Next Issue
Volume 4, June
Previous Issue
Volume 3, December
 
 

Solar, Volume 4, Issue 1 (March 2024) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Cover Story (view full-size image):
Order results
Result details
Select all
Export citation of selected articles as:
30 pages, 6050 KiB  
Article
A Novel Statistical Framework for Optimal Sizing of Grid-Connected Photovoltaic–Battery Systems for Peak Demand Reduction to Flatten Daily Load Profiles
by Reza Nematirad, Anil Pahwa and Balasubramaniam Natarajan
Solar 2024, 4(1), 179-208; https://doi.org/10.3390/solar4010008 - 14 Mar 2024
Cited by 1 | Viewed by 1271
Abstract
Integrating photovoltaic (PV) systems plays a pivotal role in the global shift toward renewable energy, offering significant environmental benefits. However, the PV installation should provide financial benefits for the utilities. Considering that the utility companies often incur costs for both energy and peak [...] Read more.
Integrating photovoltaic (PV) systems plays a pivotal role in the global shift toward renewable energy, offering significant environmental benefits. However, the PV installation should provide financial benefits for the utilities. Considering that the utility companies often incur costs for both energy and peak demand, PV installations should aim to reduce both energy and peak demand charges. Although PV systems can reduce energy needs during the day, their effectiveness in reducing peak demand, particularly in the early morning and late evening, is limited, as PV generation is zero or negligible at those times. To address this limitation, battery storage systems are utilized for storing energy during off-peak hours and releasing it during peak times. However, finding the optimal size of PV and the accompanying battery remains a challenge. While valuable optimization models have been developed to determine the optimal size of PV–battery systems, a certain gap remains where peak demand reduction has not been sufficiently addressed in the optimization process. Recognizing this gap, this study proposes a novel statistical model to optimize PV–battery system size for peak demand reduction. The model aims to flatten 95% of daily peak demands up to a certain demand threshold, ensuring consistent energy supply and financial benefit for utility companies. A straightforward and effective search methodology is employed to determine the optimal system sizes. Additionally, the model’s effectiveness is rigorously tested through a modified Monte Carlo simulation coupled with time series clustering to generate various scenarios to assess performance under different conditions. The results indicate that the optimal PV–battery system successfully flattens 95% of daily peak demand with a selected threshold of 2000 kW, yielding a financial benefit of USD 812,648 over 20 years. Full article
(This article belongs to the Topic Smart Solar Energy Systems)
Show Figures

Figure 1

17 pages, 5705 KiB  
Article
Development of n-Type, Passivating Nanocrystalline Silicon Oxide Films via Plasma-Enhanced Chemical Vapor Deposition
by Gurleen Kaur, Antonio J. Olivares and Pere Roca i Cabarrocas
Solar 2024, 4(1), 162-178; https://doi.org/10.3390/solar4010007 - 11 Mar 2024
Viewed by 639
Abstract
Nanocrystalline silicon oxide (nc-SiOx:H) is a multipurpose material with varied applications in solar cells as a transparent front contact, intermediate reflector, back reflector layer, and even tunnel layer for passivating contacts, owing to the easy tailoring of its optical properties. In this work, [...] Read more.
Nanocrystalline silicon oxide (nc-SiOx:H) is a multipurpose material with varied applications in solar cells as a transparent front contact, intermediate reflector, back reflector layer, and even tunnel layer for passivating contacts, owing to the easy tailoring of its optical properties. In this work, we systematically investigate the influence of the gas mixture (SiH4, CO2, PH3, and H2), RF power, and process pressure on the optical, structural, and passivation properties of thin n-type nc-SiOx:H films prepared in an industrial, high-throughput, plasma-enhanced chemical vapor deposition (PECVD) reactor. We provide a detailed description of the n-type nc-SiOx:H material development using various structural and optical characterization techniques (scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Raman spectroscopy, and spectroscopic ellipsometry) with a focus on the relationship between the material properties and the passivation they provide to n-type c-Si wafers characterized by their effective carrier lifetime (τeff). Furthermore, we also outline the parameters to be kept in mind while developing different n-type nc-SiOx:H layers for different solar cell applications. We report a tunable optical gap (1.8–2.3 eV) for our n-type nc-SiOx:H films as well as excellent passivation properties with a τeff of up to 4.1 ms (implied open-circuit voltage (iVoc)~715 mV) before annealing. Oxygen content plays an important role in determining the crystallinity and hence passivation quality of the deposited nanocrystalline silicon oxide films. Full article
(This article belongs to the Special Issue Developments in Perovskite Solar Cells)
Show Figures

Graphical abstract

26 pages, 16484 KiB  
Review
Immersive Learning in Photovoltaic Energy Education: A Comprehensive Review of Virtual Reality Applications
by Noor Alqallaf and Rami Ghannam
Solar 2024, 4(1), 136-161; https://doi.org/10.3390/solar4010006 - 04 Mar 2024
Viewed by 787
Abstract
This paper presents a comprehensive and systematic review of virtual reality (VR) as an innovative educational tool specifically for solar photovoltaic energy systems. VR technology, with its immersive and interactive capabilities, offers a unique platform for in-depth learning and practical training in the [...] Read more.
This paper presents a comprehensive and systematic review of virtual reality (VR) as an innovative educational tool specifically for solar photovoltaic energy systems. VR technology, with its immersive and interactive capabilities, offers a unique platform for in-depth learning and practical training in the field of solar energy. The use of VR in this context not only enhances the understanding of solar photovoltaic (PV) systems but also provides a hands-on experience that is crucial for developing the necessary skills in this rapidly evolving field. Among the 6814 articles initially identified, this systematic review specifically examined 15 articles that focused on the application of VR in PV education. These selected articles demonstrate VR’s ability to accurately simulate real-world environments and scenarios related to solar energy, providing an in-depth exploration of its practical applications in this field. By offering a realistic and detailed exploration of PV systems, VR enables learners to gain a deeper understanding of harnessing, managing and using such a vast energy resource. The paper further discusses the implications of employing VR in educational settings, highlighting its potential to change the way solar energy professionals are trained, thereby contributing significantly to the acceleration of photovoltaic technology adoption and its integration into sustainable energy solutions. Full article
Show Figures

Figure 1

37 pages, 2630 KiB  
Review
A Review of Solar Forecasting Techniques and the Role of Artificial Intelligence
by Khadija Barhmi, Chris Heynen, Sara Golroodbari and Wilfried van Sark
Solar 2024, 4(1), 99-135; https://doi.org/10.3390/solar4010005 - 22 Feb 2024
Cited by 1 | Viewed by 1123
Abstract
Solar energy forecasting is essential for the effective integration of solar power into electricity grids and the optimal management of renewable energy resources. Distinguishing itself from the existing literature, this review study provides a nuanced contribution by centering on advancements in forecasting techniques. [...] Read more.
Solar energy forecasting is essential for the effective integration of solar power into electricity grids and the optimal management of renewable energy resources. Distinguishing itself from the existing literature, this review study provides a nuanced contribution by centering on advancements in forecasting techniques. While preceding reviews have examined factors such as meteorological input parameters, time horizons, the preprocessing methodology, optimization, and sample size, our study uniquely delves into a diverse spectrum of time horizons, spanning ultrashort intervals (1 min to 1 h) to more extended durations (up to 24 h). This temporal diversity equips decision makers in the renewable energy sector with tools for enhanced resource allocation and refined operational planning. Our investigation highlights the prominence of Artificial Intelligence (AI) techniques, specifically focusing on Neural Networks in solar energy forecasting, and we review supervised learning, regression, ensembles, and physics-based methods. This showcases a multifaceted approach to address the intricate challenges associated with solar energy predictions. The integration of Satellite Imagery, weather predictions, and historical data further augments precision in forecasting. In assessing forecasting models, our study describes various error metrics. While the existing literature discusses the importance of metrics, our emphasis lies on the significance of standardized datasets and benchmark methods to ensure accurate evaluations and facilitate meaningful comparisons with naive forecasts. This study stands as a significant advancement in the field, fostering the development of accurate models crucial for effective renewable energy planning and emphasizing the imperative for standardization, thus addressing key gaps in the existing research landscape. Full article
(This article belongs to the Topic Solar Forecasting and Smart Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 6105 KiB  
Article
Cu-Doped Sb2Se3 Thin-Film Solar Cells Based on Hybrid Pulsed Electron Deposition/Radio Frequency Magnetron Sputtering Growth Techniques
by Roberto Jakomin, Stefano Rampino, Giulia Spaggiari, Michele Casappa, Giovanna Trevisi, Elena Del Canale, Enos Gombia, Matteo Bronzoni, Kodjo Kekeli Sossoe, Francesco Mezzadri and Francesco Pattini
Solar 2024, 4(1), 83-98; https://doi.org/10.3390/solar4010004 - 04 Feb 2024
Viewed by 692
Abstract
In recent years, research attention has increasingly focused on thin-film photovoltaics utilizing Sb2Se3 as an ideal absorber layer. This compound is favored due to its abundance, non-toxic nature, long-term stability, and the potential to employ various cost-effective and scalable vapor [...] Read more.
In recent years, research attention has increasingly focused on thin-film photovoltaics utilizing Sb2Se3 as an ideal absorber layer. This compound is favored due to its abundance, non-toxic nature, long-term stability, and the potential to employ various cost-effective and scalable vapor deposition (PVD) routes. On the other hand, improving passivation, surface treatment and p-type carrier concentration is essential for developing high-performance and commercially viable Sb2Se3 solar cells. In this study, Cu-doped Sb2Se3 solar devices were fabricated using two distinct PVD techniques, pulsed electron deposition (PED) and radio frequency magnetron sputtering (RFMS). Furthermore, 5%Cu:Sb2Se3 films grown via PED exhibited high open-circuit voltages (VOC) of around 400 mV but very low short-circuit current densities (JSC). Conversely, RFMS-grown Sb2Se3 films resulted in low VOC values of around 300 mV and higher JSC. To enhance the photocurrent, we employed strategies involving a thin NaF layer to introduce controlled local doping at the back interface and a bilayer p-doped region grown sequentially using PED and RFMS. The optimized Sb2Se3 bilayer solar cell achieved a maximum efficiency of 5.25%. Full article
Show Figures

Graphical abstract

40 pages, 6374 KiB  
Review
A Review of Photovoltaic Module Failure and Degradation Mechanisms: Causes and Detection Techniques
by Hussain Al Mahdi, Paul G. Leahy, Mohammad Alghoul and Alan P. Morrison
Solar 2024, 4(1), 43-82; https://doi.org/10.3390/solar4010003 - 09 Jan 2024
Cited by 1 | Viewed by 1561
Abstract
With the global increase in the deployment of photovoltaic (PV) modules in recent years, the need to explore and understand their reported failure mechanisms has become crucial. Despite PV modules being considered reliable devices, failures and extreme degradations often occur. Some degradations and [...] Read more.
With the global increase in the deployment of photovoltaic (PV) modules in recent years, the need to explore and understand their reported failure mechanisms has become crucial. Despite PV modules being considered reliable devices, failures and extreme degradations often occur. Some degradations and failures within the normal range may be minor and not cause significant harm. Others may initially be mild but can rapidly deteriorate, leading to catastrophic accidents, particularly in harsh environments. This paper conducts a state-of-the-art literature review to examine PV failures, their types, and their root causes based on the components of PV modules (from protective glass to junction box). It outlines the hazardous consequences arising from PV module failures and describes the potential damage they can bring to the PV system. The literature reveals that each component is susceptible to specific types of failure, with some components deteriorating on their own and others impacting additional PV components, leading to more severe failures. Finally, this review briefly summarises PV failure detection techniques, emphasising the significance of electrical characterisation techniques and underlining the importance of considering more electrical parameters. Most importantly, this review identifies the most prevalent degradation processes, laying the foundation for further investigation by the PV research community through modelling and experimental studies. This allows for early detection by comparing PV performance when failures or degradation occur to prevent serious progression. It is worth noting that most of the studies included in this review primarily focus on detailing failures and degradation observed in PV operations, which can be attributed to various factors, including the manufacturing process and other external influences. Hence, they provide explanations of these failure mechanisms and causes but do not extensively explore corrective actions or propose solutions based on either laboratory experiments or real-world experience. Although, within this field of study, there are corresponding studies that have designed experiments to suggest preventive measures and potential solutions, an in-depth review of those studies is beyond the scope of this paper. However, this paper, in turn, serves as a valuable resource for scholars by confining PV failures to critically evaluate available studies for preventative measures and corrective actions. Full article
Show Figures

Figure 1

28 pages, 3627 KiB  
Review
A Review on Solar Drying Devices: Heat Transfer, Air Movement and Type of Chambers
by Lisete Fernandes and Pedro B. Tavares
Solar 2024, 4(1), 15-42; https://doi.org/10.3390/solar4010002 - 08 Jan 2024
Viewed by 2097
Abstract
Food waste is one of the biggest challenges we are facing nowadays. According to the Food and Agriculture Organization (FAO) of the United Nations, approximately one-third of all food produced in the world is lost at some stage between production and consumption, totaling [...] Read more.
Food waste is one of the biggest challenges we are facing nowadays. According to the Food and Agriculture Organization (FAO) of the United Nations, approximately one-third of all food produced in the world is lost at some stage between production and consumption, totaling 930 million tons of food per year. Meanwhile, 10.5% of humanity suffers from malnutrition, 26% are overweight and greenhouse gases derived from the food industry account for between 25 and 30% of total emissions (8 to 10% referring to food waste), exacerbating the current climate crisis. To address these concerns, there has been a growing inclination to seek alternatives to fossil fuels, including the adoption of solar energy across diverse sectors, including the food industry. Actions are needed in order to change these patterns. This review article aims to provide an overview of recent developments in the field of solar food dehydration and the types of dehydrators that have emerged. Extensive research and bibliographic analysis, including other review articles, have revealed a growing focus on investment in this area to develop solar dehydrators that are increasingly effective but as sustainable as possible. Full article
Show Figures

Figure 1

14 pages, 3820 KiB  
Article
Impact of Flexibility Implementation on the Control of a Solar District Heating System
by Manuel Betancourt Schwarz, Mathilde Veyron and Marc Clausse
Solar 2024, 4(1), 1-14; https://doi.org/10.3390/solar4010001 - 27 Dec 2023
Cited by 1 | Viewed by 565
Abstract
Renewable energy sources, distributed generation, multi-energy carriers, distributed storage, and low-temperature district heating systems, among others, are demanding a change in the way thermal networks are conceived, understood, and operated. Governments around the world are moving to increase the renewable share in energy [...] Read more.
Renewable energy sources, distributed generation, multi-energy carriers, distributed storage, and low-temperature district heating systems, among others, are demanding a change in the way thermal networks are conceived, understood, and operated. Governments around the world are moving to increase the renewable share in energy distribution networks through legislation like the European Directive 2012/27 in Europe, and solar energy integration into district heating systems is arising as an interesting option to reduce operation costs and carbon footprint. This conveys an important investment that adds complexity to the management of thermal networks and often delays the return on investment due to the unpredictability of renewable energy sources, like solar radiation. To this end, this paper presents an optimisation methodology to aid in the operative control of an existing solar district heating system located in the northwest of France. The modelling of the system, which includes a large-scale solar field, a biomass boiler, a gas boiler, and thermal energy storage, was previously built in Dymola. The optimisation of this network was performed using MATLAB’s genetic algorithm (GA) and running the Dymola model as functional mock-up units, FMUs, using Simulink’s FMI Kit. The results show that the methodology presented here can reduce the current operation costs and improve the use of the daily storage of the DH system by a combination of mass flow control and the implementation of a flexibility function for the end-users. The cost-per-kWh was reduced by as much as 16% in a single day, and the share of heat supplied by the solar field on this day was increased by 5.22%. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop