ijms-logo

Journal Browser

Journal Browser

Early Life Nutrition and the Development of Offspring Metabolic Health

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Endocrinology and Metabolism".

Deadline for manuscript submissions: closed (31 July 2021) | Viewed by 40337

Special Issue Editor

Special Issue Information

Dear Colleagues,

Perturbations in maternal nutrition in pregnancy and during early life can have lifelong consequences on the metabolic health of the offspring. The aim of this Special Issue is to characterize the cellular, organ, and whole-organism mechanisms by which poor pregnancy and early life nutrition influence metabolic health and development in offspring. A particular interest of this Special Issue is the sex-specific differences in offspring metabolic outcomes. A secondary aim is to highlight interventions that may restore metabolic health following a period of poor nutrition in early life.

The Special issue welcomes various studies related to early life nutrition and metabolism of newborns and pregnant women.

Dr. Deanne H. Hryciw
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • maternal nutrition
  • fetal programming
  • metabolic health
  • metabolism
  • sex-specific
  • nutritional interventions
  • pregnancy nutrition
  • placenta
  • organ development
  • breastfeeding
  • maternal obesity
  • micronutrients
  • protein–energy
  • newborns
  • adiposity

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 180 KiB  
Editorial
Early Life Nutrition and the Development of Offspring Metabolic Health
by Deanne H. Hryciw
Int. J. Mol. Sci. 2022, 23(15), 8096; https://doi.org/10.3390/ijms23158096 - 22 Jul 2022
Cited by 1 | Viewed by 1119
Abstract
The developmental origins of health and disease (DOHaD) hypothesis describes the effects of parental perturbations around the periconception, pregnancy, and perinatal window that may lead to changes in offspring development and an increased risk of disease [...] Full article

Research

Jump to: Editorial, Review

23 pages, 5411 KiB  
Article
Male Rat Offspring Are More Impacted by Maternal Obesity Induced by Cafeteria Diet than Females—Additive Effect of Postweaning Diet
by Aynaz Tajaddini, Michael D. Kendig, Kelly V. Prates, R. Frederick Westbrook and Margaret J. Morris
Int. J. Mol. Sci. 2022, 23(3), 1442; https://doi.org/10.3390/ijms23031442 - 27 Jan 2022
Cited by 20 | Viewed by 3120
Abstract
Maternal obesity increases the risk of health complications in offspring, but whether these effects are exacerbated by offspring exposure to unhealthy diets warrants further investigation. Female Sprague-Dawley rats were fed either standard chow (n = 15) or ‘cafeteria’ (Caf, n = 21) [...] Read more.
Maternal obesity increases the risk of health complications in offspring, but whether these effects are exacerbated by offspring exposure to unhealthy diets warrants further investigation. Female Sprague-Dawley rats were fed either standard chow (n = 15) or ‘cafeteria’ (Caf, n = 21) diets across pre-pregnancy, gestation, and lactation. Male and female offspring were weaned onto chow or Caf diet (2–3/sex/litter), forming four groups; behavioural and metabolic parameters were assessed. At weaning, offspring from Caf dams were smaller and lighter, but had more retroperitoneal (RP) fat, with a larger effect in males. Maternal Caf diet significantly increased relative expression of ACACA and Fasn in male and female weanling liver, but not CPT-1, SREBP and PGC1; PPARα was increased in males from Caf dams. Maternal obesity enhanced the impact of postweaning Caf exposure on adult body weight, RP fat, liver mass, and plasma leptin in males but not females. Offspring from Caf dams appeared to exhibit reduced anxiety-like behaviour on the elevated plus maze. Hepatic CPT-1 expression was reduced only in adult males from Caf fed dams. Post weaning Caf diet consumption did not alter liver gene expression in the adult offspring. Maternal obesity exacerbated the obesogenic phenotype produced by postweaning Caf diet in male, but not female offspring. Thus, the impact of maternal obesity on adiposity and liver gene expression appeared more marked in males. Our data underline the sex-specific detrimental effects of maternal obesity on offspring. Full article
Show Figures

Figure 1

21 pages, 2845 KiB  
Article
Maternal Fructose Intake Causes Developmental Reprogramming of Hepatic Mitochondrial Catalytic Activity and Lipid Metabolism in Weanling and Young Adult Offspring
by Erin Vanessa LaRae Smith, Rebecca Maree Dyson, Christina M. G. Vanderboor, Ousseynou Sarr, Jane Anderson, Mary J. Berry, Timothy R. H. Regnault, Lifeng Peng and Clint Gray
Int. J. Mol. Sci. 2022, 23(2), 999; https://doi.org/10.3390/ijms23020999 - 17 Jan 2022
Cited by 5 | Viewed by 3477
Abstract
Excess dietary fructose is a major public health concern, yet little is known about its influence on offspring development and later-life disease when consumed in excess during pregnancy. To determine whether increased maternal fructose intake could have long-term consequences on offspring health, we [...] Read more.
Excess dietary fructose is a major public health concern, yet little is known about its influence on offspring development and later-life disease when consumed in excess during pregnancy. To determine whether increased maternal fructose intake could have long-term consequences on offspring health, we investigated the effects of 10% w/v fructose water intake during preconception and pregnancy in guinea pigs. Female Dunkin Hartley guinea pigs were fed a control diet (CD) or fructose diet (FD; providing 16% of total daily caloric intake) ad libitum 60 days prior to mating and throughout gestation. Dietary interventions ceased at day of delivery. Offspring were culled at day 21 (D21) (weaning) and at 4 months (4 M) (young adult). Fetal exposure to excess maternal fructose intake significantly increased male and female triglycerides at D21 and 4 M and circulating palmitoleic acid and total omega-7 through day 0 (D0) to 4 M. Proteomic and functional analysis of significantly differentially expressed proteins revealed that FD offspring (D21 and 4 M) had significantly increased mitochondrial metabolic activities of β-oxidation, electron transport chain (ETC) and oxidative phosphorylation and reactive oxygen species production compared to the CD offspring. Western blotting analysis of both FD offspring validated the increased protein abundances of mitochondrial ETC complex II and IV, SREBP-1c and FAS, whereas VDAC1 expression was higher at D21 but lower at 4 M. We provide evidence demonstrating offspring programmed hepatic mitochondrial metabolism and de novo lipogenesis following excess maternal fructose exposure. These underlying asymptomatic programmed pathways may lead to a predisposition to metabolic dysfunction later in life. Full article
Show Figures

Figure 1

14 pages, 3260 KiB  
Article
Sex-Specific Differences in Lysine, 3-Hydroxybutyric Acid and Acetic Acid in Offspring Exposed to Maternal and Postnatal High Linoleic Acid Diet, Independent of Diet
by Nirajan Shrestha, Steven D Melvin, Daniel R. McKeating, Olivia J. Holland, James S. M. Cuffe, Anthony V. Perkins, Andrew J. McAinch and Deanne H. Hryciw
Int. J. Mol. Sci. 2021, 22(19), 10223; https://doi.org/10.3390/ijms221910223 - 23 Sep 2021
Cited by 3 | Viewed by 1898
Abstract
Background: Linoleic acid (LA) is an essential polyunsaturated fatty acid (PUFA) that is required for foetal growth and development. Excess intake of LA can be detrimental for metabolic health due to its pro-inflammatory properties; however, the effect of a diet high in LA [...] Read more.
Background: Linoleic acid (LA) is an essential polyunsaturated fatty acid (PUFA) that is required for foetal growth and development. Excess intake of LA can be detrimental for metabolic health due to its pro-inflammatory properties; however, the effect of a diet high in LA on offspring metabolites is unknown. In this study, we aimed to determine the role of maternal or postnatal high linoleic acid (HLA) diet on plasma metabolites in adult offspring. Methods: Female Wistar Kyoto (WKY) rats were fed with either low LA (LLA) or HLA diet for 10 weeks prior to conception and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), treated with either LLA or HLA diets and sacrificed at PN180. Metabolite analysis was performed in plasma samples using Nuclear Magnetic Resonance. Results: Maternal and postnatal HLA diet did not alter plasma metabolites in male and female adult offspring. There was no specific clustering among different treatment groups as demonstrated by principal component analysis. Interestingly, there was clustering among male and female offspring independent of maternal and postnatal dietary intervention. Lysine was higher in female offspring, while 3-hydroxybutyric acid and acetic acid were significantly higher in male offspring. Conclusion: In summary, maternal or postnatal HLA diet did not alter the plasma metabolites in the adult rat offspring; however, differences in metabolites between male and female offspring occurred independently of dietary intervention. Full article
Show Figures

Figure 1

24 pages, 6605 KiB  
Article
In Utero Exposure to Δ9-Tetrahydrocannabinol Leads to Postnatal Catch-Up Growth and Dysmetabolism in the Adult Rat Liver
by Shelby L. Oke, Kendrick Lee, Rosemary Papp, Steven R. Laviolette and Daniel B. Hardy
Int. J. Mol. Sci. 2021, 22(14), 7502; https://doi.org/10.3390/ijms22147502 - 13 Jul 2021
Cited by 13 | Viewed by 3062
Abstract
The rates of gestational cannabis use have increased despite limited evidence for its safety in fetal life. Recent animal studies demonstrate that prenatal exposure to Δ9-tetrahydrocannabinol (Δ9-THC, the psychoactive component of cannabis) promotes intrauterine growth restriction (IUGR), culminating in postnatal metabolic deficits. Given [...] Read more.
The rates of gestational cannabis use have increased despite limited evidence for its safety in fetal life. Recent animal studies demonstrate that prenatal exposure to Δ9-tetrahydrocannabinol (Δ9-THC, the psychoactive component of cannabis) promotes intrauterine growth restriction (IUGR), culminating in postnatal metabolic deficits. Given IUGR is associated with impaired hepatic function, we hypothesized that Δ9-THC offspring would exhibit hepatic dyslipidemia. Pregnant Wistar rat dams received daily injections of vehicular control or 3 mg/kg Δ9-THC i.p. from embryonic day (E) 6.5 through E22. Exposure to Δ9-THC decreased the liver to body weight ratio at birth, followed by catch-up growth by three weeks of age. At six months, Δ9-THC-exposed male offspring exhibited increased visceral adiposity and higher hepatic triglycerides. This was instigated by augmented expression of enzymes involved in triglyceride synthesis (ACCα, SCD, FABP1, and DGAT2) at three weeks. Furthermore, the expression of hepatic DGAT1/DGAT2 was sustained at six months, concomitant with mitochondrial dysfunction (i.e., elevated p66shc) and oxidative stress. Interestingly, decreases in miR-203a-3p and miR-29a/b/c, both implicated in dyslipidemia, were also observed in these Δ9-THC-exposed offspring. Collectively, these findings indicate that prenatal Δ9-THC exposure results in long-term dyslipidemia associated with enhanced hepatic lipogenesis. This is attributed by mitochondrial dysfunction and epigenetic mechanisms. Full article
Show Figures

Figure 1

14 pages, 2516 KiB  
Article
Disruption of O-Linked N-Acetylglucosamine Signaling in Placenta Induces Insulin Sensitivity in Female Offspring
by Mackenzie Moore, Nandini Avula, Seokwon Jo, Megan Beetch and Emilyn U. Alejandro
Int. J. Mol. Sci. 2021, 22(13), 6918; https://doi.org/10.3390/ijms22136918 - 28 Jun 2021
Cited by 12 | Viewed by 2563
Abstract
Placental dysfunction can lead to fetal growth restriction which is associated with perinatal morbidity and mortality. Fetal growth restriction increases the risk of obesity and diabetes later in life. Placental O-GlcNAc transferase (OGT) has been identified as a marker and a mediator of [...] Read more.
Placental dysfunction can lead to fetal growth restriction which is associated with perinatal morbidity and mortality. Fetal growth restriction increases the risk of obesity and diabetes later in life. Placental O-GlcNAc transferase (OGT) has been identified as a marker and a mediator of placental insufficiency in the setting of prenatal stress, however, its role in the fetal programming of metabolism and glucose homeostasis remains unknown. We aim to determine the long-term metabolic outcomes of offspring with a reduction in placental OGT. Mice with a partial reduction and a full knockout of placenta-specific OGT were generated utilizing the Cre-Lox system. Glucose homeostasis and metabolic parameters were assessed on a normal chow and a high-fat diet in both male and female adult offspring. A reduction in placental OGT did not demonstrate differences in the metabolic parameters or glucose homeostasis compared to the controls on a standard chow. The high-fat diet provided a metabolic challenge that revealed a decrease in body weight gain (p = 0.02) and an improved insulin tolerance (p = 0.03) for offspring with a partially reduced placental OGT but not when OGT was fully knocked out. Changes in body weight were not associated with changes in energy homeostasis. Offspring with a partial reduction in placental OGT demonstrated increased hepatic Akt phosphorylation in response to insulin treatment (p = 0.02). A partial reduction in placental OGT was protective from weight gain and insulin intolerance when faced with the metabolic challenge of a high-fat diet. This appears to be, in part, due to increased hepatic insulin signaling. The findings of this study contribute to the greater understanding of fetal metabolic programming and the effect of placental OGT on peripheral insulin sensitivity and provides a target for future investigation and clinical applications. Full article
Show Figures

Figure 1

23 pages, 5421 KiB  
Article
Maternal and Postnatal High Linoleic Acid Diet Impacts Lipid Metabolism in Adult Rat Offspring in a Sex-Specific Manner
by Nirajan Shrestha, Josif Vidimce, Olivia J. Holland, James S. M. Cuffe, Belinda R. Beck, Anthony V. Perkins, Andrew J. McAinch and Deanne H. Hryciw
Int. J. Mol. Sci. 2021, 22(6), 2946; https://doi.org/10.3390/ijms22062946 - 14 Mar 2021
Cited by 11 | Viewed by 2568
Abstract
Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. We aimed to investigate the effect of maternal and postnatal high LA (HLA) diet on plasma FA composition, plasma and hepatic lipids and genes involved in lipid [...] Read more.
Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. We aimed to investigate the effect of maternal and postnatal high LA (HLA) diet on plasma FA composition, plasma and hepatic lipids and genes involved in lipid metabolism in the liver of adult offspring. Female rats were fed with low LA (LLA; 1.44% LA) or HLA (6.21% LA) diets for 10 weeks before pregnancy, and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), fed either LLA or HLA diets and sacrificed at PN180. Postnatal HLA diet decreased circulating total n-3 PUFA and alpha-linolenic acid (ALA), while increased total n-6 PUFA, LA and arachidonic acid (AA) in both male and female offspring. Maternal HLA diet increased circulating leptin in female offspring, but not in males. Maternal HLA diet decreased circulating adiponectin in males. Postnatal HLA diet significantly decreased aspartate transaminase (AST) in females and downregulated total cholesterol, HDL-cholesterol and triglycerides in the plasma of males. Maternal HLA diet downregulated the hepatic mRNA expression of Hmgcr in both male and female offspring and decreased the hepatic mRNA expression of Cpt1a and Acox1 in females. Both maternal and postnatal HLA diet decreased hepatic mRNA expression of Cyp27a1 in females. Postnatal diet significantly altered circulating fatty acid concentrations, with sex-specific differences in genes that control lipid metabolism in the adult offspring following exposure to high LA diet in utero. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

26 pages, 592 KiB  
Review
The Role of the Gut Microbiome in Diabetes and Obesity-Related Kidney Disease
by Amgad Zaky, Sarah J. Glastras, May Y. W. Wong, Carol A. Pollock and Sonia Saad
Int. J. Mol. Sci. 2021, 22(17), 9641; https://doi.org/10.3390/ijms22179641 - 06 Sep 2021
Cited by 73 | Viewed by 8718
Abstract
Diabetic kidney disease (DKD) is a progressive disorder, which is increasing globally in prevalence due to the increased incidence of obesity and diabetes mellitus. Despite optimal clinical management, a significant number of patients with diabetes develop DKD. Hence, hitherto unrecognized factors are likely [...] Read more.
Diabetic kidney disease (DKD) is a progressive disorder, which is increasing globally in prevalence due to the increased incidence of obesity and diabetes mellitus. Despite optimal clinical management, a significant number of patients with diabetes develop DKD. Hence, hitherto unrecognized factors are likely to be involved in the initiation and progression of DKD. An extensive number of studies have demonstrated the role of microbiota in health and disease. Dysregulation in the microbiota resulting in a deficiency of short chain fatty acids (SCFAs) such as propionate, acetate, and butyrate, by-products of healthy gut microbiota metabolism, have been demonstrated in obesity, type 1 and type 2 diabetes. However, it is not clear to date whether such changes in the microbiota are causative or merely associated with the diseases. It is also not clear which microbiota have protective effects on humans. Few studies have investigated the centrality of reduced SCFA in DKD development and progression or the potential therapeutic effects of supplemental SCFAs on insulin resistance, inflammation, and metabolic changes. SCFA receptors are expressed in the kidneys, and emerging data have demonstrated that intestinal dysbiosis activates the renal renin-angiotensin system, which contributes to the development of DKD. In this review, we will summarize the complex relationship between the gut microbiota and the kidney, examine the evidence for the role of gut dysbiosis in diabetes and obesity-related kidney disease, and explore the mechanisms involved. In addition, we will describe the role of potential therapies that modulate the gut microbiota to prevent or reduce kidney disease progression. Full article
Show Figures

Figure 1

22 pages, 1464 KiB  
Review
Metabolic Consequences of Gestational Cannabinoid Exposure
by Kendrick Lee and Daniel B. Hardy
Int. J. Mol. Sci. 2021, 22(17), 9528; https://doi.org/10.3390/ijms22179528 - 02 Sep 2021
Cited by 15 | Viewed by 5218
Abstract
Up to 20% of pregnant women ages 18–24 consume cannabis during pregnancy. Moreover, clinical studies indicate that cannabis consumption during pregnancy leads to fetal growth restriction (FGR), which is associated with an increased risk of obesity, type II diabetes (T2D), and cardiovascular disease [...] Read more.
Up to 20% of pregnant women ages 18–24 consume cannabis during pregnancy. Moreover, clinical studies indicate that cannabis consumption during pregnancy leads to fetal growth restriction (FGR), which is associated with an increased risk of obesity, type II diabetes (T2D), and cardiovascular disease in the offspring. This is of great concern considering that the concentration of Δ9- tetrahydrocannabinol (Δ9-THC), a major psychoactive component of cannabis, has doubled over the last decade and can readily cross the placenta and enter fetal circulation, with the potential to negatively impact fetal development via the endocannabinoid (eCB) system. Cannabis exposure in utero could also lead to FGR via placental insufficiency. In this review, we aim to examine current pre-clinical and clinical findings on the direct effects of exposure to cannabis and its constituents on fetal development as well as indirect effects, namely placental insufficiency, on postnatal metabolic diseases. Full article
Show Figures

Figure 1

17 pages, 778 KiB  
Review
Melatonin in Early Nutrition: Long-Term Effects on Cardiovascular System
by Marie Gombert and Pilar Codoñer-Franch
Int. J. Mol. Sci. 2021, 22(13), 6809; https://doi.org/10.3390/ijms22136809 - 24 Jun 2021
Cited by 19 | Viewed by 7412
Abstract
Breastfeeding protects against adverse cardiovascular outcomes in the long term. Melatonin is an active molecule that is present in the breast milk produced at night beginning in the first stages of lactation. This indoleamine appears to be a relevant contributor to the benefits [...] Read more.
Breastfeeding protects against adverse cardiovascular outcomes in the long term. Melatonin is an active molecule that is present in the breast milk produced at night beginning in the first stages of lactation. This indoleamine appears to be a relevant contributor to the benefits of breast milk because it can affect infant health in several ways. The melatonin concentration in breast milk varies in a circadian pattern, making breast milk a chrononutrient. The consumption of melatonin can induce the first circadian stimulation in the infant’s body at an age when his/her own circadian machinery is not functioning yet. This molecule is also a powerful antioxidant with the ability to act on infant cells directly as a scavenger and indirectly by lowering oxidant molecule production and enhancing the antioxidant capacity of the body. Melatonin also participates in regulating inflammation. Furthermore, melatonin can participate in shaping the gut microbiota composition, richness, and variation over time, also modulating which molecules are absorbed by the host. In all these ways, melatonin from breast milk influences weight gain in infants, limiting the development of obesity and comorbidities in the long term, and it can help shape the ideal cellular environment for the development of the infant’s cardiovascular system. Full article
Show Figures

Graphical abstract

Back to TopTop