyses and experimental verification of the energy harvester, the influences of external resistance, load, pre-stress, and load frequency on the energy harvesting performance of the piezoelectric energy harvester are discussed. When the frequency is less than 6 Hz, the energy capture efficiency is greatly affected by the frequency. When the frequency exceeds 6 Hz, the frequency has little effect and the load dramatically affects the energy capture efficiency. The pre-stress has little effect on the energy capture efficiency, but there is an optimal value at 4.5 kN. The energy harvester has an output power of 193 mW, a weight of 912 g, and the energy density can reach 211.8 μW/g. These results can provide a reference for subsequent experiments in the actual environment. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

17 pages, 6223 KiB  
Article
A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations
by Han Yu, Xiaofan Zhang, Xiaobiao Shan, Liangxing Hu, Xingxu Zhang, Chengwei Hou and Tao Xie
Micromachines 2023, 14(2), 421; https://doi.org/10.3390/mi14020421 - 10 Feb 2023
Cited by 6 | Viewed by 1856
Abstract
This work presents a novel bird-shaped broadband piezoelectric energy harvester based on a two-DOF crossed beam for low-frequency environmental vibrations. The harvester features a cantilever mounted on a double-hinged beam, whose rotating motions effectively diminish its natural frequencies. Numerical simulation based on the [...] Read more.
This work presents a novel bird-shaped broadband piezoelectric energy harvester based on a two-DOF crossed beam for low-frequency environmental vibrations. The harvester features a cantilever mounted on a double-hinged beam, whose rotating motions effectively diminish its natural frequencies. Numerical simulation based on the finite element method is conducted to analyze the modal shapes and the harmonic response of the proposed harvester. Prototypes are fabricated and experiments are carried out by a testing system, whose results indicate a good agreement with the simulation. The multi-frequency energy harvesting is achieved at the first-, second-, and fifth-order resonances. In particular, the proposed harvester demonstrates the remarkable output characteristics of 9.53 mW and 1.83 mW at frequencies as low as 19.23 HZ and 45.38 Hz, which are superior to the majority of existing energy harvesters. Besides, the influences of key parameters on the harvesting performance are experimentally investigated to optimize the environmental adaptability of the harvester. This work provides a new perspective for efficiently harvesting the low-frequency vibration energy, which can be utilized for supplying power to electronic devices. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

9 pages, 2574 KiB  
Article
Piezoelectric Energy Harvester Response Statistics
by Oleg Gaidai, Yu Cao, Yihan Xing and Junlei Wang
Micromachines 2023, 14(2), 271; https://doi.org/10.3390/mi14020271 - 20 Jan 2023
Cited by 31 | Viewed by 2217
Abstract
Safety and reliability are essential engineering concerns for energy-harvesting installations. In the case of the piezoelectric galloping energy harvester, there is a risk that excessive wake galloping may lead to instability, overload, and thus damage. With this in mind, this paper studies bivariate [...] Read more.
Safety and reliability are essential engineering concerns for energy-harvesting installations. In the case of the piezoelectric galloping energy harvester, there is a risk that excessive wake galloping may lead to instability, overload, and thus damage. With this in mind, this paper studies bivariate statistics of the extreme, experimental galloping energy harvester dynamic response under realistic environmental conditions. The bivariate statistics were extracted from experimental wind tunnel results, specifically for the voltage-force data set. Authors advocate a novel general-purpose reliability approach that may be applied to a wide range of dynamic systems, including micro-machines. Both experimental and numerically simulated dynamic responses can be used as input for the suggested structural reliability analysis. The statistical analysis proposed in this study may be used at the design stage, supplying proper characteristic values and safeguarding the dynamic system from overload, thus extending the machine’s lifetime. This work introduces a novel bivariate technique for reliability analysis instead of the more general univariate design approaches. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

17 pages, 1810 KiB  
Article
Static and Dynamic Analysis of a Bistable Frequency Up-Converter Piezoelectric Energy Harvester
by Mohammad Atmeh, Alwathiqbellah Ibrahim and Abdallah Ramini
Micromachines 2023, 14(2), 261; https://doi.org/10.3390/mi14020261 - 19 Jan 2023
Cited by 13 | Viewed by 2021
Abstract
Using energy harvesting to convert ambient vibrations efficiently to electrical energy has become a worthy concept in recent years. Nevertheless, the low frequencies of the ambient vibrations cannot be effectively converted to power using traditional harvesters. Therefore, a frequency up-conversion harvester is presented [...] Read more.
Using energy harvesting to convert ambient vibrations efficiently to electrical energy has become a worthy concept in recent years. Nevertheless, the low frequencies of the ambient vibrations cannot be effectively converted to power using traditional harvesters. Therefore, a frequency up-conversion harvester is presented to convert the low-frequency vibrations to high-frequency vibrations utilizing magnetic coupling. The presented harvester consists of a low-frequency beam (LFB) and a high-frequency beam (HFB) with identical tip magnets facing each other at the same polarity. The HFB, fully covered by a piezoelectric strip, is utilized for voltage generation. The dynamic behavior of the system and the corresponding generated voltage signal has been investigated by modeling the system as a two-degrees-of-freedom (2DOF) lumped-parameter model. A threshold distance of 15 mm that divides the system into a monostable regime with a weak magnetic coupling and a bistable regime with a strong magnetic coupling was revealed in the static analysis of the system. Hardening and softening behaviors were reported at the low frequency range for the mono and bistable regimes, respectively. In addition, a combined nonlinear hardening and softening behavior was captured for low frequencies at the threshold distance. Furthermore, a 100% increment was achieved in the generated voltage at the threshold compared to the monostable regime, and the maximum generated voltage was found to be in the bistable regime. The simulated results were validated experimentally. Moreover, the effect of the external resistance was investigated, and a 2 MΩ resistance was found to be optimal for maximizing the generated power. It was found that frequency up-converting based on magnetic nonlinearity can effectively scavenge energy from low-frequency external vibrations. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

10 pages, 14092 KiB  
Article
Thin Film Piezoelectric Nanogenerator Based on (100)-Oriented Nanocrystalline AlN Grown by Pulsed Laser Deposition at Room Temperature
by Wei Li, Yunqi Cao and Nelson Sepúlveda
Micromachines 2023, 14(1), 99; https://doi.org/10.3390/mi14010099 - 30 Dec 2022
Cited by 2 | Viewed by 1596
Abstract
In wearable or implantable biomedical devices that typically rely on battery power for diagnostics or operation, the development of flexible piezoelectric nanogenerators (NGs) that enable mechanical-to-electrical energy harvesting is finding promising applications. Here, we present the construction of a flexible piezoelectric nanogenerator using [...] Read more.
In wearable or implantable biomedical devices that typically rely on battery power for diagnostics or operation, the development of flexible piezoelectric nanogenerators (NGs) that enable mechanical-to-electrical energy harvesting is finding promising applications. Here, we present the construction of a flexible piezoelectric nanogenerator using a thin film of room temperature deposited nanocrystalline aluminium nitride (AlN). On a thin layer of aluminium (Al), the AlN thin film was grown using pulsed laser deposition (PLD). The room temperature grown AlN film was composed of crystalline columnar grains oriented in the (100)-direction, as revealed in images from transmission electron microscopy (TEM) and X-ray diffraction (XRD). Fundamental characterization of the AlN thin film by piezoresponse force microscopy (PFM) indicated that its electro-mechanical energy conversion metrics were comparable to those of c-axis oriented AlN and zinc oxide (ZnO) thin films. Additionally, the AlN-based flexible piezoelectric NG was encapsulated in polyimide to further strengthen its mechanical robustness and protect it from some corrosive chemicals. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

18 pages, 7944 KiB  
Article
System Identification and Mathematical Modeling of A Piezoelectric Actuator through A Practical Three-Stage Mechanism
by Dror A. Levy and Amir Shapiro
Micromachines 2023, 14(1), 88; https://doi.org/10.3390/mi14010088 - 29 Dec 2022
Cited by 3 | Viewed by 1570
Abstract
Piezoelectric elements (PEMs) are used in a variety of applications. In this paper, we developed a full analytical model and a simple system identification (SI) method of a piezoelectric actuator, which includes piezostack elements and a three-stage amplification mechanism. The model was derived [...] Read more.
Piezoelectric elements (PEMs) are used in a variety of applications. In this paper, we developed a full analytical model and a simple system identification (SI) method of a piezoelectric actuator, which includes piezostack elements and a three-stage amplification mechanism. The model was derived separately for each unit of the system. Next, the units were combined, while taking into account their coupling. The hysteresis phenomenon, which is significant in piezoelectric materials, is described extensively. The theoretical model was verified in a laboratory setup. This setup includes a piezoelectric actuator, measuring devices and an acquisition system. The measured results were compared to the theoretical results. Some of the most well-known forms of system identification are shown briefly, while a new and simple algorithm is described systematically and verified by the model. The main advantage of this work is to provide a solid background and domain knowledge of modelling and system identification methods for further investigations in the field of piezoelectric actuators. Due to their simplicity, both the model and the system identification method can be easily modified in order to be applied to other PEMs or other amplification mechanism methods. The main novelty of this work lies in applying a simple system identification algorithm while using the system-level approach for piezoelectric actuators. Lastly, this review work is concluded and some recommendations for researchers working in this area are presented. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

18 pages, 9972 KiB  
Article
A Novel Fast Servo Tool Device with Double Piezoelectric Driving
by Junfeng Liu, Tiancong Luo, Kexian Liu, Tao Lai, Yuqian Zhao and Linfeng Wang
Micromachines 2023, 14(1), 85; https://doi.org/10.3390/mi14010085 - 29 Dec 2022
Cited by 1 | Viewed by 1245
Abstract
The fast tool servo (FTS) technology has unique advantages in the machining of complex surfaces such as special-shaped targets and free-form surfaces. In view of the shortcomings in the performance of the existing FTS device, this paper puts forward a novel FTS which [...] Read more.
The fast tool servo (FTS) technology has unique advantages in the machining of complex surfaces such as special-shaped targets and free-form surfaces. In view of the shortcomings in the performance of the existing FTS device, this paper puts forward a novel FTS which uses two piezoelectric ceramics instead of flexure hinges to provide restoring force. Firstly, the feasibility of the double-drive principle is verified theoretically, and the corresponding mechanism is optimized accordingly. Then, the system control hysteresis model is established and identified, and the appropriate control strategy is designed. Finally, the performances of the proposed FTS device are tested, and a typical microstructure is machined based on the device and ultra-precision lathe. The results indicate that the proposed device effectively improves the performance of the FTS system, which is useful for the processing of microstructures and free-form surfaces. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

22 pages, 8861 KiB  
Article
Intelligent Predictive Solution Dynamics for Dahl Hysteresis Model of Piezoelectric Actuator
by Sidra Naz, Muhammad Asif Zahoor Raja, Ammara Mehmood and Aneela Zameer Jaafery
Micromachines 2022, 13(12), 2205; https://doi.org/10.3390/mi13122205 - 12 Dec 2022
Cited by 5 | Viewed by 1405
Abstract
Piezoelectric actuated models are promising high-performance precision positioning devices used for broad applications in the field of precision machines and nano/micro manufacturing. Piezoelectric actuators involve a nonlinear complex hysteresis that may cause degradation in performance. These hysteresis effects of piezoelectric actuators are mathematically [...] Read more.
Piezoelectric actuated models are promising high-performance precision positioning devices used for broad applications in the field of precision machines and nano/micro manufacturing. Piezoelectric actuators involve a nonlinear complex hysteresis that may cause degradation in performance. These hysteresis effects of piezoelectric actuators are mathematically represented as a second-order system using the Dahl hysteresis model. In this paper, artificial intelligence-based neurocomputing feedforward and backpropagation networks of the Levenberg–Marquardt method (LMM-NNs) and Bayesian Regularization method (BRM-NNs) are exploited to examine the numerical behavior of the Dahl hysteresis model representing a piezoelectric actuator, and the Adams numerical scheme is used to create datasets for various cases. The generated datasets were used as input target values to the neural network to obtain approximated solutions and optimize the values by using backpropagation neural networks of LMM-NNs and BRM-NNs. The performance analysis of LMM-NNs and BRM-NNs of the Dahl hysteresis model of the piezoelectric actuator is validated through convergence curves and accuracy measures via mean squared error and regression analysis. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

15 pages, 11130 KiB  
Article
Finite Element Modeling and Test of Piezo Disk with Local Ring Electrodes for Micro Displacement
by Yonggang Liu, Shuliang Zhang, Pengfei Yan and Hiji Li
Micromachines 2022, 13(6), 951; https://doi.org/10.3390/mi13060951 - 16 Jun 2022
Cited by 5 | Viewed by 1909
Abstract
A new piezoelectric actuator combining interdigitated ring electrodes and a PZT-52(Lead Zirconate Titanate) disk was investigated for the large displacement requirements of piezoelectric actuators. Finite element models were established according to the structural characteristics of the actuator and static analysis was carried out [...] Read more.
A new piezoelectric actuator combining interdigitated ring electrodes and a PZT-52(Lead Zirconate Titanate) disk was investigated for the large displacement requirements of piezoelectric actuators. Finite element models were established according to the structural characteristics of the actuator and static analysis was carried out based on ANSYS software. Then Ø25 mm × 2 mm samples were prepared. The displacement detection system was established, and the influence of electrode structure on radial displacement was studied experimentally. A comparison between the experimental results and the finite element analysis confirmed that the finite element model was correct. The results showed that the effect of electrode width on displacement was small. With decrease in electrode center distance and increase in the number of electrodes pairs, the radial displacement increased correspondingly. The peak of radial displacement was 1.63 μm under a 200 V voltage excitation voltage of 0.2 Hz. This was 2.5 times that for a conventional electrode piezo disk with the same structure. The actuator demonstrated better displacement properties. The piezoelectric disk could be valuable in applications involving micro-nano devices. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

15 pages, 1831 KiB  
Article
Bending and Vibration Analysis of Flexoelectric Beam Structure on Linear Elastic Substrates
by Maomao Zhang and Zhidong Zhou
Micromachines 2022, 13(6), 915; https://doi.org/10.3390/mi13060915 - 09 Jun 2022
Cited by 4 | Viewed by 1714
Abstract
With the development of micro-nanotechnology, smart electronic devices are being updated and developed, and more and more flexoelectric sensors, actuators, and energy harvesters attached to elastic substrates have attracted a surge of interest due to unique features at the nano-scale. In this paper, [...] Read more.
With the development of micro-nanotechnology, smart electronic devices are being updated and developed, and more and more flexoelectric sensors, actuators, and energy harvesters attached to elastic substrates have attracted a surge of interest due to unique features at the nano-scale. In this paper, the static bending behavior and vibration characteristics of a flexoelectric beam structure based on a linear elastic substrate under a magnetic field environment are investigated. Based on the electrical Gibbs free energy density, the governing equations and boundary conditions of structures are derived by using the Euler–Bernoulli beam theory and the Hamilton’s variational principle. The expressions of the deflection and the induced electric potential of the beam structure are expressed analytically. The natural frequency of the beam under the open-circuit electrical conditions with surface electrodes (OCI) are obtained after further extending the solution. The results show that the flexoelectric effect, the linear elastic substrate, and the magnetic field have significant effects on the static bending and vibration behaviors of the flexoelectric beam which are beneficial for designing and developing flexoelectric devices with elastic substrates. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

15 pages, 5161 KiB  
Article
Finite Element Analysis and Polarization Test of IDEs Piezoelectric Actuator
by Yonggang Liu, Shuliang Zhang, Aoke Zeng and Pengfei Yan
Micromachines 2022, 13(2), 154; https://doi.org/10.3390/mi13020154 - 20 Jan 2022
Cited by 3 | Viewed by 2366
Abstract
A new type of actuator is presented in the paper that integrates the IDEs into a conventional piezoelectric sheet. The electrodes and polarization play a key role in the strain. Adopting constitutive equations of piezoelectric theory and variation principles in elasticity theory, the [...] Read more.
A new type of actuator is presented in the paper that integrates the IDEs into a conventional piezoelectric sheet. The electrodes and polarization play a key role in the strain. Adopting constitutive equations of piezoelectric theory and variation principles in elasticity theory, the piezoelectric component dynamic equation was deduced. Several finite element models of the IDEs piezoelectric actuator were established in ANSYS. The effect of branch electrodes on the strain of the actuator was analyzed. The results show that the strain can be bigger than that of the conventional piezoelectric sheet by decreasing the gap and increasing the width of electrodes. According to the FEM result, some IDEs piezoelectric actuators were prepared. The distribution of the static electric field inside the actuator was researched to determine the polarization voltage. The 2671 high voltage power and DU-20 temperature-controlled oil bath was applied to explore the polarization process. The effect of the voltage, time and temperature on the strain of the actuator was researched by a TF2000 and SIOS laser interferometer. The results show that the optimum polarization is 800 V, for 60 min and at 150 °C. The strain of the IDEs piezoelectric actuator is 1.87 times that of the conventional piezoelectric actuator. The actuators could prove to be helpful applications for micro-nano devices. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 12747 KiB  
Review
Review of Piezoelectric Micromachined Ultrasonic Transducers for Rangefinders
by Jiong Pan, Chenyu Bai, Qincheng Zheng and Huikai Xie
Micromachines 2023, 14(2), 374; https://doi.org/10.3390/mi14020374 - 02 Feb 2023
Cited by 7 | Viewed by 3427
Abstract
Piezoelectric micromachined ultrasonic transducer (pMUT) rangefinders have been rapidly developed in the last decade. With high output pressure to enable long-range detection and low power consumption (16 μW for over 1 m range detection has been reported), pMUT rangefinders have drawn extensive attention [...] Read more.
Piezoelectric micromachined ultrasonic transducer (pMUT) rangefinders have been rapidly developed in the last decade. With high output pressure to enable long-range detection and low power consumption (16 μW for over 1 m range detection has been reported), pMUT rangefinders have drawn extensive attention to mobile range-finding. pMUT rangefinders with different strategies to enhance range-finding performance have been developed, including the utilization of pMUT arrays, advanced device structures, and novel piezoelectric materials, and the improvements of range-finding methods. This work briefly introduces the working principle of pMUT rangefinders and then provides an extensive overview of recent advancements that improve the performance of pMUT rangefinders, including advanced pMUT devices and range-finding methods used in pMUT rangefinder systems. Finally, several derivative systems of pMUT rangefinders enabling pMUT rangefinders for broader applications are presented. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

18 pages, 5667 KiB  
Review
Recent Advances in the Application of Piezoelectric Materials in Microrobotic Systems
by Alireza Fath, Tian Xia and Wei Li
Micromachines 2022, 13(9), 1422; https://doi.org/10.3390/mi13091422 - 29 Aug 2022
Cited by 10 | Viewed by 5328
Abstract
Recent advances in precision manufacturing technology and a thorough understanding of the properties of piezoelectric materials have made it possible for researchers to develop innovative microrobotic systems, which draw more attention to the challenges of utilizing microrobots in areas that are inaccessible to [...] Read more.
Recent advances in precision manufacturing technology and a thorough understanding of the properties of piezoelectric materials have made it possible for researchers to develop innovative microrobotic systems, which draw more attention to the challenges of utilizing microrobots in areas that are inaccessible to ordinary robots. This review paper provides an overview of the recent advances in the application of piezoelectric materials in microrobots. The challenges of microrobots in the direction of autonomy are categorized into four sections: mechanisms, power, sensing, and control. In each section, innovative research ideas are presented to inspire researchers in their prospective microrobot designs according to specific applications. Novel mechanisms for the mobility of piezoelectric microrobots are reviewed and described. Additionally, as the piezoelectric micro-actuators require high-voltage electronics and onboard power supplies, we review ways of energy harvesting technology and lightweight micro-sensing mechanisms that contain piezoelectric devices to provide feedback, facilitating the use of control strategies to achieve the autonomous untethered movement of microrobots. Full article
(This article belongs to the Special Issue Piezoelectric MEMS/NEMS—Materials, Devices, and Applications)
Show Figures

Figure 1

Back to TopTop