Special Issue "Cereal Bioactive Compounds: Chemical Analysis, Health Benefits and Novel Foods Development"

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Grain".

Deadline for manuscript submissions: closed (1 June 2023) | Viewed by 15803

Special Issue Editors

Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
Interests: grains; germination; fermentation; nutritional value; bioactive compounds; food quality and safety; gluten-free grain-derived products; celiac disease
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plant-based eating patterns which are less reliant on animal foods are the most beneficial for human health and environmental sustainability. Cereals are one of the healthiest food choices due to their high nutritional and to their considerable contents of a wide range of biologically active compounds with health-promoting potential, including dietary fiber (arabinoxylans, b-glucans, cellulose, lignin and lignans), resistant starch, sterols, tocopherols, tocotrienols, alkylresorcinols and phenolic acids. Bioactive compounds are mainly located in the bran and germ, making whole grains and cereal milling byproducts (mainly bran) promising sources of bioactive compounds which can be used as attractive ingredients for the development of innovative and healthier cereal-derived foods and nutraceuticals. Therefore, authors are strongly encouraged to contribute original research articles and reviews regarding recent advances in the bioactive cereal compounds field to this Special Issue dealing with the analysis of bioactive cereals compounds and their health-promoting properties as well as the optimization of pre- and post-harvest technologies to boost the cereal bioactive potential. Changes in the structure and bioactivity of these compounds after processing, preservation and digestion, the evaluation of mechanisms underlying their health-promoting properties and the development of novel foods including cereal bioactive compounds are topics also covered by this Special Issue.

Dr. Elena Peñas Pozo
Dr. Cristina Martínez-Villaluenga
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cereals
  • whole grains
  • cereal byproducts
  • bioactive compounds
  • chemical structure
  • biological activity
  • processing
  • digestion
  • health benefits
  • functional foods

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Study of the Total Antioxidant Capacity (TAC) in Native Cereal−Pulse Flours and the Influence of the Baking Process on TAC Using a Combined Bayesian and Support Vector Machine Modeling Approach
Foods 2023, 12(17), 3208; https://doi.org/10.3390/foods12173208 - 25 Aug 2023
Viewed by 464
Abstract
During the last few years, the increasing evidence of dietary antioxidant compounds and reducing chronic diseases and the relationship between diet and health has promoted an important innovation within the baked product sector, aiming at healthier formulations. This study aims to develop a [...] Read more.
During the last few years, the increasing evidence of dietary antioxidant compounds and reducing chronic diseases and the relationship between diet and health has promoted an important innovation within the baked product sector, aiming at healthier formulations. This study aims to develop a tool based on mathematical models to predict baked goods’ total antioxidant capacity (TAC). The high variability of antioxidant properties of flours based on the aspects related to the type of grain, varieties, proximal composition, and processing, among others, makes it very difficult to innovate on food product development without specific analysis. Total phenol content (TP), oxygen radical absorbance capacity (ORAC), and ferric-reducing antioxidant power assay (FRAP) were used as markers to determine antioxidant capacity. Three Bayesian-type models are proposed based on a double exponential parameterized curve that reflects the initial decrease and subsequent increase as a consequence of the observed processes of degradation and generation, respectively, of the antioxidant compounds. Once the values of the main parameters of each curve were determined, support vector machines (SVM) with an exponential kernel allowed us to predict the values of TAC, based on baking conditions (temperature and time), proteins, and fibers of each native grain. Full article
Show Figures

Figure 1

Article
Quality Evaluation of Bread Prepared from Wheat–Chufa Tuber Composite Flour
Foods 2023, 12(3), 444; https://doi.org/10.3390/foods12030444 - 17 Jan 2023
Viewed by 1147
Abstract
The oil amounts of breads were measured between 0.13% (control) and 4.90% (with 40% 6 chufa). The total phenolic and flavonoid contents of the breads enriched with chufa tuber flours (powders) were reported as between 37.42 (control) and 99.64 mg GAE/100 g (with [...] Read more.
The oil amounts of breads were measured between 0.13% (control) and 4.90% (with 40% 6 chufa). The total phenolic and flavonoid contents of the breads enriched with chufa tuber flours (powders) were reported as between 37.42 (control) and 99.64 mg GAE/100 g (with 20% chufa) to 61.19 (control) and 120.71 mg/100 g (with 20% chufa), respectively. The antioxidant activities of the bread samples were recorded as between 0.20 (control) and 3.24 mmol/kg (with 20% chufa). The addition of chufa flour caused a decrease in L* values of breads with the addion of tigernut flour. Oleic and linoleic acid contents of the oils extracted from the bread samples enriched with chufa tuber powders were identified as between 61.88 (control) and 66.64% (with 40% chufa) to 14.84% (with 40% chufa) and 17.55% (control), respectively. As a result of the evaluation of sensory properties of breads made from pure wheat flour and composite flours containing 10%, 20%, and 40% chufa tuber flour, the best result was obtained in bread fortified with chufa powder at a concentration of 40%, followed by concentrations of 20 and 10% in decreasing order. Full article
Show Figures

Figure 1

Article
Metabolic Variations in Brown Rice Fertilised with Different Levels of Nitrogen
Foods 2022, 11(21), 3539; https://doi.org/10.3390/foods11213539 - 07 Nov 2022
Cited by 1 | Viewed by 834
Abstract
Nitrogen is a necessary element for plant growth; therefore, it is important to study the influence of N fertilisers on crop metabolites. In this study, we investigate the variability of endogenous metabolites in brown rice fertilised with different amounts of nitrogen. We identified [...] Read more.
Nitrogen is a necessary element for plant growth; therefore, it is important to study the influence of N fertilisers on crop metabolites. In this study, we investigate the variability of endogenous metabolites in brown rice fertilised with different amounts of nitrogen. We identified 489 metabolites in brown rice. Compared to non-nitrogen fertilised groups, there were 59 differentially activated metabolic pathways in the nitrogen-fertilised groups. Additionally, there were significantly differential secondary metabolites, especially flavonoids, between groups treated with moderate (210 kg N/hm2) and excessive amounts of nitrogen (420 kg N/hm2). Nitrogen fertilisation upregulated linoleic acid metabolism and most steroids, steroid derivatives, and flavonoid compounds, which have antioxidant activity. The DPPH, ABTS, and hydroxyl radical scavenging rates were higher in fertilised groups than in the non-fertilised group. These findings provide a theoretical basis to enhance the health benefits of brown rice by improving fertilisation. Full article
Show Figures

Figure 1

Article
The Effect of Spice Powders on Bioactive Compounds, Antioxidant Activity, Phenolic Components, Fatty Acids, Mineral Contents and Sensory Properties of “Keşkek”, Which Is a Traditional Food
Foods 2022, 11(21), 3492; https://doi.org/10.3390/foods11213492 - 03 Nov 2022
Cited by 2 | Viewed by 814
Abstract
“Keşkek”, which is a dish of Western Anatolia, Thrace, the Eastern Anatolia Region, the Black Sea and Central Anatolia, is a traditional dish made mainly of split wheat and meat—although it varies according to the regions in Anatolia—which is usually made at weddings [...] Read more.
“Keşkek”, which is a dish of Western Anatolia, Thrace, the Eastern Anatolia Region, the Black Sea and Central Anatolia, is a traditional dish made mainly of split wheat and meat—although it varies according to the regions in Anatolia—which is usually made at weddings and holidays. In this study, the effects of thyme, coriander and cumin spices on the fat content, bioactive properties, phenolic component, fatty acid composition, mineral contents and sensory properties of “Keşkek” were investigated. The oil yields of “Keşkek” types were determined to be between 14.90 (control) and 21.20% (with cumin). Total phenolic and flavonoid contents of “Keşkek” types’ added spices were established as between 7.02 (control) and 77.10 mg/100 g Gallic Acid Equivalent (GAE) (with thyme) to 20.24 (control) and 132.14 mg quercetin equivalent (QE)/100 g (with thyme), respectively. Moreover, the antioxidant activity values of “Keşkek” samples varied between 0.04 (control) and 2.78 mmol Trolox Equivalent (TE)/kg (with thyme). Among these phenolic constituents, gallic acid was the most abundant, followed by catechin, rutin and 3,4-dihydroxybenzoic acid, in descending order. Oleic and linoleic acid contents of the “Keşkek” oils were detected between 25.51 (with thyme) and 30.58% (with cumin) to 38.28 (with cumin) and 48.49% (control), respectively. P, K, Mg and S were the major minerals of “Keşkek” samples. Considering the sensory characteristics of the “Keşkek” samples, “Keşkek” with thyme was appreciated, followed by “Keşkek” with cumin and “control and Keşkek” with coriander in decreasing order. Full article
Show Figures

Figure 1

Article
The Effect of Stabilized Rice Bran Addition on Physicochemical, Sensory, and Techno-Functional Properties of Bread
Foods 2022, 11(21), 3328; https://doi.org/10.3390/foods11213328 - 23 Oct 2022
Cited by 2 | Viewed by 2305
Abstract
Rice bran (RB) is a valuable byproduct derived from rice milling that represents an excellent opportunity for dietary inclusion. Bioactive components with antioxidant potential have been reported in RB, gaining the considerable attention of researchers. However, RB requires a stabilization process after milling [...] Read more.
Rice bran (RB) is a valuable byproduct derived from rice milling that represents an excellent opportunity for dietary inclusion. Bioactive components with antioxidant potential have been reported in RB, gaining the considerable attention of researchers. However, RB requires a stabilization process after milling to prevent it from becoming rancid and promote its commercial consumption. The aim of this study was to evaluate the effects of substituting stabilized rice bran (SRB) for wheat flour at levels of 10, 15, 20 and 25% on the proximate composition, dietary fiber, dough rheology, antioxidant properties, content of bioactive compounds, and sensory attributes of white wheat-based bread. Results indicated that the incorporation of SRB increased the bread’s insoluble dietary fiber, phytic acid, total polyphenol content, γ-oryzanol, γ-aminobutyric acid, and antioxidant properties, while decreased its water absorption capacity, elasticity, volume, β-glucans, and soluble dietary fiber content. Moreover, substituting wheat flour for SRB at levels higher than 15% affected sensory attributes, such as color, odor, flavor, and softness. This study highlights the potential application of SRB flour in bread-making to increase nutritional, and functional properties of white wheat bread. Full article
Show Figures

Figure 1

Article
Andean Sprouted Pseudocereals to Produce Healthier Extrudates: Impact in Nutritional and Physicochemical Properties
Foods 2022, 11(20), 3259; https://doi.org/10.3390/foods11203259 - 18 Oct 2022
Viewed by 1525
Abstract
The tailored formulation of raw materials and the combination of grain germination and extrusion processes could be a promising strategy to achieve the desired goal of developing healthier expanded extrudates without compromising sensory properties. In this study, modifications in the nutritional, bioactive profile [...] Read more.
The tailored formulation of raw materials and the combination of grain germination and extrusion processes could be a promising strategy to achieve the desired goal of developing healthier expanded extrudates without compromising sensory properties. In this study, modifications in the nutritional, bioactive profile and physicochemical properties of corn extrudates as influenced by the complete or partial replacement by sprouted quinoa (Chenopodium quinoa Willd) and cañihua (Chenopodium pallidicaule Aellen) were investigated. A simplex centroid mixture design was used to study the effects of formulation on nutritional and physicochemical properties of extrudates, and a desirability function was applied to identify the optimal ingredient ratio in flour blends to achieve desired nutritional, texture and color goals. Partial incorporation of sprouted quinoa flour (SQF) and cañihua flour (SCF) in corn grits (CG)-based extrudates increased phytic acid (PA), total soluble phenolic compounds (TSPC), γ-aminobutyric acid (GABA) and oxygen radical antioxidant activity (ORAC) of the extrudates. Sprouted grain flour usually results in an deleterious effect physicochemical properties of extrudates, but the partial mixture of CG with SQF and SCF circumvented the negative effect of germinated flours, improving technological properties, favoring the expansion index and bulk density and increasing water solubility. Two optimal formulations were identified: 0% CG, 14% SQF and 86% SCF (OPM1) and 24% CG, 17% SQF and 59% SCF (OPM2). The optimized extrudates showed a reduced amount of starch and remarkably higher content of total dietary fiber, protein, lipids, ash, PA, TSPC, GABA and ORAC as compared to those in 100% CG extrudates. During digestion, PA, TSPC, GABA and ORAC showed good stability in physiological conditions. Higher antioxidant activity and amounts of bioaccessible TSPC and GABA were found in OPM1 and OPM2 digestates as compared to those in 100% CG extrudates. Full article
Show Figures

Figure 1

Article
Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes
Foods 2022, 11(11), 1541; https://doi.org/10.3390/foods11111541 - 24 May 2022
Cited by 4 | Viewed by 1916
Abstract
Sprouting is an effective treatment for improving nutritional and bioactive properties as well as lowering the anti-nutritional compounds in pseudo-cereals. Enhancing nutritional properties when using sprouted pseudo-cereals flours as a baking ingredient requires tailored formulation. Simplex centroid designs and response surface methodology has [...] Read more.
Sprouting is an effective treatment for improving nutritional and bioactive properties as well as lowering the anti-nutritional compounds in pseudo-cereals. Enhancing nutritional properties when using sprouted pseudo-cereals flours as a baking ingredient requires tailored formulation. Simplex centroid designs and response surface methodology has been applied in the present study to define the ideal proportions of ternary blends of sprouted kiwicha (SKF), cañihua (SCF) and wheat flours (WF) to simultaneously enhance the content in bioactive compounds (γ-aminobutyric acid, GABA, total soluble phenolic compounds and TSPC), as well as sensory (odor, color, taste and texture) and functional attributes (antioxidant activity, AA) while reducing phytic acid (PA) content of bread. The effect of gastric and intestinal digestion on bioactive compounds, AA, PA and starch hydrolysis was also evaluated. Mixture design allowed for the identification of optimal formulation (5% SKF, 23.1% SCF, 71.9% WF) that can be used to obtain breads with higher content of GABA, TSPC, AA, overall sensorial acceptability (scores > 7) and reduced PA content and glycemic index. Moreover, this study demonstrated that these nutritional and health benefits provided by the replacement of WF by sprouted pseudo-cereal flours remained upon digestion. The results of this study indicated that WF replacement with SKF and SCF is sensory acceptable and improved the nutritional quality of bread. Full article
Show Figures

Figure 1

Article
Improving Nutritional and Health Benefits of Biscuits by Optimizing Formulations Based on Sprouted Pseudocereal Grains
Foods 2022, 11(11), 1533; https://doi.org/10.3390/foods11111533 - 24 May 2022
Cited by 3 | Viewed by 2252
Abstract
A mixture design (MD) was used to evaluate the effect of replacing wheat flour (WF) with sprouted cañihua (Chenopodium pallidicaule Aellen), kiwicha (Amarathus caudatus L.), and quinoa (Chenopodium quinoa Willd.) flours (SCF, SKF, and SQF, respectively) on the content of [...] Read more.
A mixture design (MD) was used to evaluate the effect of replacing wheat flour (WF) with sprouted cañihua (Chenopodium pallidicaule Aellen), kiwicha (Amarathus caudatus L.), and quinoa (Chenopodium quinoa Willd.) flours (SCF, SKF, and SQF, respectively) on the content of phytic acid (PA), γ-aminobutyric acid (GABA), total soluble phenolic compounds (TSPC), and antioxidant activity (AA) in biscuits. Generally, sprouted pseudocereal flours contained lower amounts of starch and protein, comparable fat, ash, PA content, and increased levels of bioactive compounds (GABA and TSPC) and AA compared with wholegrain flours. Moreover, it was confirmed that sprouted pseudocereal flours were nutritionally superior to refined WF. MD allowed the modeling of target parameters showing that PA, GABA, TSPC, and AA were positively influenced by the proportion of flours in the biscuit. The models that better described the variation in nutritional parameters as a function of the formulation displayed typically linear and binary interactions terms. SKF exerted the highest influence on the increased content of PA. Therefore, to increase mineral bioavailability, the use of SCF and SQF in the formulation of biscuits was suggested. SCF and SQF positively influenced in GABA, TSPC, and AA in biscuits. The optimal ternary blends of flours that maximize the content of bioactive compounds and AA of biscuits and simultaneously minimize PA content were identified. To study the fate of biscuits in digestion, the optimal formulation for biscuits containing SQF/SCF was selected. For this type of baked product, reduced starch digestibility and glycemic index was observed compared with the control (100% WF). Moreover, the amounts of bioaccessible GABA, TSPC, and AA were higher in gastric and intestinal digests compared with control biscuit. Overall, these results highlighted the nutritional and health benefits of incorporation of flours from sprouted Andean grains in the production of biscuits. Full article
Show Figures

Figure 1

Review

Jump to: Research

Review
Cereals as a Source of Bioactive Compounds with Anti-Hypertensive Activity and Their Intake in Times of COVID-19
Foods 2022, 11(20), 3231; https://doi.org/10.3390/foods11203231 - 16 Oct 2022
Cited by 1 | Viewed by 1601
Abstract
Cereals have phytochemical compounds that can diminish the incidence of chronic diseases such as hypertension. The angiotensin-converting enzyme 2 (ACE2) participates in the modulation of blood pressure and is the principal receptor of the virus SARS-CoV-2. The inhibitors of the angiotensin-converting enzyme (ACE) [...] Read more.
Cereals have phytochemical compounds that can diminish the incidence of chronic diseases such as hypertension. The angiotensin-converting enzyme 2 (ACE2) participates in the modulation of blood pressure and is the principal receptor of the virus SARS-CoV-2. The inhibitors of the angiotensin-converting enzyme (ACE) and the block receptors of angiotensin II regulate the expression of ACE2; thus, they could be useful in the treatment of patients infected with SARS-CoV-2. The inferior peptides from 1 to 3 kDa and the hydrophobic amino acids are the best candidates to inhibit ACE, and these compounds are present in rice, corn, wheat, oats, sorghum, and barley. In addition, the vitamins C and E, phenolic acids, and flavonoids present in cereals show a reduction in the oxidative stress involved in the pathogenesis of hypertension. The influence of ACE on hypertension and COVID-19 has turned into a primary point of control and treatment from the nutritional perspective. The objective of this work was to describe the inhibitory effect of the angiotensin-converting enzyme that the bioactive compounds present in cereals possess in order to lower blood pressure and how their consumption could be associated with reducing the virulence of COVID-19. Full article
Show Figures

Graphical abstract

Review
Performance of Thermoplastic Extrusion, Germination, Fermentation, and Hydrolysis Techniques on Phenolic Compounds in Cereals and Pseudocereals
Foods 2022, 11(13), 1957; https://doi.org/10.3390/foods11131957 - 01 Jul 2022
Cited by 3 | Viewed by 1950
Abstract
Bioactive compounds, such as phenolic compounds, are phytochemicals found in significant amounts in cereals and pseudocereals and are usually evaluated by spectrophotometric (UV-VIS), HPLC, and LC-MS techniques. However, their bioavailability in grains is quite limited. This restriction on bioavailability and bioaccessibility occurs because [...] Read more.
Bioactive compounds, such as phenolic compounds, are phytochemicals found in significant amounts in cereals and pseudocereals and are usually evaluated by spectrophotometric (UV-VIS), HPLC, and LC-MS techniques. However, their bioavailability in grains is quite limited. This restriction on bioavailability and bioaccessibility occurs because they are in conjugated polymeric forms. Additionally, they can be linked through chemical esterification and etherification to macro components. Techniques such as thermoplastic extrusion, germination, fermentation, and hydrolysis have been widely studied to release phenolic compounds in favor of their bioavailability and bioaccessibility, minimizing the loss of these thermosensitive components during processing. The increased availability of phenolic compounds increases the antioxidant capacity and favor their documented health promoting. Full article
Show Figures

Figure 1

Back to TopTop