Fruit and Vegetable By-Products: Processing, Bioactivities, and Application

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Security and Sustainability".

Deadline for manuscript submissions: closed (31 August 2021) | Viewed by 34483

Special Issue Editors


E-Mail Website
Guest Editor
Escola Superior de Biotecnologia, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
Interests: agro-food industrial by-products; valorization strategies; green chemistry; process development; enzymes; green separation; natural antimicrobials; prebiotics; antioxidants
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
Interests: agro-food industrial by-products; valorization strategies; green chemistry; process development; human and animal gut microbiome; bioactive compounds for food and cosmetics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We kindly invite you to make a contribution to this Special Issue, entitled “Fruit and Vegetable By-Products: Processing, Bioactivities, and Application”. This Special Issue aims to cover the most recent advances in the field of by-product valorization, from experimental design, conception, and characterization to application in a variety of food-related industries throughout the entire food supply chain, including nutraceutics (supplements), as well as the application of resulting products in the pharmaceutical and cosmetic industries. We also welcome original research articles on topics concerning the potential toxicity of processes upon contact with food matrices (consumer safety and health), the bioaccessibility and bioavailability of fruit and vegetable by-products in food, nutraceutics, and pharmaceutics during gastrointestinal digestion, and the addition of ingredients resulting from by-product extracion in cosmetics. Up-to-date reviews on these topics are also welcome. We look forward to receiving your interesting work.

Dr. Débora Campos
Dr. Ana Raquel Madureira
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • by-products
  • valorization
  • food applications
  • green processes
  • bioactive molecules
  • food waste
  • supply chain

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 2536 KiB  
Article
Impact of Simulated Human Gastrointestinal Digestion on the Bioactive Fraction of Upcycled Pineapple By-Products
by Ricardo Gómez-García, Ana A. Vilas-Boas, Ana Oliveira, Manuela Amorim, José A. Teixeira, Lorenzo Pastrana, Maria Manuela Pintado and Débora A. Campos
Foods 2022, 11(1), 126; https://doi.org/10.3390/foods11010126 - 05 Jan 2022
Cited by 10 | Viewed by 2955
Abstract
Pineapple by-products (peels and stems) from fruit processing industries were evaluated to understand its potential application as a functional food. Therefore, the bioactive compounds of pineapple by-products were characterized for prebiotic and antioxidant activities. A total characterization of soluble carbohydrates profile (simples and [...] Read more.
Pineapple by-products (peels and stems) from fruit processing industries were evaluated to understand its potential application as a functional food. Therefore, the bioactive compounds of pineapple by-products were characterized for prebiotic and antioxidant activities. A total characterization of soluble carbohydrates profile (simples and complex carbohydrates), as well as polyphenols was performed, after removal of enzymatic fraction from pineapple crude juice, allowing the decrease of proteolytic activity and improving the other biological activities. Results showed that pineapple liquid fraction, from stem and peels, can be applied as a prebiotic enhancer, promoting the growth of five probiotic microorganisms (two strains of Lactobacillus sp. and three strains of Bifidobacterium sp.), as a single carbohydrate source. Moreover, through HPLC (High Performance Liquid Chromatography) analysis, 10 polyphenols were identified in pineapple liquid fractions, with some expected differences between both evaluated by-products. Gastrointestinal tract was simulated, in a continuous mode to understand the impact of pH changes and gastrointestinal enzymes into pineapple liquid fractions. Results showed a digestion of high molecular weight polysaccharides into small molecular weight tri-, di-, and monosaccharides. There was an increase of samples antioxidant activity through the gastrointestinal stage, followed by the release of specific polyphenols, such as chlorogenic, coumaric, and ferulic acids. The prebiotic activity did not improve throughout the simulation, in fact, the prebiotic potential decreased throughout the different stages. Full article
Show Figures

Graphical abstract

15 pages, 1197 KiB  
Article
QTL Mapping and GWAS Reveal the Genetic Mechanism Controlling Soluble Solids Content in Brassica napus Shoots
by Xu Wu, Feng Chen, Xiaozhen Zhao, Chengke Pang, Rui Shi, Changle Liu, Chengming Sun, Wei Zhang, Xiaodong Wang and Jiefu Zhang
Foods 2021, 10(10), 2400; https://doi.org/10.3390/foods10102400 - 11 Oct 2021
Cited by 6 | Viewed by 2065
Abstract
Oilseed–vegetable-dual-purpose (OVDP) rapeseed can effectively alleviate the land contradiction between crops and it supplements vegetable supplies in winter or spring. The soluble solids content (SSC) is an important index that is used to evaluate the quality and sugar content of fruits and vegetables. [...] Read more.
Oilseed–vegetable-dual-purpose (OVDP) rapeseed can effectively alleviate the land contradiction between crops and it supplements vegetable supplies in winter or spring. The soluble solids content (SSC) is an important index that is used to evaluate the quality and sugar content of fruits and vegetables. However, the genetic architecture underlying the SSC in Brassica napus shoots is still unclear. Here, quantitative trait loci (QTLs) for the SSC in B. napus shoots were investigated by performing linkage mapping using a recombinant inbred line population containing 189 lines. A germplasm set comprising 302 accessions was also used to conduct a genome-wide association study (GWAS). The QTL mapping revealed six QTLs located on chromosomes A01, A04, A08, and A09 in two experiments. Among them, two major QTLs, qSSC/21GY.A04-1 and qSSC/21NJ.A08-1, accounted for 12.92% and 10.18% of the phenotypic variance, respectively. In addition, eight single-nucleotide polymorphisms with phenotypic variances between 5.62% and 10.18% were identified by the GWAS method. However, no locus was simultaneously identified by QTL mapping and GWAS. We identified AH174 (7.55 °Brix and 7.9 °Brix), L166 (8.9 °Brix and 8.38 °Brix), and L380 (8.9 °Brix and 7.74 °Brix) accessions can be used as superior parents. These results provide valuable information that increases our understanding of the genetic control of SSC and will facilitate the breeding of high-SSC B. napus shoots. Full article
Show Figures

Figure 1

13 pages, 305 KiB  
Article
In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Spent Coffee Grounds-Enriched Cookies
by Luigi Castaldo, Sonia Lombardi, Anna Gaspari, Mario Rubino, Luana Izzo, Alfonso Narváez, Alberto Ritieni and Michela Grosso
Foods 2021, 10(8), 1837; https://doi.org/10.3390/foods10081837 - 09 Aug 2021
Cited by 26 | Viewed by 4181
Abstract
Spent coffee ground (SCG) is a significant by-product generated by the coffee industry. It is considered a great source of bioactive molecules well-recognized for exerting biological properties. This study aimed to implement SCG in a baked foods, such as cookies (SCGc), to increase [...] Read more.
Spent coffee ground (SCG) is a significant by-product generated by the coffee industry. It is considered a great source of bioactive molecules well-recognized for exerting biological properties. This study aimed to implement SCG in a baked foods, such as cookies (SCGc), to increase their bioactive potential. A comprehensive study of the polyphenolic fraction of the SCG and SCGc using a high-resolution mass spectrometry analysis was performed. Moreover, the polyphenol bioaccessibility and change in antioxidant activity during simulated gastrointestinal digestion (GiD) were assessed. Data showed that SCGc provided 780 mg of melanoidins, 16.2 mg of chlorogenic acid (CGA), 6.5 mg of caffeine, and 0.08 mg of phenolic acids per 100 g of sample. Moreover, the 5-caffeoylquinic acid was the most relevant CGA found in SCG (116.4 mg/100 g) and SCGc (8.2 mg/100 g) samples. The antioxidant activity evaluated through three spectrophotometric tests, and the total phenolic compounds of SCGc samples exhibited significantly higher values than the control samples. Furthermore, during simulated GiD, the highest bioaccessibility of SCGc polyphenols was observed after the colonic stage, suggesting their potential advantages for human health. Therefore, SCG with high content in bioactive molecules could represent an innovative ingredient intended to fortify baked food formulations. Full article
Show Figures

Graphical abstract

11 pages, 747 KiB  
Article
Valorisation of Sea Buckthorn Pomace by Optimization of Ultrasonic-Assisted Extraction of Soluble Dietary Fibre Using Response Surface Methodology
by Shehzad Hussain, Minaxi Sharma and Rajeev Bhat
Foods 2021, 10(6), 1330; https://doi.org/10.3390/foods10061330 - 09 Jun 2021
Cited by 21 | Viewed by 3210
Abstract
Sea buckthorn pomace is a valuable industrial waste/by-product obtained after juice production that contains bioactive, health-promoting dietary fibres. This pomace finds usage as animal feed or simply discarded, owed to the lack of appropriate handling or processing facilities. The present study was aimed [...] Read more.
Sea buckthorn pomace is a valuable industrial waste/by-product obtained after juice production that contains bioactive, health-promoting dietary fibres. This pomace finds usage as animal feed or simply discarded, owed to the lack of appropriate handling or processing facilities. The present study was aimed to evaluate the effects of green extraction technologies such as ultrasonic-assisted extraction on the yield of soluble dietary fibre (SDF) from sea buckthorn pomace. Response surface methodology (RSM) coupled with Box–Behnken design (BBD) was applied for optimization of SDF yield. The effects of sonication temperature (60–80 °C), sonication power (100–130 W) and extraction time (30–60 min) on the yield of SDF were also investigated. Furthermore, colour measurement and hydration properties of sea buckthorn pomace powder (STP) and dietary fibre fractions (SDF and insoluble dietary fibre, IDF) were also investigated. From the RSM results, the optimal sonication temperature (67.83 °C), sonication power (105.52 W) and extraction time (51.18 min) were identified. Based on this, the modified optimum conditions were standardised (sonication temperature of 70 °C, sonication power of 105 W and extraction time of 50 min). Accordingly, the yield of SDF obtained was 16.08 ± 0.18%, which was close to the predicted value (15.66%). Sonication temperature showed significant effects at p ≤ 0.01, while sonication power and extraction time showed significant effects at p ≤ 0.05 on the yield of SDF. The result on colour attributes of STP, SDF and IDF differed (L* (STP: 54.71 ± 0.72, IDF: 72.64 ± 0.21 and SDF: 54.53 ± 0.31), a* (STP: 52.35 ± 1.04, IDF: 32.85 ± 0.79 and SDF: 43.54 ± 0.03), b* (STP: 79.28 ± 0.62, IDF: 82.47 ± 0.19 and SDF: 71.33 ± 0.50), and ∆E* (STP: 79.93 ± 0.50, IDF: 74.18 ± 0.30 and SDF: 68.40 ± 0.39)). Higher values of hydration properties such as the water holding, swelling and oil holding capacities were found in SDF (7.25 ± 0.10 g g−1, 7.24 ± 0.05 mL g−1 and 1.49 ± 0.02 g g−1), followed by IDF (6.30 ± 0.02, 5.75 ± 0.07 and 1.25 ± 0.03) and STP (4.17 ± 0.04, 3.48 ± 0.06 and 0.89 ± 0.03), respectively. Based on our results, response surface methodology is recommended to be adopted to optimize the ultrasonic-assisted extraction to obtain maximum yield of SDF from sea buckthorn pomace. These results can be of practical usage while designing future functional food formulations using sea buckthorn pomace. Full article
Show Figures

Graphical abstract

22 pages, 3356 KiB  
Article
In Vitro Gastrointestinal Digestion Impact on the Bioaccessibility and Antioxidant Capacity of Bioactive Compounds from Tomato Flours Obtained after Conventional and Ohmic Heating Extraction
by Marta C. Coelho, Tânia B. Ribeiro, Carla Oliveira, Patricia Batista, Pedro Castro, Ana Rita Monforte, António Sebastião Rodrigues, José Teixeira and Manuela Pintado
Foods 2021, 10(3), 554; https://doi.org/10.3390/foods10030554 - 07 Mar 2021
Cited by 15 | Viewed by 4404
Abstract
In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, [...] Read more.
In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity. Full article
Show Figures

Graphical abstract

15 pages, 3141 KiB  
Article
Citrus limon Peel Powder Reduces Intestinal Barrier Defects and Inflammation in a Colitic Murine Experimental Model
by Nguyen Thi Thanh Tinh, Gertrude Cynthia Sitolo, Yoshinari Yamamoto and Takuya Suzuki
Foods 2021, 10(2), 240; https://doi.org/10.3390/foods10020240 - 25 Jan 2021
Cited by 17 | Viewed by 3461
Abstract
This study examines the ameliorative effects of lemon (Citrus limon) peel (LP) powder on intestinal inflammation and barrier defects in dextran sulfate sodium (DSS)-induced colitic mice. The whole LP powder was fractionated into methanol (MetOH) extract and its extraction residue (MetOH [...] Read more.
This study examines the ameliorative effects of lemon (Citrus limon) peel (LP) powder on intestinal inflammation and barrier defects in dextran sulfate sodium (DSS)-induced colitic mice. The whole LP powder was fractionated into methanol (MetOH) extract and its extraction residue (MetOH residue), which were rich in polyphenolic compounds and dietary fibers, respectively. Mice were fed diets containing whole LP powder, MetOH extract, and MetOH residue for 16 d. DSS administration for 9 d induced bodyweight loss, reduced colon length, reduced the colonic expression of tight junction proteins including zonula occludens-1 and -2, and claudin-3 and -7, and upregulated colonic mRNA expression of interleukin 6, chemokine (C-X-C motif) ligand 2, and C-C motif chemokine ligand 2. Feeding LP powder restored these abnormalities, and the MetOH residue, but not MetOH extract, also showed similar restorations. Feeding LP powder and MetOH residue increased fecal concentrations of acetate and n-butyrate. Taken together, LP powder reduced intestinal damage through the protection of tight junction barriers and suppressed an inflammatory reaction in colitic mice. These results suggest that acetate and n-butyrate produced from the microbial metabolism of dietary fibers in LP powder contributed to reducing colitis. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 3378 KiB  
Review
Comprehensive Utilization of Thinned Unripe Fruits from Horticultural Crops
by Mengyuan Wei, Haoli Wang, Tingting Ma, Qian Ge, Yulin Fang and Xiangyu Sun
Foods 2021, 10(9), 2043; https://doi.org/10.3390/foods10092043 - 30 Aug 2021
Cited by 16 | Viewed by 3352
Abstract
Fruit thinning is a cultivation technique that is widely applied in horticulture in order to obtain high-quality horticultural crops. This practice results in the discarding of a large number of thinned unripe fruits in orchards each year, which produces a great waste of [...] Read more.
Fruit thinning is a cultivation technique that is widely applied in horticulture in order to obtain high-quality horticultural crops. This practice results in the discarding of a large number of thinned unripe fruits in orchards each year, which produces a great waste of agricultural resources and causes soil pollution that may be an important reservoir for pest and plant diseases. Current studies showed that bioactive compounds such as polyphenols, organic acids, monosaccharides and starches are present in unripe fruits. Therefore, we reviewed the bioactive components obtained from thinned unripe fruits, their revalorization for the food industry, their beneficial effects for human health and the methods for obtaining these components. We also performed a calculation of the costs and benefits of obtaining these bioactive compounds, and we proposed future research directions. This review provides a reference for the effective utilization and industrial development of thinned unripe fruits obtained from horticultural crops. Furthermore, revalorizing the waste from this cultural practice may increase the economic benefits and relieve the environmental stress. Full article
Show Figures

Figure 1

26 pages, 1553 KiB  
Review
Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns
by Ana A. Vilas-Boas, Manuela Pintado and Ana L. S. Oliveira
Foods 2021, 10(7), 1564; https://doi.org/10.3390/foods10071564 - 06 Jul 2021
Cited by 69 | Viewed by 9570
Abstract
Although synthetic bioactive compounds are approved in many countries for food applications, they are becoming less and less welcome by consumers. Therefore, there has been an increasing interest in replacing these synthetic compounds by natural bioactive compounds. These natural compounds can be used [...] Read more.
Although synthetic bioactive compounds are approved in many countries for food applications, they are becoming less and less welcome by consumers. Therefore, there has been an increasing interest in replacing these synthetic compounds by natural bioactive compounds. These natural compounds can be used as food additives to maintain the food quality, food safety and appeal, and as food supplements or nutraceuticals to correct nutritional deficiencies, maintain a suitable intake of nutrients, or to support physiological functions, respectively. Recent studies reveal that numerous food wastes, particularly fruit and vegetables byproducts, are a good source of bioactive compounds that can be extracted and reintroduced into the food chain as natural food additives or in food matrices for obtaining nutraceuticals and functional foods. This review addresses general questions concerning the use of fruit and vegetables byproducts as new sources of natural bioactive compounds that are being addressed to foods as natural additives and supplements. Those bioactive compounds must follow the legal requirements and evaluations to assess the risks for human health and their toxicity must be considered before being launched into the market. To overcome the potential health risk while increasing the biological activity, stability and biodistribution of the supplements’ technological alternatives have been studied such as encapsulation of bioactive compounds into micro or nanoparticles or nanoemulsions. This will allow enhancing the stability and release along the gastrointestinal tract in a controlled manner into the specific tissues. This review summarizes the valorization path that a bioactive compound recovered from an agro-food waste can face from the moment their potentialities are exhibited until it reaches the final consumer and the safety and toxicity challenges, they may overcome. Full article
Show Figures

Figure 1

Back to TopTop