Honeys and Bee Products: Physicochemical, Biological and Nutritive Properties

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Nutraceuticals, Functional Foods, and Novel Foods".

Deadline for manuscript submissions: 18 July 2024 | Viewed by 9285

Special Issue Editors


E-Mail Website
Guest Editor
College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
Interests: bee products; biochemistry; food engineering; analytical chemistry
College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi’an 710069, China
Interests: food and nutritional science; foodomics; bee products

Special Issue Information

Dear Colleagues,

Under the background of the Healthy China initiative, research on the exploration of natural food with nutrition and healthy function has become a hotspot in food science. Honey not only is favored by consumers due to its unique flavor but also possesses a wide use of pharmacological activities and biological functions as a natural dietary antioxidant. The key to revealing the honey–human health relationship is defining the physicochemical, biological and nutritional properties of honey and honey products.

In this Special Issue of Foods, we would like to invite authors to submit original manuscripts within the scope of the proposed topics. Submissions of original research; reviews of current scientific literature, including systematic reviews and meta-analyses; and short reports are welcomed. We believe that this Special Issue, “Honeys and Bee Products: Physicochemical, Biological and Nutritive Properties”, will highlight the most recent advances in bioactive compounds and related analytical methods, nutritional values and biological functions.

Prof. Dr. Wei Cao
Dr. Haoan Zhao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • honey and bee products
  • physicochemical properties
  • bioactivity
  • nutritional properties
  • analytical methods

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 857 KiB  
Article
Glycemic and Satiety Response to Three Mexican Honey Varieties
by Brenda A. Palomo-de León, Heriberto Castro, Mayra E. Sánchez-Murillo, Ana Laura de la Garza, Beatriz A. Rodríguez-Romero, Maritza Alonzo-Macías, Aurea K. Ramírez-Jiménez, Anaberta Cardador-Martínez and Marcelo Hernández-Salazar
Foods 2023, 12(19), 3670; https://doi.org/10.3390/foods12193670 - 06 Oct 2023
Viewed by 1297
Abstract
Honey is considered one of the last untreated natural food substances, with a complex composition. It is produced by bees (Apis mellifera) from nectar. The glycemic index (GI) is a physiological assessment of a food’s carbohydrate content via its effect on [...] Read more.
Honey is considered one of the last untreated natural food substances, with a complex composition. It is produced by bees (Apis mellifera) from nectar. The glycemic index (GI) is a physiological assessment of a food’s carbohydrate content via its effect on postprandial blood glucose concentrations. This study evaluated the GI and the satiety response to three Mexican types of honey administered to 26 healthy volunteers. The fructose values ranged from 272.40 g/kg to 395.10 g/kg, while the glucose value ranged from 232.20 g/kg to 355.50 g/kg. The fructose/glucose (F/G) ratio of honey was 1.45, 1.00, and 1.17 for highland, multifloral, and avocado honey, respectively. Highland and avocado honey were classified as medium-GI (69.20 ± 4.07 and 66.36 ± 5.74, respectively), while multifloral honey was classified as high-GI (74.24 ± 5.98). Highland honey presented a higher satiety values response than glucose. The difference in GI values and the satiety response effect of highland honey could be explained by its different carbohydrate composition and the possible presence of other honey components such as phytochemicals. Honey, especially avocado, could therefore be used as a sweetener without altering significantly the blood glucose concentration. Full article
Show Figures

Figure 1

24 pages, 1447 KiB  
Article
In Vitro Prebiotic Effects and Antibacterial Activity of Five Leguminous Honeys
by Florinda Fratianni, Beatrice De Giulio, Antonio d’Acierno, Giuseppe Amato, Vincenzo De Feo, Raffaele Coppola and Filomena Nazzaro
Foods 2023, 12(18), 3338; https://doi.org/10.3390/foods12183338 - 06 Sep 2023
Cited by 3 | Viewed by 1381
Abstract
Honey is a natural remedy for various health conditions. It exhibits a prebiotic effect on the gut microbiome, including lactobacilli, essential for maintaining gut health and regulating the im-mune system. In addition, monofloral honey can show peculiar therapeutic properties. We in-vestigated some legumes [...] Read more.
Honey is a natural remedy for various health conditions. It exhibits a prebiotic effect on the gut microbiome, including lactobacilli, essential for maintaining gut health and regulating the im-mune system. In addition, monofloral honey can show peculiar therapeutic properties. We in-vestigated some legumes honey’s prebiotic properties and potential antimicrobial action against different pathogens. We assessed the prebiotic potentiality of honey by evaluating the antioxidant activity, the growth, and the in vitro adhesion of Lacticaseibacillus casei, Lactobacillus gasseri, Lacticaseibacillus paracasei subsp. paracasei, Lactiplantibacillus plantarum, and Lacticaseibacillus rhamnosus intact cells. We also tested the honey’s capacity to inhibit or limit the biofilm produced by five pathogenic strains. Finally, we assessed the anti-biofilm activity of the growth medium of probiotics cultured with honey as an energy source. Most probiotics increased their growth or the in vitro adhesion ability to 84.13% and 48.67%, respectively. Overall, alfalfa honey best influenced the probiotic strains’ growth and in vitro adhesion properties. Their radical-scavenging activity arrived at 83.7%. All types of honey increased the antioxidant activity of the probiotic cells, except for the less sensitive L. plantarum. Except for a few cases, we observed a bio-film-inhibitory action of all legumes’ honey, with percentages up to 81.71%. Carob honey was the most effective in inhibiting the biofilm of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus; it retained almost entirely the ability to act against the bio-film of E. coli, L. monocytogenes, and S. aureus also when added to the bacterial growth medium instead of glucose. On the other hand, alfalfa and astragalus honey exhibited greater efficacy in acting against the biofilm of Acinetobacter baumannii. Indigo honey, whose biofilm-inhibitory action was fragile per se, was very effective when we added it to the culture broth of L. casei, whose supernatant exhibited an anti-biofilm activity against all the pathogenic strains tested. Conclusions: the five kinds of honey in different ways can improve some prebiotic properties and have an inhibitory biofilm effect when consumed. Full article
Show Figures

Figure 1

12 pages, 1196 KiB  
Article
A High-Performance Liquid Chromatography with Electrochemical Detection Method Developed for the Sensitive Determination of Ascorbic Acid: Validation, Application, and Comparison with Titration, Spectrophotometric, and High-Performance Liquid Chromatography with Diode-Array Detection Methods
by Fanhua Wu, Fangrui Xu, Wen Liu, Sinan Chen, Haojie Luo, Ni Cheng, Haoan Zhao and Wei Cao
Foods 2023, 12(16), 3100; https://doi.org/10.3390/foods12163100 - 18 Aug 2023
Cited by 3 | Viewed by 1619
Abstract
L-ascorbic acid (vitamin C, VC), an essential nutrient obtained from the diet to maintain various vital signs for the human body, is a crucial indicator of food quality and nutritional value. Herein, high-performance liquid chromatography with electrochemical detection (HPLC-ECD) was developed and validated [...] Read more.
L-ascorbic acid (vitamin C, VC), an essential nutrient obtained from the diet to maintain various vital signs for the human body, is a crucial indicator of food quality and nutritional value. Herein, high-performance liquid chromatography with electrochemical detection (HPLC-ECD) was developed and validated with the advantages of higher sensitivity, simpler operation processes, and more rapid detection in measuring VC levels in honey samples when compared with the common methods (titration, spectrophotometric, and HPLC-DAD methods). The results of the HPLC-ECD methodological validation showed that the limit of detection (LOD) was 0.0043 µg mL−1; the relative standard deviations (RSDs) of the intra- and inter-day values were between 2.51% and 5.15%, and the regression coefficient was >0.999 in the linear range of 0.1 to 20 µg mL−1. The validated HPLC-ECD method was also successfully utilized to evaluate the VC levels in different varieties of honey samples with various storage durations as well as in fruit and biological samples. This study provided a perspective for the further accurate determination of VC content in food and biological samples. Full article
Show Figures

Figure 1

13 pages, 3850 KiB  
Article
An Innovative Use of Propolis in the Production of Dipping Sauce Powder as a Functional Food to Mitigate Testicular Toxicity Induced by Cadmium Chloride: Technological and Biological Evidence
by Marwa A. Sheir, Francesco Serrapica and Rania A. Ahmed
Foods 2023, 12(16), 3069; https://doi.org/10.3390/foods12163069 - 16 Aug 2023
Cited by 2 | Viewed by 962
Abstract
Propolis is a common natural ingredient used in food production, food packaging, and pharmaceutical products. Therefore, the aim of our study was to prepare dipping sauce powders as an innovative functional product with a regular and spicy taste from economical raw materials with [...] Read more.
Propolis is a common natural ingredient used in food production, food packaging, and pharmaceutical products. Therefore, the aim of our study was to prepare dipping sauce powders as an innovative functional product with a regular and spicy taste from economical raw materials with high nutritional value. The developed products were fortified with propolis powder at 250, 500, and 750 mg/kg. All studied dipping sauces were subjected to a palatability test, a nutritional evaluation, and a microbiological assay performed during 6 months of storage. In addition, an in vivo study was designed to evaluate the efficacy of these products in preventing the testicular toxicity disorders induced by cadmium chloride (CdCl2) in albino rats. Based on the palatability test, the dipping sauces supplemented with propolis at 250 mg/kg and 500 mg/kg were preferred. Moreover, all samples were safe to consume within 6 months. Biological results showed that all investigated propolis-enriched dipping sauce samples caused an improvement in all CdCl2-induced testicular histopathological and biochemical changes, especially the spicy dipping sauce powder fortified with 500 mg/kg of propolis. Full article
Show Figures

Graphical abstract

16 pages, 2678 KiB  
Article
Identification of Volatile Markers during Early Zygosaccharomyces rouxii Contamination in Mature and Immature Jujube Honey
by Yin Wang, Yuanyuan Huang, Ni Cheng, Haoan Zhao, Ying Zhang, Cailing Liu, Liangliang He, Tianchen Ma, Yankang Li and Wei Cao
Foods 2023, 12(14), 2730; https://doi.org/10.3390/foods12142730 - 18 Jul 2023
Viewed by 1014
Abstract
Osmotolerant yeasts are considered one of the major contaminants responsible for spoilage in honey. To address the signature volatile components of jujube honey contaminated by Zygosaccharomyces rouxii, headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and chemometrics analyses were used to analyze the variation [...] Read more.
Osmotolerant yeasts are considered one of the major contaminants responsible for spoilage in honey. To address the signature volatile components of jujube honey contaminated by Zygosaccharomyces rouxii, headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and chemometrics analyses were used to analyze the variation of volatile substances during early contamination of mature and immature jujube honey. Undecanal, methyl butyrate, methyl 2-nonenoate, methyl hexanoate, and 2-methyl-3-pentanone were identified as signature volatiles of jujube honey contaminated with Z. rouxii. In addition, methyl heptanoate, 2,6,10-trimethyltetradecane, and heptanal were identified as potential volatile signatures for immature jujube honey. The R2 and Q2 of OPLS-DA analyses ranged from 0.736 to 0.955, and 0.991 to 0.997, which indicates that the constructed model was stable and predictive. This study has demonstrated that HS-SPME-GC-MS could be used to distinguish Z. rouxii-contaminated jujube honey from uncontaminated honey based on variation in VOCs, and could provide theoretical support for the use of HS-SPME-GC-MS for the rapid detection of honey decomposition caused by Z. rouxii, which could improve nutritional quality and reduce economic losses. Full article
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 1569 KiB  
Review
Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects
by Bajaree Chuttong, Kaiyang Lim, Pichet Praphawilai, Khanchai Danmek, Jakkrawut Maitip, Patricia Vit, Ming-Cheng Wu, Sampat Ghosh, Chuleui Jung, Michael Burgett and Surat Hongsibsong
Foods 2023, 12(21), 3909; https://doi.org/10.3390/foods12213909 - 25 Oct 2023
Cited by 1 | Viewed by 2255
Abstract
Bee propolis has been touted as a natural antimicrobial agent with the potential to replace antibiotics. Numerous reports and reviews have highlighted the functionalities and applications of the natural compound. Despite much clamor for the downstream application of propolis, there remain many grounds [...] Read more.
Bee propolis has been touted as a natural antimicrobial agent with the potential to replace antibiotics. Numerous reports and reviews have highlighted the functionalities and applications of the natural compound. Despite much clamor for the downstream application of propolis, there remain many grounds to cover, especially in the upstream production, and factors affecting the quality of the propolis. Moreover, geopropolis and cerumen, akin to propolis, hold promise for diverse human applications, yet their benefits and intricate manufacturing processes remain subjects of intensive research. Specialized cement bees are pivotal in gathering and transporting plant resins from suitable sources to their nests. Contrary to common belief, these resins are directly applied within the hive, smoothed out by cement bees, and blended with beeswax and trace components to create raw propolis. Beekeepers subsequently harvest and perform the extraction of the raw propolis to form the final propolis extract that is sold on the market. As a result of the production process, intrinsic and extrinsic factors, such as botanical origins, bee species, and the extraction process, have a direct impact on the quality of the final propolis extract. Towards the end of this paper, a section is dedicated to highlighting the antimicrobial potency of propolis extract. Full article
Show Figures

Figure 1

Back to TopTop