Previous Issue
Volume 4, March
 
 

Solar, Volume 4, Issue 2 (June 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 2844 KiB  
Article
Optimal Design of a Hybrid Solar–Battery–Diesel System: A Case Study of Galapagos Islands
by Luis E. Garces-Palacios, Carlos D. Rodríguez-Gallegos, Fernando Vaca-Urbano, Manuel S. Alvarez-Alvarado, Oktoviano Gandhi and César A. Rodríguez-Gallegos
Solar 2024, 4(2), 232-245; https://doi.org/10.3390/solar4020011 - 06 Apr 2024
Viewed by 654
Abstract
In this study, the sizing problem of hybrid diesel–photovoltaic–battery systems was determined using a particle swarm optimization approach. The goal was to optimize the number of solar panels and batteries that could be installed to reduce the overall cost of an isolated grid [...] Read more.
In this study, the sizing problem of hybrid diesel–photovoltaic–battery systems was determined using a particle swarm optimization approach. The goal was to optimize the number of solar panels and batteries that could be installed to reduce the overall cost of an isolated grid system, originally powered by diesel generators, located on Isabela Island in the Galapagos, Ecuador. In this study, real solar radiation and temperature profiles were used, as well as the load demand and electrical distribution system relative to this island. The results reveal that the total cost for the proposed approach is lower as it reaches the global optimal solution. It also highlights the advantage of a hybrid diesel–photovoltaic–battery (DG-PV-BAT) system compared to conventional systems operated exclusively by diesel generators (DGs) and systems made up of DGs and PV panels; compared to them, a reduction in diesel consumption and total cost (71% and 56%, respectively) is achieved. The DG-PV-BAT system also considerably improves environmental factors and the quality of the power line. This study demonstrates the advantages of hybridizing systems isolated from the network through the proposed approach. Full article
Show Figures

Figure 1

10 pages, 1635 KiB  
Article
Exploring the Feasibility and Performance of Perovskite/Antimony Selenide Four-Terminal Tandem Solar Cells
by Harigovind Menon, Al Amin, Xiaomeng Duan, S. N. Vijayaraghavan, Jacob Wall, Wenjun Xiang, Kausar Ali Khawaja and Feng Yan
Solar 2024, 4(2), 222-231; https://doi.org/10.3390/solar4020010 - 03 Apr 2024
Viewed by 512
Abstract
The tandem solar cell presents a potential solution to surpass the Shockley–Queisser limit observed in single-junction solar cells. However, creating a tandem device that is both cost-effective and highly efficient poses a significant challenge. In this study, we present proof of concept for [...] Read more.
The tandem solar cell presents a potential solution to surpass the Shockley–Queisser limit observed in single-junction solar cells. However, creating a tandem device that is both cost-effective and highly efficient poses a significant challenge. In this study, we present proof of concept for a four-terminal (4T) tandem solar cell utilizing a wide bandgap (1.6–1.8 eV) perovskite top cell and a narrow bandgap (1.2 eV) antimony selenide (Sb2Se3) bottom cell. Using a one-dimensional (1D) solar cell capacitance simulator (SCAPS), our calculations indicate the feasibility of this architecture, projecting a simulated device performance of 23% for the perovskite/Sb2Se3 4T tandem device. To validate this, we fabricated two wide bandgap semitransparent perovskite cells with bandgaps of 1.6 eV and 1.77 eV, respectively. These were then mechanically stacked with a narrow bandgap antimony selenide (1.2 eV) to create a tandem structure, resulting in experimental efficiencies exceeding 15%. The obtained results demonstrate promising device performance, showcasing the potential of combining perovskite top cells with the emerging, earth-abundant antimony selenide thin film solar technology to enhance overall device efficiency. Full article
Show Figures

Figure 1

13 pages, 2751 KiB  
Article
A Quantitative Analysis of the Need for High Conversion Efficiency PV Technologies in Carbon Mitigation Strategies
by Kenneth M. Hughes and Chris C. Phillips
Solar 2024, 4(2), 209-221; https://doi.org/10.3390/solar4020009 - 26 Mar 2024
Viewed by 336
Abstract
We consider the restrictions on photovoltaic (PV) capacity that are caused by limitations on where panels can be sited and find quantitative evidence for the need for high efficiencies. We define 15% of the UK’s energy consumption as a “significant” contribution and, with [...] Read more.
We consider the restrictions on photovoltaic (PV) capacity that are caused by limitations on where panels can be sited and find quantitative evidence for the need for high efficiencies. We define 15% of the UK’s energy consumption as a “significant” contribution and, with London as an exemplar, we perform an idealised calculation that makes the most optimistic possible assumptions about the capabilities of future PV technologies and use published surveys on energy usage, dwelling type and insolation. We find that covering every UK domestic roof with the highest power conversion efficiency (PCE) solar panels currently commercially available could produce up to 9% of the UK’s energy. A 15% contribution would require PV technologies with >37% PCE, more than the theoretical Shockley–Queisser limit. Replacing the idealising assumptions with more realistic estimates increases this by 2–3 times. Alternatively, a solar farm using the currently available PCEs would require a politically challenging ~1200 km2 of new land, roughly the area of Greater London, for this 15% contribution. We conclude that PCEs must be driven higher than even the Shockley–Queisser limit for PV to play a significant part in carbon mitigation. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop