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Abstract: Piezoelectric actuated models are promising high-performance precision positioning de-
vices used for broad applications in the field of precision machines and nano/micro manufacturing.
Piezoelectric actuators involve a nonlinear complex hysteresis that may cause degradation in per-
formance. These hysteresis effects of piezoelectric actuators are mathematically represented as a
second-order system using the Dahl hysteresis model. In this paper, artificial intelligence-based
neurocomputing feedforward and backpropagation networks of the Levenberg-Marquardt method
(LMM-NNs) and Bayesian Regularization method (BRM-NNs) are exploited to examine the numer-
ical behavior of the Dahl hysteresis model representing a piezoelectric actuator, and the Adams
numerical scheme is used to create datasets for various cases. The generated datasets were used as
input target values to the neural network to obtain approximated solutions and optimize the values
by using backpropagation neural networks of LMM-NNs and BRM-NNs. The performance analysis
of LMM-NNs and BRM-NNs of the Dahl hysteresis model of the piezoelectric actuator is validated
through convergence curves and accuracy measures via mean squared error and regression analysis.

Keywords: piezoelectric actuator; Levenberg-Marquardt; Bayesian Regularization; intelligent computing;
dahl hysteresis model

1. Introduction

Piezoelectric actuators (PEAs) are extensively utilized in precision positioning sys-
tems owing to their minor sizes, low noise and heat, high displacement resolution, high
positioning accuracy, high energy density, rapid frequency response, and large force gen-
eration [1-4]. All of these benefits make PEAs universally exploited in a variety of fields,
including vibration monitoring [5], machining [6], micro/nano observation and opera-
tion [7,8], calibration of optical fibers [9], hydraulic pipeline systems [10], and laser focusing
mechanisms [11]. Precision positioning systems employ PEAs as they have properties such
as free lubrication, free friction, and high resolution, and thus are often paired with con-
senting mechanisms [12]. However, a high range of inputs and low frequencies used for
PEA actuation yield nonlinear hysteresis. As a result, these nonlinear hysteresis effects
significantly reduce positioning precision. Therefore, the study of nonlinear hysteresis
behaviors of the input voltage with output displacement is worthwhile and important to
increase the nano/micro-positioning system’s accuracy. These hysteresis behaviors may
be categorized into rate-independent and rate-dependent. In rate-independent hystere-
sis, both input voltage and output displacement are not linear with each other at a low
frequency, while in rate-dependent hysteresis, the input frequency affects the hysteresis
curves superficially, varying with the increase in frequency [13].
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The initial necessary step to deal with hysteresis is to model it accurately and then
compensate for this nonlinearity by using control mechanisms. For this purpose, different
hysteresis models for PEAs were presented over the past few decades, i.e., the Prandtl
Ishlinskii model, Krasonsel’skii Pokrovskii model, Preisach model, Polynomial-based
model, Maxwell model, and Jiles Atherton model. These models were used to study the
rate-independent hysteresis behaviors of PEAs. However, for rate-dependent hysteresis
behavior studies, the Bouc Wen model, Duhem model, Dahl model, and Backlashnlike
model were employed. All these models are further classified into two categories, physical
and mathematical hysteresis models. Physical-based models involve the theoretical study
of modeling and controlling of PEAs and exhibit quite complex structures owing to their
intrinsic mechanism of involving finite element modeling which causes high computational
cost, as in the Jiles Atherton model [14]. Mathematical models include the polynomial
approximation [15], Preisach model [16], Duhem model [17], Prandtle Ishlinskii model [18],
Maxwell slip model [19], LuGre model [20], Dahl model [21], and Bouc Wen model [22,23].

1.1. Related Study

In recent years, researchers presented numerous methodological strategies to study the
parameters of the nonlinear hysteresis model resulting as a consequence of input voltage
and output displacement to achieve maximum positioning accuracy. The feedforward
control approach for output force is presented, which is based on the dynamic hysteresis
inverse model to efficiently reduce the PEA’s nonlinear properties [24]. A sliding mode
controller for the feedforward error reduction of the modified Prandtl Ishlinskii hysteresis
model was presented [25]. A dynamic compensator was proposed to suppress the nonlin-
earity of nano-positioning [26]. Backstepping control integral sliding mode methodology
was presented for precision motions [27]. A quasi-Rayleigh model was used to study
the hysteresis of PEAs [28]. A system-level approach was proposed to study hysteresis
behavior at any frequency [29]. A single neuron controller based on Hebb learning rules
was used for error adjusting of unsymmetrical behavior [30]. A system depending on
the frequency of the nonlinear hysterical effect based on the gated recurrent unit and
neural Turing machine was presented [31,32]. To achieve high precision tracking that
deals with system uncertainties, a self-tuning control-based neural network technique was
presented [33]. A proportion integral differential control system was proposed to achieve
higher accuracy of the static model [34]. Some parameter identification techniques such
as the Transitional Markov Chain Monte Carlo approach [35] and the least squares-based
method [36] were used for PEA hysteresis models. Furthermore, in the literature, the
characteristics of some nature-inspired algorithms have also been exploited for the opti-
mization of model parameters of PEAs. They include particle swarm optimization [37],
clonal selection mechanism [38], genetic algorithms [39], artificial bee colony algorithm [40],
and hybrid differential evolution and Jaya algorithm [41].

Differential system problems are frequently solved using numerical methods based
on the soft computing paradigm [42,43]. The most recent and important studies include
the solution of a mathematical model for nonlinear oscillatory Vander Pol Mathieu’s
systems [44,45], Painlevé equation-II for asymmetric optical prototypes [46], a transport
model designed for fluid and soft tissues solute as well as microvessels [47], the Lane
Emden equation for astrophysics [48], nonlinear models of circuit theory [49], fuel igni-
tion model [50], nonlinear Bratu equation-based models in electrical conductors [51,52],
nanofluidic problems comprising nanotubes of carbon [53], financial paradigms [54],
dusty*plasma [55], atomic physics [56], drainage problems [57], wind power [58], heartbeat
dynamics [59], search space reduction of economic load dispatch problem [60], HIV-infected
cells model [61], piezoelectric devices [62-64], fluidic flow models [65,66], fractional dy-
namic modeling equations [67], bilinear systems [68], multi-frequency response signals [69],
entropy generation [70,71], Ree Eyring nanofluid flow [72], fractional order systems [73],
state space systems [74], magnetohydrodynamics [75], stochastic systems [76], and data
filtering [77].
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1.2. System Model: Dahl Hysteresis Modeling of the Piezoelectric Actuator

Among all hysteresis models, the Dahl hysteresis model is the most simplified and
closer depiction of the hysteresis loop with a lower number of parameters and better cap-
turing of non-symmetric behavior of input voltage and output displacement [78]. Although
well known for modeling friction, the Dahl model’s application towards piezoelectric
hysteresis modeling seems to have a lot to give. A modified Dahl model for hysteresis
providing estimates on observer design is presented in [79,80].

In this research study, the nonlinearity of the system is represented using a second-
order Dahl model with fewer parameters, as shown in Equation (1).

md(t) 4 ed(t) 4 gd(t) = ko(t) — F, 1)

where m signifies the system mass, ¢ is the damping coefficient, g indicates the stiffness
coefficient, k is the piezoelectric coefficient, v(t) denotes input voltage, d symbolizes the
output displacement, and F, represents the nonlinear hysteresis force. The nonlinear force
that involves the hysteresis parameters is mathematically represented in Equation (2).

F, =a1b1 + boazsgn(d(t)), 2)
Combining Equations (1) and (2) gives Equation (3):
Qﬁm+dm+ym—mm+mm—mm@@@»:o 3)
with initial conditions d(t) = 0, and d(t) = 0.
The values of each of these dynamic and hysteresis model parameters are presented

in Table 1. Figure 1 shows the graphical model of PEAs.

Table 1. Values for parameters of the piezoelectric actuator.

Parameter Value
m 0.1828 Kg
€ 190.154 Ns/m
g 2.6 x 104 N/m
k 0.0336 C/m
by 3.09292 x 10°
by 0
ag —0.25886
a 7.0626

F
V(t) iﬁ —d .
l )

Piezoelectric
stack

Mass (m)

: X W )

Figure 1. Pictorial representation of a piezoelectric actuator.

1.3. Problem Statement and Significance

The growing interest in PEAs has led to the implementation of a variety of approaches
to observe dynamic hysteresis behavior. Soft computing approaches have not yet been
thoroughly investigated for the interpretation of the Dahl hysteresis model. The major
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focus of this research was to employ soft computing paradigms for finding the solution of
a Dahl hysteresis model of PEAs represented in Equation (3) using feedforward and back-
propagated neural networks based on Levenberg-Marquardt and Bayesian Regularization
training algorithms.

1.4. Contribution and Innovative Insights
The following are the innovative features of the proposed computing mechanism:

e  The Dahl hysteresis model for PEAs is studied using a novel neuro intelligent and
heuristic methodology based on training algorithms: Levenberg-Marquardt and
Bayesian Regularization backpropagated neural networks.

e  For training, testing, and validation of the presented model, the dataset of the Dahl
hysteresis model is created by exploiting the efficiency of the Adams numerical approach.

e  The ability of the presented methodology structure is corroborated on accuracy by
the disparity in applied input voltage signals to the piezoelectric actuator Dahl model
employing performance analyses based on regression analyses and mean squared error.

e Inaddition to the established skill of accurate solution, supplementary appreciated key
properties of the presented scheme include extensive methods, easy implementation,
speedy and stable convergence, constancy, and adaptability.

1.5. Organization

The remainder of this paper is set out as follows: Section 2 provides a proposed
methodology along with the Adams numerical method, Levenberg—Marquardt backprop-
agation method, Bayesian Regularization method, and performance indices. Section 3
provides the results and discussion of all experiments carried out for the Dahl hystere-
sis system of a dynamic piezoelectric actuator. The conclusion of the proposed work is
provided in Section 4.

2. Methodology

In this segment, the proposed methodology is described in three steps. First, the sam-
ple dataset of the Dahl hysteresis model is created by the Adams numerical method, and
then model approximation is carried out by using an artificial neural network where opti-
mization is performed by backpropagated networks using Levenberg-Marquardt method
neural networks (LMM-NNSs) and Bayesian Regularization method neural networks (BRM-
NNs). Finally, the performance matrices are used to analyze the present study. Figure 2
represents the graphical abstract of the design methodology.

2.1. Adams Numerical Method

In this study, the dataset for the Dahl hysteresis model is created via the statistical
solver, the Adams numerical scheme, to determine the approximate outcomes of PEAs sig-
nified in Equation (3) and all various scenarios presented in numerical Equations (11), (13),
(15), and (17). The Adams numerical method is executed by using the “NDSolve” routine in
the Mathematica platform to find the numerical solution of differential Equations (4)—(7) for
obtaining the numerical solution of the Dahl hysteresis model of PEAs. The Adams method
is a numerical approach to solving linear first-order systems of Equations (4) and (5).

W~ ) @

d
Yo =u+ [t =+ [ rona ©)

where y indicates the result of an ordinary differential equation (ODE), x signifies input
data, Y, represents first-order interpolated iterative technique, and the term t represents
the time interval of Adams approaches. These mathematical notations are constructed
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on the basic supposition of approximating the integral inside the period (f;, t;+1) using
a polynomial.

Dahl hysteresis modeling of Piezoelectric
Actuator

Design of Dahl hysteresis mode| for piezoelectric
actuator using a novel neuro-heuristic
methodology based on Levenberg Marquardt
and Bayesian Regularization backpropagated
neural networks.

Mathematical Representation

m d(t)+ & d(1)+ gd(r) =kv()-F,

F, =ab +bya, sgn(d(?)),

md(t)+ed(t)+gd@t) - )
kv(t) +a, by —b, a, sgn(d (1))

. 2GovemingEquations

Dataset Formation

Dataset of Dahl hysteresis model for
piezoelectric actuator is created for various
input signals by using ‘NDSolver’ routine with
the help of Adams numerical method in
Mathematica platform.

. 3 Reference Numerical Solution

Numerical Solutions for various scenarios of Dahl hysteresis Model

Case 1:

(m d(1)+ed(t)+ g d(1)—ksin(r)+a, b, — b, a,sgn (d (z))) =0.

Case 2: (m d(1)+&d(t) + g d(t) — 50k — 50k sin(zt) + a, b, — b, a, sgn (d (t))) =0.

Case 3:(m d(t)+ed(t)+gd(t)—b, a,sgn(d (1) —5e "k (cos(Bate ' ~3.15)+1)+a, bl)
Case 4: (m d(t)+ed(t)— b, a,sgn (d (1)) - 5k —3.4¢ "k (cos 27t ) + a, b, + gd(t)) -0.

A\

0.

A

LMM-NNs and BRM-NNs Architecture

Hidden

Calculation of MSE,Gradient,step size

Mean-square-error

Effective

Training testing Performance  Gradient PR
9.36911E-8 1.2342E-8 9.37E-8 2.21E-6 119
5.53105E-10  8.6431E-11 5.53E-10 1.78E-5 218
4.61074E-6 1.5354E-6 4.61E-6 2.19E-5 116
9.63888E-8 1.1736E-7 9.64E-8 1.06E-6 143

~ 7-NumericalResults

LMM-NNs and BRM-NNs Execution Steps

Transfer of dataset to
matlab simulation
environment

Define inputs and
targets data

Randomly distribute
the data samples for
training, validation
and testing

Design neural
network architecture
by selecting
activation function

Calculate the Mean
squared errors and
Regression analysis

Save the results
numerically and
graphically

and number of
hidden layer neurons

Train the network by
using training
algorithms: LMM-
NNs and BRM-NNs

Fitting curve for output displacement and
model error

Function Fit for Output Element 1

\

Performance Analysis

Best
2

is 1.1821e-05 at epoch 94

3

3

Mean Squared Error (mse)
3

3
3

10

o 20 40 60 80
100 Epochs

. % Graphical Results

Figure 2. Graphical abstract for a proposed methodology of LMM-NNs and BRM-NNs for piezoelec-

tric actuator.

Adams numerical methods are categorized into two types: the Adams Bash forth
(AB), known as the explicit type, and the Adams Moulton (AM), known as the implicit
type. The first-order AB and AM methods are the forward and backward procedures. The
second-order Adams Bash forth (AB2) method and the Adams Moulton (AM2) method



Micromachines 2022, 13, 2205

6 of 22

obtained by linear interpolation are often used and are described in Equations (6) and (7),
where g represents the step interval.

Y=y + g(3f(]/l/tl — fyi-1,ti-1)), (6)

Y=y + g(f(yl—i-lrtl—‘rl + flyi, t))- 7)

Artificial neural networks are made up of artificial neurons which are joined together. A
piece of information is transferred to the next neuron through the connection between them.
A neuron’s status is commonly stated as a series of real numbers ranging from 0 to 1. When
learning progresses, the weight of neurons and synapses may alter, and as a result, an increase
or decrease may occur in the strength of the signal which is transmitted downstream.

Normally, neurons are organized in layers where each layer can execute different
kinds of transformation based on its input. This strategy deployed 100 hidden layers to
achieve the desired result. Figure 3 depicts the fundamental architecture of the proposed
system neural network. This architecture consists of two layers the hidden layer and output
layer, where a sigmoid function is used as an activation function, and the two training algo-
rithms, Levenberg-Marquardt and Bayesian Regularization, are used as backpropagated
neural networks.

Hidden Layers

Input Layer
x(t) N,
Output layer
— X, y(t)
N,
— X; NG
L]
L]
. . Error
L]
) J
Nogo
—> X <):|

N Back
100 .
propagation

Figure 3. Structure of two layers of neural networks.

2.2. Levenberg—Marquardt Backpropagation Method

In this research, the Levenberg-Marquardt backpropagation neural network is used
to find an optimized solution for the Dahl hysteresis model of the piezoelectric actuator.
The dataset gathered by the Adams numerical method was used as a target output for
LMM-NN:s. In this methodology, the LMM-NNSs algorithm was implemented by “nftool”
in MATLAB for machine learning. This algorithm was developed by Kenneth Levenberg
and Donald Marquardt for the first time in 1944. It combines the advantages of both the
steepest descent method (SDM) and the Gauss Newton (GNM) algorithm. Therefore, its
convergence rate is higher than both SDM and GNM algorithms. This algorithm is robust,
fast, and requires less memory as compared to other backpropagated algorithms available
in the MATLAB neural networks toolbox. This backpropagated neural network algorithm
is successfully implemented for nanofluidic systems, heat transfer effects, porous fin heat
sink, magnetohydrodynamic systems, and pantograph delay systems [81-85].

2.3. Bayesian Regularization Backpropagation

Backpropagated neural networks with Bayesian Regularization are more robust than
other optimization backpropagated neural networks. Therefore, in this paper, the Bayesian
Regularization backpropagated algorithm is also used to find an optimized solution for the
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Dahl hysteresis model of the piezoelectric actuator. It is a numerical process that alters a
nonlinear regression into a “well posed” statistical issue in the same way as ridge regression.
In this optimization algorithm, the weight and bias values are updated until the desired
output is achieved. It identifies the correct combination of squared errors and weights to
construct a network that generalizes well by minimizing a combination of squared errors
and weights. It also decreases or eliminates the requirements of lengthy cross-validation.
In the proposed methodology, the implementation of this algorithm is carried out by using
the neural networks toolbox available in the MATLAB platform for artificial intelligence
paradigms. This backpropagated algorithm is successfully implemented for environmental
economic systems [86].

2.4. Performance Indices

The performance analysis of suggested techniques for the Dahl-based hysteresis model
has been determined by mean squared error, regression analysis, and curve fitting. The
mathematical representation for performance matrices of the mean squared error and the
correlation coefficient are shown in Equations (8) and (9).

2

MSE = %i Y~ Y)) ®)
i=1
¥ (YY)

RP=1-21 )
r (Y- )
i=1

where s represents the quantity of dataset points, and Y and Y are real and predictable
outputs, respectively. The error is acquired by comparing the predicted and real outcome
values. MSE may be utilized as a cost function to examine the system’s functioning.

3. Results Interpretation

In this section, the numerical computational outcomes are presented for Dahl-based
hysteresis nonlinear model PEAs using artificial neural networks. The two scenarios are
defined based on the application of different backpropagated neural networks. In scenario
1, the characteristics of LMM-NNs are exploited, while in scenario 2, the potential of BRM-
NN is employed to obtain an approximate solution of the Dahl-based hysteresis model.
Four cases of each scenario are defined based on distinct input voltage signals to actuate
the piezoelectric model; a brief description is given below.

3.1. Case 1: Type 1 Input Signal for PEAs

In this case, the dynamic of Dahl-based hysteresis model characterized in (3) for PEAs
is presented by considering the type 1 input voltage signal shown in Equation (10):

v(t) = sin(t), (10)

Using Equation (10), the updated Dahl-based hysteresis model for the piezoelectric
actuating system is specified in Equation (11).

(méz(t) +ed(t) + gd(t) — ksin(t) + arby — boazsgn(d(t))> =0. (11)

3.2. Case 2: Type 2 Input Signal for PEAs

In case 2, the input voltage signal of type 2 presented in Equation (12) for time,
t € [0,10], which is used to actuate the proposed system for the dynamics of the Dahl-based
hysteresis model, is demonstrated in Equation (13).

o(t) = 50 + 50 sin(7tt), (12)
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(m&(t) + ed(t) + gd(t) — 50k — 50k sin(7tt) + a by — boazsgn(d(t))) =0. (13)

3.3. Case 3: Type 3 Input Signal for PEAs

In this case, a type 3 input voltage signal of time, ¢t € [0,10], described in Equation (14),
is elected for the piezoelectric actuating system to study the dynamics of the Dahl-based
hysteresis model. The updated equation of the Dahl hysteresis model is demonstrated in
Equation (15).

o(t) = 5¢ 013t (cos(3nte*0‘09t —3.15) + 1) , (14)
md(t) + ed(t) + gd(t) — boarsgn(d(t))— —0. (15)
5e~ 013k (cos(3rtte 009" — 3.15) + 1) + ayby

3.4. Case 4: Type 4 Input Signal for PEAs

In this case study, a Dahl-based hysteresis model shown in Equation (3) is demon-
strated by selecting the type 4 input signal numerically shown in Equation (16). The
updated Dahl-based hysteresis model is presented in Equation (17).

o(t) = 5+ 3.4e "2 (cos27t) , (16)

(md(t) + ed(t) — boapsgn(d(t)) — 5k — 3.4e~ 2 k(cos 27t) 4 a1by + gd(t)) =0. (17)

Initially, the obtained datasets of all four cases for the Dahl-based hysteresis model of
the piezoelectric actuating system are generated by the NDSolver function with the built-in
Adams numerical technique in the Mathematica simulation environment. All four input
voltage signals are graphically shown in Figure 4. The step size 0.001 is considered to create
datasets for each case analysis to obtain the optimized solution of the dynamic Dahl-based
hysteresis model backpropagated with LMM-NNs and BRM-NNs. The created dataset
for each case contains 10,001 total data points. The sample datasets for four distinct cases
having various voltage inputs for specific data points with a fixed step size of 0.5 are given
in Table 2. Moreover, all these obtained datasets were transferred into the computational
platform MATLARB for the execution of LMM-NNs and BRM-NNs, where 70% of the total
data points were utilized for model training, 15% for model testing, and the remaining
15% were utilized for the validation process in order to achieve the desired results. The
basic architecture of artificial neural networks contains three main layers: the input layer,
hidden layer, and output layer, where the hidden layer neurons are kept at 100 to obtain
efficient results.

The performance analysis based on mean squared error (MSE), gradient, step size
values (Mu), epoch, and computational time for all four cases of the scenario 1 Dahl-based
hysteresis PEA model is expressed in Table 3. The best performance value obtained in case 1
is 5.617%, achieved in 9 s at the 194th epoch with step size 1~ and gradient 5.3275, for case 2
is 3.76 ° obtained in 12 s at the 100th epoch with step size 1-8 and gradient 1.49~5, for case
315 3.9277 observed in 11 s at the 96th epoch with step size 172 and gradient 1.68#, and
for case 4 is 3.85~° achieved in 14 s at the 99th epoch with step size 1~? and gradient 1.76°.
Furthermore, the near-optimal mean squared error values achieved by model training,
model testing, and model validation for case 1 are 5.65068 %, 1.15930 >, and 6.69292¢;
for case 2 are 3.791197, 1.18214, and 1.47843>; for case 3 are 9.3231377, 1.21842"°,
and 5.13605>; and for case 4 are 3.88760°, 1.46628 >, and 1.13105~>, respectively, which
validate the system accuracy.

Performance analysis of all four cases for BRM-NNs of the proposed dynamic Dahl-
based hysteresis model is demonstrated in Table 4. Case 1’s best performance value is 9.37 8
achieved in 151 s, that of case 2 is 5.53710 obtained in 129 s, that of case 3 is 4.61~¢ observed
in 166 s, and that of case 4 is 9.64 8 achieved in 129 s. The best MSE values achieved for
training and testing of case 1 are 9.3691178 and 1.234278, for case 2 are 5.53105 10 and
8.643111, for case 3 are 4.61074° and 1.5354°, and for case 4 are 9.63888 % and 1.1736 7,
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respectively. The MSE values for validation are zero in BRM-NNS. Case 2 illustrates the
optimal mean squared error value for system testing, which is 8.6431 11 with Mu of value 5,
as compared to the other three cases.

10

05

time
2 4 6 8 Xo
05

e Time
10

(c) (d)

Figure 4. Input voltage signals of all four cases of both LMM-NNs and BRM-NN:s. (a) Input Signal.
(b) Input Signal 2. (c) Input Signal 3. (d) Input Signal 4.

Table 2. Output displacement (m) datasets of all cases of both scenarios.

Case-1 Case-2 Case-3 Case-4
' (1) (1) s (1) (1)
0.0 0.0000000 0.0000000 0.0000000 0.0000000
0.5 3.0793593 0.3080651 3.0793665 3.0793613
1.0 3.0793598 0.3080020 3.0793680 3.0793687
1.5 3.0793600 0.3079359 3.0793589 3.0793621
2.0 3.0793599 0.3079990 3.0793687 3.0793679
2.5 3.0793595 0.3080651 3.0793588 3.0793628
3.0 3.0793589 0.3080020 3.0793670 3.0793673
3.5 3.0793582 0.3079359 3.0793610 3.0793633
4.0 3.0793577 0.3079990 3.0793609 3.0793669
45 3.0793574 0.3080651 3.0793659 3.0793637
5.0 3.0793574 0.3080020 3.0793615 3.0793665
55 3.0793578 0.3079359 3.0793588 3.0793640
6.0 3.0793583 0.3079990 3.0793615 3.0793662

6.5 3.0793590 0.3080651 3.0793640 3.0793643
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Table 2. Cont.
Case-1 Case-2 Case-3 Case-4
t
dy(t) dy(t) ds(t) dy(t)
7.0 3.0793595 0.3080020 3.0793635 3.0793660
7.5 3.0793599 0.3079359 3.0793616 3.0793645
8.0 3.0793600 0.3079990 3.0793598 3.0793658
85 3.0793597 0.3080651 3.0793589 3.0793646
9.0 3.0793592 0.3080020 3.0793587 3.0793657
95 3.0793586 0.3079359 3.0793589 3.0793647
10 3.0793580 0.3079990 3.0793591 3.0793656
Table 3. Performance analysis of LMM-NNs for the proposed model.
Mean Squared Error :
Case . . N -Performance -Gradient -Mu Epoch Time
-Training -Validation  -Testing (s)
1 5.65068 ¢ 1.15930~5 6.69292° 5.617¢ 53275 1-8 194 09
2 3.79119-° 1.18214°5 1.47843°5 3.76~° 1.49-° 1-8 100 12
3 9.32313~7 1.21842-° 5.136057°> 3.92~7 1.68~4 1-? 96 11
4 3.88760° 1.46628 5 1.131057° 3.85°6 1.7675 1-8 99 14
Table 4. Performance analysis of BRM-NNs for the proposed model.
Mean Squared Error . .
Case . 3 Performance Gradient Effective Sum Squared Mu Epoch Time
-Training -Testing Param Param (s)
1 93691178  1.2342-8 9378 22170 119 3.33° 50 1000 151
2 55311710 8643111 55310 1.7875 218 4.68° 5 1000 129
3 461074~ 153546 46170 21975 116 2.536 5 1000 166
4 9.63888—8  1.173677 9.64°8 1.066 143 3.27° 50 1000 129

The obtained results for both LMM-NNs and BRM-NNSs are also presented in graphical
form for all four cases. The neural network training states for validation fails, step size
(mu), and the gradient are demonstrated graphically in Figures 5 and 6. The fitting
curves of output, target, and model error against each input are plotted in Figures 7 and 8.
Performance analyses are shown in Figures 9 and 10. Regression analyses of output versus
target values for model training, validation, and testing are presented in Figures 11 and 12.

The state transitions that show the algorithm stability of all four cases for both
LMM-NNs and BRM-NNs for the Dahl-based hysteresis model are graphically shown
in Figures 6 and 7, where the step size of algorithm Mu, number of parameters at each
epoch, validation check of the model, and gradient are presented. The gradient values ob-
tained for LMM-NNs are about [5.37°,1.47°, 1.6 7%, and 1.7 %] with step size Mu [178,1°8,
17 and 18] and for BRM-NNs are [2.27%,1.775, 2.17% and 1] with step size Mu [5,50].
These results show the convergent and accurate performance of the proposed techniques
LMM-NNS and BRM-NN s for all four cases of the Dahl-based hysteresis model PEAs.

The function fitness curve of all four cases for both LMM-NNs and BRM-NNs are
illustrated graphically to obtain the accuracy of the Dahl-based hysteresis dynamic model
of the piezoelectric actuating system, and hence the error has been found for all cases.
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Figure 5. State transition containing gradient, step size, and validation checks of LMM-NNs for
all four cases of the Dahl-based hysteresis model of piezoelectric actuator. (a) LMM-NNs Case 1.
(b) LMM-NNs Case 2. (¢) LMM-NNSs Case 3. (d) LMM-NNs Case 4.

In function fitness curves for LMM-NNSs, the output and target points are plotted
for all training, testing, and validating concerning the input. For BRM-NNs, the output
and target points are plotted for training and testing in order to approximate the solution
shown in Figures 8 and 9.

The performance analyses of four cases for both the LMM-NNs and BRM-NNs Dahl-
based hysteresis models are graphically illustrated in Figures 10 and 11. In these graphs,
the mean squared error values are plotted across every epoch for all training, validation,
and testing of a system model. The superlative validation performance obtained in case 3 of
LMM-NNss is 1.2184 ~© at the 90th epoch, while the best training performance is achieved
in case 2 of BRM-NNSs, which is 55311710 at the 1000th epoch. The best line for all four
cases of the LMM-NNs model is around 10~°, while the best lines for all four BRM-NN
cases are 1078,1072,107°, and 10~7. These graphs illustrate that the accurate MSE values
were taken for training and validation; however, some degradation occurred in the testing
of the Dahl-based hysteresis model due to unbiasedness. Moreover, at the input stage, the
target was not defined during validation and testing.

The regression analyses of the Dahl-based hysteresis model for training, validation,
testing, and for the total dataset was carried out using both LMM-NNs and BRM-NNs and
are graphically shown in Figures 11 and 12. The obtained results indicate a close correlation
between target and output vectors by giving an R value approximately equal to one.
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Figure 6. State transition containing gradient, step size, and validation checks of BRM-NNs for
all four cases of the Dahl-based hysteresis model of piezoelectric actuator. (a) BRM-NNs Case 1.
(b) BRM-NNs Case 2. (¢) BRM-NNs Case 3. (d) BRM-NNs Case 4.
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(d) LMM-NNSs Case 4.
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Figure 9. Performance analysis of train, validation, test, and best by LMM-NNs and BRM-NNs for
all four cases of the Dahl-based hysteresis model. (a) LMM-NNs Case 1. (b) LMM-NNs Case 2.
(c) LMM-NNs Case 3. (d) LMM-NNSs Case 4.
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Figure 10. Performance analysis of train, validation, test, and best by BRM-NNs for all four cases of
the Dahl-based hysteresis model. (a) BRM-NNs Case 1. (b) BRM-NNs Case 2. (c) BRM-NNs Case 3.
(d) BRM-NNSs Case 4.
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Figure 11. Regression analysis of training, validation, and testing for LMM-NNs of the Dahl-based
hysteresis model of piezoelectric actuator. (a) LMM-NNs Case 1. (b) LMM-NNs Case 2. (¢) LMM-NNs

Case 3. (d) LMM-NNSs Case 4.
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Figure 12. Regression analysis for training, validation, and testing by BRM-NNs of the Dahl-based
hysteresis model of the piezoelectric actuator. (a) BRM-NNs Case 1. (b) BRM-NNs Case 2. (c) BRM-
NNs Case 3. (d) BRM-NNSs Case 4.
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4. Conclusions

The potential of the multi-layered architecture of feedforward networks, i.e., LMM-
NNs and BRM-NNs backpropagation neural networks, was applied to obtain precise,
remarkable, efficient, and robust solutions of differential equations of a dynamic Dahl
hysteresis model for the piezoelectric actuator. The Adams numerical method was used to
develop the dataset for training, validation, and testing of the piezoelectric actuator model.
Several variations were taken for conducting the simulation of the cases depending on
the change in voltage signal used as an input to the piezoelectric actuator. The proposed
methodology is implemented for all four cases of both scenarios based on LMM-NN5s
and BRM-NNs and we obtained the results with maximum accuracy with regard to a
performance analysis by means of squared error and regression analyses. In scenario 1, case
1 illustrates the best MSE value for testing the proposed system, which is 6.7 ¢, achieved in
the 194th epoch, while for BRM-NN, case 2 illustrates the best MSE value for testing the
presented system as compared to the rest of the cases, which is 8.6 1. Generally, the best
performance was achieved by BRM-NN-based methodology.
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Nomenclature

a,b constants

BRM-NNs  Bayesian Regularization method neural network
d output displacement

f function

Fy, nonlinear force

g stiffness coefficient
LMM-NNs  Levenberg-Marquardt method neural networks
MSE mean squared error
q step interval
R correlation coefficient
s quantity of data points
t time interval
k piezoelectric coefficient
u(t) input voltage
system mass
x data input of Adams method
y the output Adams method
Y real outputs
Y
€

predictable outputs
damping coefficient
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