Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3210 KiB  
Article
Increased Encapsulation Efficiency of Methotrexate in Liposomes for Rheumatoid Arthritis Therapy
by Diana Guimarães, Jennifer Noro, Ana Loureiro, Franck Lager, Gilles Renault, Artur Cavaco-Paulo and Eugénia Nogueira
Biomedicines 2020, 8(12), 630; https://doi.org/10.3390/biomedicines8120630 - 18 Dec 2020
Cited by 21 | Viewed by 4927
Abstract
Methotrexate (MTX) is a common drug used to treat rheumatoid arthritis. Due to the excessive side effects, encapsulation of MTX in liposomes is considered an effective delivery system, reducing drug toxicity, while maintaining its efficacy. The ethanol injection method is an interesting technique [...] Read more.
Methotrexate (MTX) is a common drug used to treat rheumatoid arthritis. Due to the excessive side effects, encapsulation of MTX in liposomes is considered an effective delivery system, reducing drug toxicity, while maintaining its efficacy. The ethanol injection method is an interesting technique for liposome production, due to its simplicity, fast implementation, and reproducibility. However, this method occasionally requires the extrusion process, to obtain suitable size distribution, and achieve a low level of MTX encapsulation. Here, we develop a novel pre-concentration method, based on the principles of the ethanol injection, using an initial aqueous volume of 20% and 1:1 ratio of organic:aqueous phase (v/v). The liposomes obtained present small values of size and polydispersity index, without the extrusion process, and a higher MTX encapsulation (efficiency higher than 30%), suitable characteristics for in vivo application. The great potential of MTX to interact at the surface of the lipid bilayer was shown by nuclear magnetic resonance (NMR) studies, revealing mutual interactions between the drug and the main phospholipid via hydrogen bonding. In vivo experiments reveal that liposomes encapsulating MTX significantly increase the biological benefit in arthritic mice. This approach shows a significant advance in MTX therapeutic applications. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

10 pages, 3013 KiB  
Article
A Novel Nonsense Mutation in FGB (c.1421G>A; p.Trp474Ter) in the Beta Chain of Fibrinogen Causing Hypofibrinogenemia with Bleeding Phenotype
by Tomas Simurda, Rui Vilar, Jana Zolkova, Eliska Ceznerova, Zuzana Kolkova, Dusan Loderer, Marguerite Neerman-Arbez, Alessandro Casini, Monika Brunclikova, Ingrid Skornova, Miroslava Dobrotova, Marian Grendar, Jan Stasko and Peter Kubisz
Biomedicines 2020, 8(12), 605; https://doi.org/10.3390/biomedicines8120605 - 13 Dec 2020
Cited by 28 | Viewed by 2528
Abstract
Congenital hypofibrinogenemia is a rare bleeding disorder characterized by a proportional decrease of functional and antigenic fibrinogen levels. Hypofibrinogenemia can be considered the phenotypic expression of heterozygous loss of function mutations occurring within one of the three fibrinogen genes (FGA, FGB [...] Read more.
Congenital hypofibrinogenemia is a rare bleeding disorder characterized by a proportional decrease of functional and antigenic fibrinogen levels. Hypofibrinogenemia can be considered the phenotypic expression of heterozygous loss of function mutations occurring within one of the three fibrinogen genes (FGA, FGB, and FGG). Clinical manifestations are highly variable; most patients are usually asymptomatic, but may appear with mild to severe bleeding or thrombotic complications. We have sequenced all exons of the FGA, FGB, and FGG genes using the DNA isolated from the peripheral blood in two unrelated probands with mild hypofibrinogenemia. Coagulation screening, global hemostasis, and functional analysis tests were performed. Molecular modeling was used to predict the defect of synthesis and structural changes of the identified mutation. DNA sequencing revealed a novel heterozygous variant c.1421G>A in exon 8 of the FGB gene encoding a Bβ chain (p.Trp474Ter) in both patients. Clinical data from patients showed bleeding episodes. Protein modelling confirmed changes in the secondary structure of the molecule, with the loss of three β sheet arrangements. As expected by the low fibrinogen levels, turbidity analyses showed a reduced fibrin polymerisation and imaging difference in thickness fibrin fibers. We have to emphasize that our patients have a quantitative fibrinogen disorder; therefore, the reduced function is due to the reduced concentration of fibrinogen, since the Bβ chains carrying the mutation predicted to be retained inside the cell. The study of fibrinogen molecules using protein modelling may help us to understand causality and effect of novel genetic mutations. Full article
Show Figures

Figure 1

12 pages, 2520 KiB  
Article
Differential Role of Circulating microRNAs to Track Progression and Pre-Symptomatic Stage of Chronic Heart Failure: A Pilot Study
by Yuri D’Alessandra, Mattia Chiesa, Maria Cristina Carena, Antonio Paolo Beltrami, Paola Rizzo, Marta Buzzetti, Veronica Ricci, Roberto Ferrari, Alessandro Fucili, Ugolino Livi, Aneta Aleksova, Giulio Pompilio and Gualtiero I. Colombo
Biomedicines 2020, 8(12), 597; https://doi.org/10.3390/biomedicines8120597 - 11 Dec 2020
Cited by 18 | Viewed by 2610
Abstract
(1)Background: Chronic heart failure (CHF) contributes to the overall burden of cardiovascular disease. Early identification of at-risk individuals may facilitate the targeting of precision therapies. Plasma microRNAs are promising circulating biomarkers for their implications with cardiac pathologies. In this pilot study, we investigate [...] Read more.
(1)Background: Chronic heart failure (CHF) contributes to the overall burden of cardiovascular disease. Early identification of at-risk individuals may facilitate the targeting of precision therapies. Plasma microRNAs are promising circulating biomarkers for their implications with cardiac pathologies. In this pilot study, we investigate the possible exploitability of circulating micro-RNAs (miRNAs) to track chronic heart failure (CHF) occurrence, and progression from NYHA class I to IV. (2)Methods: We screened 367 microRNAs using TaqMan microRNA Arrays in plasma samples from healthy controls (HC) and CHF NYHA-class I-to-IV patients (5/group). Validation was performed by singleplex assays on 10 HC and 61 CHF subjects. Differences in the expression of validated microRNAs were evaluated through analysis of covariance (ANCOVA). Associations between N-terminal pro-BNP (NT-proBNP), left ventricular end-diastolic volume (LVEDV) or peak oxygen uptake (VO2 peak) and plasma microRNA were assessed by multivariable linear regression analysis. (3)Results: Twelve microRNAs showed higher expression in CHF patients vs. HC. Seven microRNAs were associated with NT-proBNP concentration; of these, miR-423-5p was also an independent predictor of LVEDV. Moreover, miR-499-5p was a predictor of the VO2 peak. Finally, a cluster of 5 miRNAs discriminated New York Heart Association (NYHA) class-I from HC subjects. (4)Conclusions: Our data suggest that circulating miRNAs have the potential to serve as pathophysiology-based markers of HF status and progression, and as indicators of pre-symptomatic individuals. Full article
(This article belongs to the Special Issue microRNAs as Biomarkers of Cardiovascular Diseases)
Show Figures

Figure 1

15 pages, 1682 KiB  
Article
Verbascoside Protects Pancreatic β-Cells against ER-Stress
by Alessandra Galli, Paola Marciani, Algerta Marku, Silvia Ghislanzoni, Federico Bertuzzi, Raffaella Rossi, Alessia Di Giancamillo, Michela Castagna and Carla Perego
Biomedicines 2020, 8(12), 582; https://doi.org/10.3390/biomedicines8120582 - 08 Dec 2020
Cited by 27 | Viewed by 3485
Abstract
Substantial epidemiological evidence indicates that a diet rich in polyphenols protects against developing type 2 diabetes. The phenylethanoid glycoside verbascoside/acteoside, a widespread polyphenolic plant compound, has several biological properties including strong antioxidant, anti-inflammatory and neuroprotective activities. The aim of this research was to [...] Read more.
Substantial epidemiological evidence indicates that a diet rich in polyphenols protects against developing type 2 diabetes. The phenylethanoid glycoside verbascoside/acteoside, a widespread polyphenolic plant compound, has several biological properties including strong antioxidant, anti-inflammatory and neuroprotective activities. The aim of this research was to test the possible effects of verbascoside on pancreatic β-cells, a target never tested before. Mouse and human β-cells were incubated with verbascoside (0.8–16 µM) for up to five days and a combination of biochemical and imaging techniques were used to assess the β-cell survival and function under normal or endoplasmic reticulum (ER)-stress inducing conditions. We found a dose-dependent protective effect of verbascoside against oxidative stress in clonal and human β-cells. Mechanistic studies revealed that the polyphenol protects β-cells against ER-stress mediated dysfunctions, modulating the activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) branch of the unfolded protein response and promoting mitochondrial dynamics. As a result, increased viability, mitochondrial function and insulin content were detected in these cells. These studies provide the evidence that verbascoside boosts the ability of β-cells to cope with ER-stress, an important contributor of β-cell dysfunction and failure in diabetic conditions and support the therapeutic potential of verbascoside in diabetes. Full article
(This article belongs to the Special Issue Anti-inflammatory Activity of Plant Polyphenols 2.0)
Show Figures

Graphical abstract

16 pages, 3957 KiB  
Article
Perinatal Resveratrol Therapy Prevents Hypertension Programmed by Maternal Chronic Kidney Disease in Adult Male Offspring: Implications of the Gut Microbiome and Their Metabolites
by Chien-Ning Hsu, Chih-Yao Hou, Guo-Ping Chang-Chien, Sufan Lin, Hung-Wei Yang and You-Lin Tain
Biomedicines 2020, 8(12), 567; https://doi.org/10.3390/biomedicines8120567 - 04 Dec 2020
Cited by 33 | Viewed by 2693
Abstract
The gut microbiota plays a critical role in kidney disease and hypertension; however, whether maternal chronic kidney disease (CKD)-induced offspring hypertension is associated with alterations of the microbiota and microbial metabolites remains elusive. Using rat as an animal model, we conducted a maternal [...] Read more.
The gut microbiota plays a critical role in kidney disease and hypertension; however, whether maternal chronic kidney disease (CKD)-induced offspring hypertension is associated with alterations of the microbiota and microbial metabolites remains elusive. Using rat as an animal model, we conducted a maternal adenine-induced CKD model to examine whether adult male offspring develop hypertension and kidney disease. As resveratrol has antioxidant and prebiotic properties, we also aimed to elucidate whether its use in pregnancy and lactation can benefit hypertension programmed by maternal CKD via mediation of the gut microbiota and oxidative stress. Female Sprague-Dawley rats received regular chow (C) or chow supplemented with 0.5% adenine (CKD) from 3 weeks before pregnancy until lactation. One group of the adenine-induced CKD pregnant rats received resveratrol (R; 50 mg/L) in drinking water during gestation and lactation. Male offspring were divided into three groups: C, CKD, and CKD+R. The microbial metabolites analyzed were short chain fatty acids (SCFAs) in feces and trimethylamine (TMA)/trimethylamine N-oxide (TMAO) in plasma. We found perinatal resveratrol therapy protected against maternal CKD-induced hypertension in adult male offspring. The overall microbial compositions and diversity of bacterial community in the three groups were different. Resveratrol therapy increased α-diversity, decreased the Firmicutes to Bacteroidetes ratio, and increased the abundance of the genera Lactobacillus and Bifidobacterium. Perinatal resveratrol therapy increased plasma TMA levels but decreased the plasma TMAO-to-TMA ratio. Although resveratrol had negligible effect on fecal concentrations of SCFAs, it increased G-protein coupled receptor-41 (GPR41) protein levels in the offspring’s kidneys. Additionally, resveratrol therapy increased plasma levels of L-arginine and the L-arginine-to-ADMA ratio (AAR), and decreased oxidative stress. Overall, the protective effects of resveratrol against programmed hypertension are related to gut microbiome remodeling, including an increased abundance of beneficial microbes, mediation of the TMA-TMAO pathway, and alterations of SCFA receptors. Our results highlighted that targeting the microbiome and their metabolites might be potential therapeutic strategies to prevent maternal CKD-induced adverse pregnancy and offspring outcomes. Full article
(This article belongs to the Special Issue Microbial Ecology in Health and Disease)
Show Figures

Figure 1

17 pages, 3913 KiB  
Article
3D Printed Tacrolimus Rectal Formulations Ameliorate Colitis in an Experimental Animal Model of Inflammatory Bowel Disease
by Iria Seoane-Viaño, Noemí Gómez-Lado, Héctor Lázare-Iglesias, Xurxo García-Otero, José Ramón Antúnez-López, Álvaro Ruibal, Juan Jesús Varela-Correa, Pablo Aguiar, Abdul W. Basit, Francisco J. Otero-Espinar, Miguel González-Barcia, Alvaro Goyanes, Asteria Luzardo-Álvarez and Anxo Fernández-Ferreiro
Biomedicines 2020, 8(12), 563; https://doi.org/10.3390/biomedicines8120563 - 02 Dec 2020
Cited by 41 | Viewed by 4433
Abstract
The aim of this study was to fabricate novel self-supporting tacrolimus suppositories using semisolid extrusion 3-dimensional printing (3DP) and to investigate their efficacy in an experimental model of inflammatory bowel disease. Blends of Gelucire 44/14 and coconut oil were employed as lipid excipients [...] Read more.
The aim of this study was to fabricate novel self-supporting tacrolimus suppositories using semisolid extrusion 3-dimensional printing (3DP) and to investigate their efficacy in an experimental model of inflammatory bowel disease. Blends of Gelucire 44/14 and coconut oil were employed as lipid excipients to obtain suppository formulations with self-emulsifying properties, which were then tested in a TNBS (2,4,6-trinitrobenzenesulfonic acid) induced rat colitis model. Disease activity was monitored using PET/CT medical imaging; maximum standardized uptake values (SUVmax), a measure of tissue radiotracer accumulation rate, together with body weight changes and histological assessments, were used as inflammatory indices to monitor treatment efficacy. Following tacrolimus treatment, a significant reduction in SUVmax was observed on days 7 and 10 in the rat colon sections compared to non-treated animals. Histological analysis using Nancy index confirmed disease remission. Moreover, statistical analysis showed a positive correlation (R2 = 71.48%) between SUVmax values and weight changes over time. Overall, this study demonstrates the effectiveness of 3D printed tacrolimus suppositories to ameliorate colitis and highlights the utility of non-invasive PET/CT imaging to evaluate new therapies in the preclinical area. Full article
(This article belongs to the Section Biomedical Materials and Nanomedicine)
Show Figures

Graphical abstract

16 pages, 1517 KiB  
Article
Early Depression Independently of Other Neuropsychiatric Conditions, Influences Disability and Mortality after Stroke (Research Study—Part of PROPOLIS Study)
by Katarzyna Kowalska, Łukasz Krzywoszański, Jakub Droś, Paulina Pasińska, Aleksander Wilk and Aleksandra Klimkowicz-Mrowiec
Biomedicines 2020, 8(11), 509; https://doi.org/10.3390/biomedicines8110509 - 17 Nov 2020
Cited by 15 | Viewed by 3629
Abstract
Post-stroke depression (PSD) is the most frequent neuropsychiatric consequence of stroke. The nature of the relationship between PSD and mortality still remains unknown. One hypothesis is that PSD could be more frequent in those patients who are more vulnerable to physical disability, a [...] Read more.
Post-stroke depression (PSD) is the most frequent neuropsychiatric consequence of stroke. The nature of the relationship between PSD and mortality still remains unknown. One hypothesis is that PSD could be more frequent in those patients who are more vulnerable to physical disability, a mediator variable for higher level of physical damage related to higher risk of mortality. Therefore, the authors’ objective was to explore the assumption that PSD increases disability after stroke, and secondly, that mortality is higher among patients with PSD regardless of stroke severity and other neuropsychiatric conditions. We included 524 consecutive patients with acute stroke or transient ischemic attack, who were screened for depression between 7–10 days after stroke onset. Physical impairment and death were the outcomes measures at evaluation check points three and 12 months post-stroke. PSD independently increased the level of disability three (OR = 1.94, 95% CI 1.31–2.87, p = 0.001), and 12 months post-stroke (OR = 1.61, 95% CI 1.14–2.48, p = 0.009). PSD was also an independent risk factor for death three (OR = 5.68, 95% CI 1.58–20.37, p = 0.008) and 12 months after stroke (OR = 4.53, 95% CI 2.06–9.94, p = 0.001). Our study shows the negative impact of early PSD on the level of disability and survival rates during first year after stroke and supports the assumption that depression may act as an independent mediator for disability leading to death in patients who are more vulnerable for brain injury. Full article
Show Figures

Figure 1

23 pages, 4919 KiB  
Article
8-Hydroxydaidzein, an Isoflavone from Fermented Soybean, Induces Autophagy, Apoptosis, Differentiation, and Degradation of Oncoprotein BCR-ABL in K562 Cells
by Pei-Shan Wu, Jui-Hung Yen, Chih-Yang Wang, Pei-Yi Chen, Jui-Hsiang Hung and Ming-Jiuan Wu
Biomedicines 2020, 8(11), 506; https://doi.org/10.3390/biomedicines8110506 - 16 Nov 2020
Cited by 17 | Viewed by 3054
Abstract
8-Hydroxydaidzein (8-OHD, 7,8,4′-trihydoxyisoflavone) is a hydroxylated derivative of daidzein isolated from fermented soybean products. The aim of this study is to investigate the anti-proliferative effects and the underlying mechanisms of 8-OHD in K562 human chronic myeloid leukemia (CML) cells. We found that 8-OHD [...] Read more.
8-Hydroxydaidzein (8-OHD, 7,8,4′-trihydoxyisoflavone) is a hydroxylated derivative of daidzein isolated from fermented soybean products. The aim of this study is to investigate the anti-proliferative effects and the underlying mechanisms of 8-OHD in K562 human chronic myeloid leukemia (CML) cells. We found that 8-OHD induced reactive oxygen species (ROS) overproduction and cell cycle arrest at the S phase by upregulating p21Cip1 and downregulating cyclin D2 (CCND2) and cyclin-dependent kinase 6 (CDK6) expression. 8-OHD also induced autophagy, caspase-7-dependent apoptosis, and the degradation of BCR-ABL oncoprotein. 8-OHD promoted Early Growth Response 1 (EGR1)-mediated megakaryocytic differentiation as an increased expression of marker genes, CD61 and CD42b, and the formation of multi-lobulated nuclei in enlarged K562 cells. A microarray-based transcriptome analysis revealed a total of 3174 differentially expressed genes (DEGs) after 8-OHD (100 μM) treatment for 48 h. Bioinformatics analysis of DEGs showed that hemopoiesis, cell cycle regulation, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) and Janus kinase/signal transducers and activators of transcription (JAK-STAT)-mediated apoptosis/anti-apoptosis networks were significantly regulated by 8-OHD. Western blot analysis confirmed that 8-OHD significantly induced the activation of MAPK and NF-κB signaling pathways, both of which may be responsible, at least in part, for the stimulation of apoptosis, autophagy, and differentiation in K562 cells. This is the first report on the anti-CML effects of 8-OHD and the combination of experimental and in silico analyses could provide a better understanding for the development of 8-OHD on CML therapy. Full article
Show Figures

Figure 1

38 pages, 7918 KiB  
Review
Basal Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches
by Luca Fania, Dario Didona, Roberto Morese, Irene Campana, Valeria Coco, Francesca Romana Di Pietro, Francesca Ricci, Sabatino Pallotta, Eleonora Candi, Damiano Abeni and Elena Dellambra
Biomedicines 2020, 8(11), 449; https://doi.org/10.3390/biomedicines8110449 - 23 Oct 2020
Cited by 65 | Viewed by 16388
Abstract
Basal cell carcinoma (BCC) is the most common human cancer worldwide, and is a subtype of nonmelanoma skin cancer, characterized by a constantly increasing incidence due to an aging population and widespread sun exposure. Although the mortality from BCC is negligible, this tumor [...] Read more.
Basal cell carcinoma (BCC) is the most common human cancer worldwide, and is a subtype of nonmelanoma skin cancer, characterized by a constantly increasing incidence due to an aging population and widespread sun exposure. Although the mortality from BCC is negligible, this tumor can be associated with significant morbidity and cost. This review presents a literature overview of BCC from pathophysiology to novel therapeutic approaches. Several histopathological BCC subtypes with different prognostic values have been described. Dermoscopy and, more recently, reflectance confocal microscopy have largely improved BCC diagnosis. Although surgery is the first-line treatment for localized BCC, other nonsurgical local treatment options are available. BCC pathogenesis depends on the interaction between environmental and genetic characteristics of the patient. Specifically, an aberrant activation of Hedgehog signaling pathway is implicated in its pathogenesis. Notably, Hedgehog signaling inhibitors, such as vismodegib and sonidegib, are successfully used as targeted treatment for advanced or metastatic BCC. Furthermore, the implementation of prevention measures has demonstrated to be useful in the patient management. Full article
(This article belongs to the Special Issue Skin Cancer: From Pathophysiology to Novel Therapeutic Approaches 2.0)
Show Figures

Figure 1

19 pages, 2773 KiB  
Review
The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy
by Elisabeth A. Messner, Thomas M. Steele, Maria Malvina Tsamouri, Nazila Hejazi, Allen C. Gao, Maria Mudryj and Paramita M. Ghosh
Biomedicines 2020, 8(10), 422; https://doi.org/10.3390/biomedicines8100422 - 15 Oct 2020
Cited by 42 | Viewed by 10839
Abstract
The androgen receptor (AR) plays a predominant role in prostate cancer (PCa) pathology. It consists of an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR), and a ligand-binding domain (LBD) that binds androgens, including testosterone (T) and dihydrotestosterone (DHT). Ligand [...] Read more.
The androgen receptor (AR) plays a predominant role in prostate cancer (PCa) pathology. It consists of an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR), and a ligand-binding domain (LBD) that binds androgens, including testosterone (T) and dihydrotestosterone (DHT). Ligand binding at the LBD promotes AR dimerization and translocation to the nucleus where the DBD binds target DNA. In PCa, AR signaling is perturbed by excessive androgen synthesis, AR amplification, mutation, or the formation of AR alternatively spliced variants (AR-V) that lack the LBD. Current therapies for advanced PCa include androgen synthesis inhibitors that suppress T and/or DHT synthesis, and AR inhibitors that prevent ligand binding at the LBD. However, AR mutations and AR-Vs render LBD-specific therapeutics ineffective. The DBD and NTD are novel targets for inhibition as both perform necessary roles in AR transcriptional activity and are less susceptible to AR alternative splicing compared to the LBD. DBD and NTD inhibition can potentially extend patient survival, improve quality of life, and overcome predominant mechanisms of resistance to current therapies. This review discusses various small molecule and other inhibitors developed against the DBD and NTD—and the current state of the available compounds in clinical development. Full article
(This article belongs to the Special Issue Advanced Research in Prostate Cancer)
Show Figures

Figure 1

30 pages, 2041 KiB  
Review
Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review
by Francisco Javier Álvarez-Martínez, Enrique Barrajón-Catalán and Vicente Micol
Biomedicines 2020, 8(10), 405; https://doi.org/10.3390/biomedicines8100405 - 11 Oct 2020
Cited by 87 | Viewed by 14166
Abstract
Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, [...] Read more.
Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the development of future therapeutic strategies. Full article
(This article belongs to the Special Issue Natural Medicine in Therapy)
Show Figures

Graphical abstract

22 pages, 2942 KiB  
Article
Supplementing Glycine and N-acetylcysteine (GlyNAC) in Aging HIV Patients Improves Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Endothelial Dysfunction, Insulin Resistance, Genotoxicity, Strength, and Cognition: Results of an Open-Label Clinical Trial
by Premranjan Kumar, Chun Liu, James W. Suliburk, Charles G. Minard, Raja Muthupillai, Shaji Chacko, Jean W. Hsu, Farook Jahoor and Rajagopal V. Sekhar
Biomedicines 2020, 8(10), 390; https://doi.org/10.3390/biomedicines8100390 - 30 Sep 2020
Cited by 19 | Viewed by 12778
Abstract
Background: Patients with HIV (PWH) develop geriatric comorbidities, including functional and cognitive decline at a younger age. However, contributing mechanisms are unclear and interventions are lacking. We hypothesized that deficiency of the antioxidant protein glutathione (GSH) contributes to multiple defects representing premature aging [...] Read more.
Background: Patients with HIV (PWH) develop geriatric comorbidities, including functional and cognitive decline at a younger age. However, contributing mechanisms are unclear and interventions are lacking. We hypothesized that deficiency of the antioxidant protein glutathione (GSH) contributes to multiple defects representing premature aging in PWH, and that these defects could be improved by supplementing the GSH precursors glycine and N-acetylcysteine (GlyNAC). Methods: We conducted an open label clinical trial where eight PWH and eight matched uninfected-controls were studied at baseline. PWH were studied again 12-weeks after receiving GlyNAC, and 8-weeks after stopping GlyNAC. Controls did not receive supplementation. Outcome measures included red-blood cell and muscle GSH concentrations, mitochondrial function, mitophagy and autophagy, oxidative stress, inflammation, endothelial function, genomic damage, insulin resistance, glucose production, muscle-protein breakdown rates, body composition, physical function and cognition. Results: PWH had significant defects in measured outcomes, which improved with GlyNAC supplementation. However, benefits receded after stopping GlyNAC. Conclusions: This open label trial finds that PWH have premature aging based on multiple biological and functional defects, and identifies novel mechanistic explanations for cognitive and physical decline. Nutritional supplementation with GlyNAC improves comorbidities suggestive of premature aging in PWH including functional and cognitive decline, and warrants additional investigation. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

42 pages, 1306 KiB  
Review
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions
by Abbas Jarrahi, Molly Braun, Meenakshi Ahluwalia, Rohan V. Gupta, Michael Wilson, Stephanie Munie, Pankaj Ahluwalia, John R. Vender, Fernando L. Vale, Krishnan M. Dhandapani and Kumar Vaibhav
Biomedicines 2020, 8(10), 389; https://doi.org/10.3390/biomedicines8100389 - 29 Sep 2020
Cited by 91 | Viewed by 15934
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative [...] Read more.
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury. Full article
Show Figures

Graphical abstract

14 pages, 3663 KiB  
Article
Lupeol, a Plant-Derived Triterpenoid, Protects Mice Brains against Aβ-Induced Oxidative Stress and Neurodegeneration
by Riaz Ahmad, Amjad Khan, Hyeon Jin Lee, Inayat Ur Rehman, Ibrahim Khan, Sayed Ibrar Alam and Myeong Ok Kim
Biomedicines 2020, 8(10), 380; https://doi.org/10.3390/biomedicines8100380 - 26 Sep 2020
Cited by 24 | Viewed by 3628
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that represents 60–70% of all dementia cases. AD is characterized by the formation and accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuronal cell loss. Further accumulation of Aβ in the brain induces oxidative stress, [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that represents 60–70% of all dementia cases. AD is characterized by the formation and accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuronal cell loss. Further accumulation of Aβ in the brain induces oxidative stress, neuroinflammation, and synaptic and memory dysfunction. In this study, we investigated the antioxidant and neuroprotective effects of the natural triterpenoid lupeol in the Aβ1–42 mouse model of AD. An Intracerebroventricular injection (i.c.v.) of Aβ (3 µL/5 min/mouse) into the brain of a mouse increased the reactive oxygen species (ROS) levels, neuroinflammation, and memory and cognitive dysfunction. The oral administration of lupeol at a dose of 50 mg/kg for two weeks significantly decreased the oxidative stress, neuroinflammation, and memory impairments. Lupeol decreased the oxidative stress via the activation of nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) in the brain of adult mice. Moreover, lupeol treatment prevented neuroinflammation by suppressing activated glial cells and inflammatory mediators. Additionally, lupeol treatment significantly decreased the accumulation of Aβ and beta-secretase-1 (BACE-1) expression and enhanced the memory and cognitive function in the Aβ-mouse model of AD. To the best of our knowledge, this is the first study to investigate the anti-oxidative and neuroprotective effects of lupeol against Aβ1–42-induced neurotoxicity. Our findings suggest that lupeol could serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD. Full article
(This article belongs to the Special Issue Biomarkers in Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 2052 KiB  
Article
Plasma APE1/Ref-1 Correlates with Atherosclerotic Inflammation in ApoE−/− Mice
by Yu Ran Lee, Hee Kyoung Joo, Eun-Ok Lee, Myoung Soo Park, Hyun Sil Cho, Sungmin Kim, Hao Jin, Jin-Ok Jeong, Cuk-Seong Kim and Byeong Hwa Jeon
Biomedicines 2020, 8(9), 366; https://doi.org/10.3390/biomedicines8090366 - 21 Sep 2020
Cited by 15 | Viewed by 3121
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is involved in DNA base repair and reducing activity. However, the role of APE1/Ref-1 in atherosclerosis is unclear. Herein, we investigated the role of APE1/Ref-1 in atherosclerotic apolipoprotein E (ApoE−/−) mice fed with a Western-type diet. [...] Read more.
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is involved in DNA base repair and reducing activity. However, the role of APE1/Ref-1 in atherosclerosis is unclear. Herein, we investigated the role of APE1/Ref-1 in atherosclerotic apolipoprotein E (ApoE−/−) mice fed with a Western-type diet. We found that serologic APE1/Ref-1 was strongly correlated with vascular inflammation in these mice. Neutrophil/lymphocyte ratio (NLR), endothelial cell/macrophage activation, and atherosclerotic plaque formation, reflected by atherosclerotic inflammation, were increased in the ApoE−/− mice fed with a Western-type diet. APE1/Ref-1 expression was upregulated in aortic tissues of these mice, and was co-localized with cells positive for cluster of differentiation 31 (CD31) and galectin-3, suggesting endothelial cell/macrophage expression of APE1/Ref-1. Interestingly, APE1/Ref-1 plasma levels of ApoE−/− mice fed with a Western-type diet were significantly increased compared with those of the mice fed with normal diet (15.76 ± 3.19 ng/mL vs. 3.51 ± 0.50 ng/mL, p < 0.05), and were suppressed by atorvastatin administration. Correlation analysis showed high correlation between plasma APE1/Ref-1 levels and NLR, a marker of systemic inflammation. The cut-off value for APE1/Ref-1 for predicting atherosclerotic inflammation at 4.903 ng/mL showed sensitivity of 100% and specificity of 91%. We conclude that APE1/Ref-1 expression is upregulated in aortic endothelial cells/macrophages of atherosclerotic mice, and that plasma APE1/Ref-1 levels could predict atherosclerotic inflammation. Full article
Show Figures

Graphical abstract

34 pages, 9048 KiB  
Review
Integrin-Targeting Peptides for the Design of Functional Cell-Responsive Biomaterials
by Junwei Zhao, Federica Santino, Daria Giacomini and Luca Gentilucci
Biomedicines 2020, 8(9), 307; https://doi.org/10.3390/biomedicines8090307 - 25 Aug 2020
Cited by 44 | Viewed by 9285
Abstract
Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of [...] Read more.
Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of integrins are glycoproteins expressed on the cell surface or proteins of the extracellular matrix. For this reason, short peptides or peptidomimetic sequences that reproduce the integrin-binding motives have attracted much attention as potential drugs. When challenged in clinical trials, these peptides/peptidomimetics let to contrasting and disappointing results. In the search for alternative utilizations, the integrin peptide ligands have been conjugated onto nanoparticles, materials, or drugs and drug carrier systems, for specific recognition or delivery of drugs to cells overexpressing the targeted integrins. Recent research in peptidic integrin ligands is exploring new opportunities, in particular for the design of nanostructured, micro-fabricated, cell-responsive, stimuli-responsive, smart materials. Full article
Show Figures

Figure 1

13 pages, 10005 KiB  
Article
A New Islet Transplantation Method Combining Mesenchymal Stem Cells with Recombinant Peptide Pieces, Microencapsulated Islets, and Mesh Bags
by Ryo Kogawa, Kentaro Nakamura and Yusuke Mochizuki
Biomedicines 2020, 8(9), 299; https://doi.org/10.3390/biomedicines8090299 - 21 Aug 2020
Cited by 20 | Viewed by 3648
Abstract
Microencapsulated islet transplantation was widely studied as a promising treatment for type 1 diabetes mellitus. However, micro-encapsulated islet transplantation has the following problems—early dysfunction of the islets due to the inflammatory reaction at the transplantation site, and hyponutrition and hypoxia due to a [...] Read more.
Microencapsulated islet transplantation was widely studied as a promising treatment for type 1 diabetes mellitus. However, micro-encapsulated islet transplantation has the following problems—early dysfunction of the islets due to the inflammatory reaction at the transplantation site, and hyponutrition and hypoxia due to a lack of blood vessels around the transplantation site, and difficulty in removal of the islets. On the other hand, we proposed a cell transplantation technique called CellSaic, which was reported to enhance the vascular induction effect of mesenchymal stem cells (MSCs) in CellSaic form, and to enhance the effect of islet transplantation through co-transplantation. Therefore, we performed islet transplantation in diabetic mice by combining three components—microencapsulated islets, MSC-CellSaic, and a mesh bag that encapsulates them and enables their removal. Mesh pockets were implanted in the peritoneal cavity of Balb/c mice as implantation sites. After 4 weeks of implantation, a pocket was opened and transplanted with (1) pancreatic islets, (2) microencapsulated islets, and (3) microencapsulated islets + MSC-CellSaic. Four weeks of observation of blood glucose levels showed that the MSC-CellSaic co-transplant group showed a marked decrease in blood glucose levels, compared to the other groups. A three-component configuration of microcapsules, MSC-CellSaic, and mesh bag was shown to enhance the efficacy of islet transplantation. Full article
(This article belongs to the Special Issue Regenerative Medicine in Diabetes)
Show Figures

Figure 1

12 pages, 2369 KiB  
Article
Ilimaquinone Induces Apoptosis and Autophagy in Human Oral Squamous Cell Carcinoma Cells
by Cheng-Wen Lin, Li-Yuan Bai, Jui-Hsin Su, Chang-Fang Chiu, Wei-Yu Lin, Wei-Ting Huang, Ming-Cheng Shih, Yu-Ting Huang, Jing-Lan Hu and Jing-Ru Weng
Biomedicines 2020, 8(9), 296; https://doi.org/10.3390/biomedicines8090296 - 20 Aug 2020
Cited by 12 | Viewed by 2289
Abstract
In this study, the anti-tumor activity of ilimaquinone (IQ), a sesquiterpene quinone isolated from marine sponge Halichondria sp., in oral squamous cell carcinoma (OSCC) cells, was investigated. IQ suppressed the viability of the OSCC cell lines SCC4 and SCC2095 with IC50 values [...] Read more.
In this study, the anti-tumor activity of ilimaquinone (IQ), a sesquiterpene quinone isolated from marine sponge Halichondria sp., in oral squamous cell carcinoma (OSCC) cells, was investigated. IQ suppressed the viability of the OSCC cell lines SCC4 and SCC2095 with IC50 values of 7.5 and 8.5 μM, respectively. Flow cytometric analysis demonstrated that IQ induced caspase-dependent apoptosis in SCC4 cells and modulated the expression of several cell growth-related gene products, including Akt, p38, Mcl-1, and p53. Notably, p53 knockdown caused higher resistance to IQ’s anti-tumor activity. In addition, IQ increased reactive oxygen species generation, which was partially reversed by the addition of antioxidants. Furthermore, it triggered autophagy, as evidenced by acidic organelle formation and LC3B-II and Atg5 expression in SCC4 cells. Pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine partially decreased IQ-induced apoptosis, suggesting that IQ induced protective autophagy. In summary, IQ has potential to be used in OSCC therapy. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

18 pages, 5908 KiB  
Article
Neutralizing Effects of Small Molecule Inhibitors and Metal Chelators on Coagulopathic Viperinae Snake Venom Toxins
by Chunfang Xie, Laura-Oana Albulescu, Mátyás A. Bittenbinder, Govert W. Somsen, Freek J. Vonk, Nicholas R. Casewell and Jeroen Kool
Biomedicines 2020, 8(9), 297; https://doi.org/10.3390/biomedicines8090297 - 20 Aug 2020
Cited by 27 | Viewed by 4049
Abstract
Animal-derived antivenoms are the only specific therapies currently available for the treatment of snake envenoming, but these products have a number of limitations associated with their efficacy, safety and affordability for use in tropical snakebite victims. Small molecule drugs and drug candidates are [...] Read more.
Animal-derived antivenoms are the only specific therapies currently available for the treatment of snake envenoming, but these products have a number of limitations associated with their efficacy, safety and affordability for use in tropical snakebite victims. Small molecule drugs and drug candidates are regarded as promising alternatives for filling the critical therapeutic gap between snake envenoming and effective treatment. In this study, by using an advanced analytical technique that combines chromatography, mass spectrometry and bioassaying, we investigated the effect of several small molecule inhibitors that target phospholipase A2 (varespladib) and snake venom metalloproteinase (marimastat, dimercaprol and DMPS) toxin families on inhibiting the activities of coagulopathic toxins found in Viperinae snake venoms. The venoms of Echis carinatus, Echis ocellatus, Daboia russelii and Bitis arietans, which are known for their potent haemotoxicities, were fractionated in high resolution onto 384-well plates using liquid chromatography followed by coagulopathic bioassaying of the obtained fractions. Bioassay activities were correlated to parallel recorded mass spectrometric and proteomics data to assign the venom toxins responsible for coagulopathic activity and assess which of these toxins could be neutralized by the inhibitors under investigation. Our results showed that the phospholipase A2-inhibitor varespladib neutralized the vast majority of anticoagulation activities found across all of the tested snake venoms. Of the snake venom metalloproteinase inhibitors, marimastat demonstrated impressive neutralization of the procoagulation activities detected in all of the tested venoms, whereas dimercaprol and DMPS could only partially neutralize these activities at the doses tested. Our results provide additional support for the concept that combinations of small molecules, particularly the combination of varespladib with marimastat, serve as a drug-repurposing opportunity to develop new broad-spectrum inhibitor-based therapies for snakebite envenoming. Full article
(This article belongs to the Special Issue Animal Venoms–Curse or Cure?)
Show Figures

Figure 1

23 pages, 1777 KiB  
Review
Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies
by Gabriela Reyes-Castellanos, Rawand Masoud and Alice Carrier
Biomedicines 2020, 8(8), 270; https://doi.org/10.3390/biomedicines8080270 - 03 Aug 2020
Cited by 39 | Viewed by 5777
Abstract
Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago (“Warburg effect” or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. [...] Read more.
Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago (“Warburg effect” or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. There is now accumulating evidence that most cancers also rely on mitochondria to satisfy their metabolic needs. Indeed, the current view of cancer metabolism places mitochondria as key actors in all facets of cancer progression. Importantly, mitochondrial metabolism has become a very promising target in cancer therapy, including for refractory cancers such as Pancreatic Ductal AdenoCarcinoma (PDAC). In particular, mitochondrial oxidative phosphorylation (OXPHOS) is an important target in cancer therapy. Other therapeutic strategies include the targeting of glutamine and fatty acids metabolism, as well as the inhibition of the TriCarboxylic Acid (TCA) cycle intermediates. A better knowledge of how pancreatic cancer cells regulate mitochondrial metabolism will allow the identification of metabolic vulnerabilities and thus novel and more efficient therapeutic options for the benefit of each patient. Full article
Show Figures

Figure 1

15 pages, 567 KiB  
Review
Lipid Metabolism in Macrophages: Focus on Atherosclerosis
by Vasily N. Sukhorukov, Victoria A. Khotina, Yegor S. Chegodaev, Ekaterina Ivanova, Igor A. Sobenin and Alexander N. Orekhov
Biomedicines 2020, 8(8), 262; https://doi.org/10.3390/biomedicines8080262 - 01 Aug 2020
Cited by 57 | Viewed by 7155
Abstract
Mechanisms of lipid homeostasis and its impairment are of crucial importance for atherogenesis, and their understanding is necessary for successful development of new therapeutic approaches. In the arterial wall, macrophages play a prominent role in intracellular lipid accumulation, giving rise to foam cells [...] Read more.
Mechanisms of lipid homeostasis and its impairment are of crucial importance for atherogenesis, and their understanding is necessary for successful development of new therapeutic approaches. In the arterial wall, macrophages play a prominent role in intracellular lipid accumulation, giving rise to foam cells that populate growing atherosclerotic plaques. Under normal conditions, macrophages are able to process substantial amounts of lipids and cholesterol without critical overload of the catabolic processes. However, in atherosclerosis, these pathways become inefficient, leading to imbalance in cholesterol and lipid metabolism and disruption of cellular functions. In this review, we summarize the existing knowledge on the involvement of macrophage lipid metabolism in atherosclerosis development, including both the results of recent studies and classical concepts, and provide a detailed description of these processes from the moment of lipid uptake with lipoproteins to cholesterol efflux. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

13 pages, 3060 KiB  
Article
Curcumin Nanoparticles and Their Cytotoxicity in Docetaxel-Resistant Castration-Resistant Prostate Cancer Cells
by Irin Tanaudommongkon, Asama Tanaudommongkon, Priyanka Prathipati, Joey Trieu Nguyen, Evan T. Keller and Xiaowei Dong
Biomedicines 2020, 8(8), 253; https://doi.org/10.3390/biomedicines8080253 - 30 Jul 2020
Cited by 26 | Viewed by 2905
Abstract
Most prostate cancer patients develop resistance to anti-androgen therapy. This is referred to as castration-resistant prostate cancer (CRPC). Docetaxel (DTX) is the mainstay treatment against CRPC. However, over time patients eventually develop DTX resistance, which is the cause of the cancer-related mortality. Curcumin [...] Read more.
Most prostate cancer patients develop resistance to anti-androgen therapy. This is referred to as castration-resistant prostate cancer (CRPC). Docetaxel (DTX) is the mainstay treatment against CRPC. However, over time patients eventually develop DTX resistance, which is the cause of the cancer-related mortality. Curcumin (CUR) as a natural compound has been shown to have very broad pharmacological activities, e.g., anti-inflammatory and antioxidant properties. However, CUR is very hydrophobic. The objective of this study was to develop CUR nanoparticles (NPs) and evaluate their cytotoxicity in DTX-resistant CRPC cells for the treatment of DTX-resistant CRPC. We tested solubility of CUR in different lipids and surfactants. Finally, Miglyol 812 and D-alpha-tocopheryl poly (ethylene glycol) succinate 1000 (TPGS) were chosen to prepare lipid-based NPs for CUR. We fully characterized CUR NPs that had particle size < 150 nm, high drug loading (7.5%), and entrapment efficiency (90%). Moreover, the CUR NPs were successfully lyophilized without using cryoprotectants. We tested the cytotoxicity of blank NPs, free CUR, and CUR NPs in sensitive DU145 and PC3 cells as well as their matching docetaxel-resistant cells. Cytotoxicity studies showed that blank NPs were very safe for all tested prostate cancer cell lines. Free CUR overcame the resistance in PC3 cells, but not in DU145 cells. In contrast, CUR NPs significantly increased CUR potency in all tested cell lines. Importantly, CUR NPs completely restored CUR potency in both resistant DU145 and PC3 cells. These results demonstrate that the CUR NPs have potential to overcome DTX resistance in CRPC. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

17 pages, 4186 KiB  
Article
Targeting NF-κB Signaling by Calebin A, a Compound of Turmeric, in Multicellular Tumor Microenvironment: Potential Role of Apoptosis Induction in CRC Cells
by Constanze Buhrmann, Parviz Shayan, Kishore Banik, Ajaikumar B. Kunnumakkara, Peter Kubatka, Lenka Koklesova and Mehdi Shakibaei
Biomedicines 2020, 8(8), 236; https://doi.org/10.3390/biomedicines8080236 - 22 Jul 2020
Cited by 51 | Viewed by 5039
Abstract
Increasing lines of evidence suggest that chronic inflammation mediates most chronic diseases, including cancer. The transcription factor, NF-κB, has been shown to be a major regulator of inflammation and metastasis in tumor cells. Therefore, compounds or any natural agents that can inhibit NF-κB [...] Read more.
Increasing lines of evidence suggest that chronic inflammation mediates most chronic diseases, including cancer. The transcription factor, NF-κB, has been shown to be a major regulator of inflammation and metastasis in tumor cells. Therefore, compounds or any natural agents that can inhibit NF-κB activation have the potential to prevent and treat cancer. However, the mechanism by which Calebin A, a component of turmeric, regulates inflammation and disrupts the interaction between HCT116 colorectal cancer (CRC) cells and multicellular tumor microenvironment (TME) is still poorly understood. The 3D-alginate HCT116 cell cultures in TME were treated with Calebin A, BMS-345541, and dithiothreitol (DTT) and examined for invasiveness, proliferation, and apoptosis. The mechanism of TME-induced malignancy of cancer cells was confirmed by phase contrast, Western blotting, immunofluorescence, and DNA-binding assay. We found through DNA binding assay, that Calebin A inhibited TME-induced NF-κB activation in a dose-dependent manner. As a result of this inhibition, NF-κB phosphorylation and NF-κB nuclear translocation were down-modulated. Calebin A, or IκB-kinase (IKK) inhibitor (BMS-345541) significantly inhibited the direct interaction of nuclear p65 to DNA, and interestingly this interaction was reversed by DTT. Calebin A also suppressed the expression of NF-κB-promoted anti-apoptotic (Bcl-2, Bcl-xL, survivin), proliferation (Cyclin D1), invasion (MMP-9), metastasis (CXCR4), and down-regulated apoptosis (Caspase-3) gene biomarkers, leading to apoptosis in HCT116 cells. These results suggest that Calebin A can suppress multicellular TME-promoted CRC cell invasion and malignancy by inhibiting the NF-κB-promoting inflammatory pathway associated with carcinogenesis, underlining the potential of Calebin A for CRC treatment. Full article
Show Figures

Graphical abstract

24 pages, 2153 KiB  
Review
Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article
by Stanley Cohan, Elisabeth Lucassen, Kyle Smoot, Justine Brink and Chiayi Chen
Biomedicines 2020, 8(7), 227; https://doi.org/10.3390/biomedicines8070227 - 18 Jul 2020
Cited by 38 | Viewed by 5481
Abstract
Sphingosine-1-phosphate (S1P), via its G-protein-coupled receptors, is a signaling molecule with important regulatory properties on numerous, widely varied cell types. Five S1P receptors (S1PR1-5) have been identified, each with effects determined by their unique G-protein-driven downstream pathways. The discovery that lymphocyte egress from [...] Read more.
Sphingosine-1-phosphate (S1P), via its G-protein-coupled receptors, is a signaling molecule with important regulatory properties on numerous, widely varied cell types. Five S1P receptors (S1PR1-5) have been identified, each with effects determined by their unique G-protein-driven downstream pathways. The discovery that lymphocyte egress from peripheral lymphoid organs is promoted by S1P via S1PR-1 stimulation led to the development of pharmacological agents which are S1PR antagonists. These agents promote lymphocyte sequestration and reduce lymphocyte-driven inflammatory damage of the central nervous system (CNS) in animal models, encouraging their examination of efficacy in the treatment of multiple sclerosis (MS). Preclinical research has also demonstrated direct protective effects of S1PR antagonists within the CNS, by modulation of S1PRs, particularly S1PR-1 and S1PR-5, and possibly S1PR-2, independent of effects upon lymphocytes. Three of these agents, fingolimod, siponimod and ozanimod have been approved, and ponesimod has been submitted for regulatory approval. In patients with MS, these agents reduce relapse risk, sustained disability progression, magnetic resonance imaging markers of disease activity, and whole brain and/or cortical and deep gray matter atrophy. Future opportunities in the development of more selective and intracellular S1PR-driven downstream pathway modulators may expand the breadth of agents to treat MS. Full article
(This article belongs to the Special Issue Multiple Sclerosis: Diagnosis and Treatment II)
Show Figures

Figure 1

15 pages, 9448 KiB  
Article
Proteome of Glioblastoma-Derived Exosomes as a Source of Biomarkers
by Stanislav Naryzhny, Andrey Volnitskiy, Arthur Kopylov, Elena Zorina, Roman Kamyshinsky, Viktor Bairamukov, Luiza Garaeva, Anatoly Shlikht and Tatiana Shtam
Biomedicines 2020, 8(7), 216; https://doi.org/10.3390/biomedicines8070216 - 16 Jul 2020
Cited by 38 | Viewed by 3796
Abstract
Extracellular vesicles (EV) are involved in important processes of glioblastoma multiforme (GBM), including malignancy and invasion. EV secreted by glioblastoma cells may cross the hematoencephalic barrier and carry molecular cargo derived from the tumor into the peripheral circulation. Therefore, the determination of the [...] Read more.
Extracellular vesicles (EV) are involved in important processes of glioblastoma multiforme (GBM), including malignancy and invasion. EV secreted by glioblastoma cells may cross the hematoencephalic barrier and carry molecular cargo derived from the tumor into the peripheral circulation. Therefore, the determination of the molecular composition of exosomes released by glioblastoma cells seems to be a promising approach for the development of non-invasive methods of the detection of the specific exosomal protein markers in the peripheral blood. The present study aimed to determine the common exosomal proteins presented in preparations from different cell lines and search potential glioblastoma biomarkers in exosomes. We have performed proteomics analysis of exosomes obtained from the conditioned culture medium of five glioblastoma cell lines. A list of 133 proteins common for all these samples was generated. Based on the data obtained, virtual two-dimensional electrophoresis (2DE) maps of proteins presented in exosomes of glioblastoma cells were constructed and the gene ontology (GO) analysis of exosome proteins was performed. A correlation between overexpressed in glial cell proteins and their presence in exosomes have been found. Thus, the existence of many potential glioblastoma biomarkers in exosomes was confirmed. Full article
Show Figures

Graphical abstract

16 pages, 894 KiB  
Review
Bi- and Tri-Specific T Cell Engager-Armed Oncolytic Viruses: Next-Generation Cancer Immunotherapy
by Zong Sheng Guo, Michael T. Lotze, Zhi Zhu, Walter J. Storkus and Xiao-Tong Song
Biomedicines 2020, 8(7), 204; https://doi.org/10.3390/biomedicines8070204 - 10 Jul 2020
Cited by 41 | Viewed by 7447
Abstract
Oncolytic viruses (OVs) are potent anti-cancer biologics with a bright future, having substantial evidence of efficacy in patients with cancer. Bi- and tri-specific antibodies targeting tumor antigens and capable of activating T cell receptor signaling have also shown great promise in cancer immunotherapy. [...] Read more.
Oncolytic viruses (OVs) are potent anti-cancer biologics with a bright future, having substantial evidence of efficacy in patients with cancer. Bi- and tri-specific antibodies targeting tumor antigens and capable of activating T cell receptor signaling have also shown great promise in cancer immunotherapy. In a cutting-edge strategy, investigators have incorporated the two independent anti-cancer modalities, transforming them into bi- or tri-specific T cell engager (BiTE or TriTE)-armed OVs for targeted immunotherapy. Since 2014, multiple research teams have studied this combinatorial strategy, and it showed substantial efficacy in various tumor models. Here, we first provide a brief overview of the current status of oncolytic virotherapy and the use of multi-specific antibodies for cancer immunotherapy. We then summarize progress on BiTE and TriTE antibodies as a novel class of cancer therapeutics in preclinical and clinical studies, followed by a discussion of BiTE- or TriTE-armed OVs for cancer therapy in translational models. In addition, T cell receptor mimics (TCRm) have been developed into BiTEs and are expected to greatly expand the application of BiTEs and BiTE-armed OVs for the effective targeting of intracellular tumor antigens. Future applications of such innovative combination strategies are emerging as precision cancer immunotherapies. Full article
(This article belongs to the Special Issue Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer II)
Show Figures

Graphical abstract

15 pages, 684 KiB  
Review
Endothelial Dysfunction in Diabetes
by Yusuke Takeda, Keiichiro Matoba, Kensuke Sekiguchi, Yosuke Nagai, Tamotsu Yokota, Kazunori Utsunomiya and Rimei Nishimura
Biomedicines 2020, 8(7), 182; https://doi.org/10.3390/biomedicines8070182 - 29 Jun 2020
Cited by 42 | Viewed by 9694
Abstract
Diabetes is a worldwide health issue closely associated with cardiovascular events. Given the pandemic of obesity, the identification of the basic underpinnings of vascular disease is strongly needed. Emerging evidence has suggested that endothelial dysfunction is a critical step in the progression of [...] Read more.
Diabetes is a worldwide health issue closely associated with cardiovascular events. Given the pandemic of obesity, the identification of the basic underpinnings of vascular disease is strongly needed. Emerging evidence has suggested that endothelial dysfunction is a critical step in the progression of atherosclerosis. However, how diabetes affects the endothelium is poorly understood. Experimental and clinical studies have illuminated the tight link between insulin resistance and endothelial dysfunction. In addition, macrophage polarization from M2 towards M1 contributes to the process of endothelial damage. The possibility that novel classes of anti-hyperglycemic agents exert beneficial effects on the endothelial function and macrophage polarization has been raised. In this review, we discuss the current status of knowledge regarding the pathological significance of insulin signaling in endothelium. Finally, we summarize recent therapeutic strategies against endothelial dysfunction with an emphasis on macrophage polarity. Full article
Show Figures

Figure 1

16 pages, 1488 KiB  
Review
Mitochondrial Dysfunction and DNA Damage in the Context of Pathogenesis of Atherosclerosis
by Taisiia Shemiakova, Ekaterina Ivanova, Andrey V. Grechko, Elena V. Gerasimova, Igor A. Sobenin and Alexander N. Orekhov
Biomedicines 2020, 8(6), 166; https://doi.org/10.3390/biomedicines8060166 - 18 Jun 2020
Cited by 40 | Viewed by 5278
Abstract
Atherosclerosis is a multifactorial disease of the cardiovascular system associated with aging, inflammation, and oxidative stress. An important role in the development of atherosclerosis play elevated plasma lipoproteins. A number of external factors (smoking, diabetes, infections) can also contribute to the development of [...] Read more.
Atherosclerosis is a multifactorial disease of the cardiovascular system associated with aging, inflammation, and oxidative stress. An important role in the development of atherosclerosis play elevated plasma lipoproteins. A number of external factors (smoking, diabetes, infections) can also contribute to the development of the disease. For a long time, atherosclerosis remains asymptomatic, therefore, the search for early markers of the disease is critical for the timely management and better outcomes for patients. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage appear to connect different aspects of atherosclerosis pathogenesis. To date, multiple lines of research have demonstrated the strong association of mitochondrial dysfunction with the development of various human diseases. Therapies aimed at restoring the mitochondrial function are being actively developed, and are expected to broaden the therapeutic possibilities for several chronic human diseases. The development of such therapies depends on our understanding of the functional roles of different mtDNA variants associated with one or another disorder, and the molecular mechanisms linking mitochondrial dysfunction with a given pathological feature. These questions are, however, challenging and require future intensive research. This review summarizes the recent studies and describes the central processes of the development of atherosclerosis, and shows their relationship with mitochondrial dysfunction. One of the promising therapeutic approaches for future atherosclerosis treatments is the use of mitochondria-targeted antioxidants. Future studies should focus on characterizing the mechanisms of mitochondrial involvement in cardiovascular pathologies to better direct the search for novel therapies. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

17 pages, 1322 KiB  
Article
Varespladib Inhibits the Phospholipase A2 and Coagulopathic Activities of Venom Components from Hemotoxic Snakes
by Chunfang Xie, Laura-Oana Albulescu, Kristina B. M. Still, Julien Slagboom, Yumei Zhao, Zhengjin Jiang, Govert W. Somsen, Freek J. Vonk, Nicholas R. Casewell and Jeroen Kool
Biomedicines 2020, 8(6), 165; https://doi.org/10.3390/biomedicines8060165 - 17 Jun 2020
Cited by 22 | Viewed by 3677
Abstract
Phospholipase A2 (PLA2) enzymes are important toxins found in many snake venoms, and they can exhibit a variety of toxic activities including causing hemolysis and/or anticoagulation. In this study, the inhibiting effects of the small molecule PLA2 inhibitor varespladib [...] Read more.
Phospholipase A2 (PLA2) enzymes are important toxins found in many snake venoms, and they can exhibit a variety of toxic activities including causing hemolysis and/or anticoagulation. In this study, the inhibiting effects of the small molecule PLA2 inhibitor varespladib on snake venom PLA2s was investigated by nanofractionation analytics, which combined chromatography, mass spectrometry (MS), and bioassays. The venoms of the medically important snake species Bothrops asper, Calloselasma rhodostoma, Deinagkistrodon acutus, Daboia russelii, Echis carinatus, Echis ocellatus, and Oxyuranus scutellatus were separated by liquid chromatography (LC) followed by nanofractionation and interrogation of the fractions by a coagulation assay and a PLA2 assay. Next, we assessed the ability of varespladib to inhibit the activity of enzymatic PLA2s and the coagulopathic toxicities induced by fractionated snake venom toxins, and identified these bioactive venom toxins and those inhibited by varespladib by using parallel recorded LC-MS data and proteomics analysis. We demonstrated here that varespladib was not only capable of inhibiting the PLA2 activities of hemotoxic snake venoms, but can also effectively neutralize the coagulopathic toxicities (most profoundly anticoagulation) induced by venom toxins. While varespladib effectively inhibited PLA2 toxins responsible for anticoagulant effects, we also found some evidence that this inhibitory molecule can partially abrogate procoagulant venom effects caused by different toxin families. These findings further emphasize the potential clinical utility of varespladib in mitigating the toxic effects of certain snakebites. Full article
(This article belongs to the Special Issue Animal Venoms–Curse or Cure?)
Show Figures

Figure 1

11 pages, 1655 KiB  
Article
β-Caryophyllene Reduces the Inflammatory Phenotype of Periodontal Cells by Targeting CB2 Receptors
by Giacomo Picciolo, Giovanni Pallio, Domenica Altavilla, Mario Vaccaro, Giacomo Oteri, Natasha Irrera and Francesco Squadrito
Biomedicines 2020, 8(6), 164; https://doi.org/10.3390/biomedicines8060164 - 17 Jun 2020
Cited by 34 | Viewed by 3403
Abstract
Human gingival fibroblasts (GF) and human oral mucosa epithelial cells (EC) with an inflammatory phenotype represent a valuable experimental paradigm to explore the curative activity of agents to be used in oral mucositis. The role of cannabinoid receptor 2 (CB2) has not yet [...] Read more.
Human gingival fibroblasts (GF) and human oral mucosa epithelial cells (EC) with an inflammatory phenotype represent a valuable experimental paradigm to explore the curative activity of agents to be used in oral mucositis. The role of cannabinoid receptor 2 (CB2) has not yet been investigated in oral mucositis. The aim of this study was to evaluate the therapeutic potential of β-Caryophyllene (BCP), a CB2 agonist, in an in vitro model of oral mucositis. GF and EC were stimulated with LPS (2 µg/mL) alone or in combination with BCP; a group of LPS challenged GF and EC were treated with BCP and AM630, a CB2 antagonist. LPS increased the inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-17A whereas it decreased the anti-inflammatory cytokine IL-13. The upstream signals were identified in an augmented expression of NF-κB and STAT-3 and in reduced mRNA levels of PPARγ and PGC-1α. BCP blunted the LPS-induced inflammatory phenotype and this effect was reverted by the CB2 antagonist AM630. These results suggest that CB2 receptors are an interesting target to develop innovative strategies for oral mucositis and point out that BCP exerts a marked curative effect in a preclinical model of oral mucositis which deserves to be confirmed in a clinical setting. Full article
(This article belongs to the Special Issue Natural Medicine in Therapy)
Show Figures

Graphical abstract

15 pages, 3742 KiB  
Review
Possible Correlation between Cholinergic System Alterations and Neuro/Inflammation in Multiple Sclerosis
by Valentina Gatta, Guadalupe Mengod, Marcella Reale and Ada Maria Tata
Biomedicines 2020, 8(6), 153; https://doi.org/10.3390/biomedicines8060153 - 08 Jun 2020
Cited by 26 | Viewed by 5819
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system. Although the etiology of MS is still unknown, both genetic and environmental factors contribute to the pathogenesis of the disease. Acetylcholine participates in the modulation of central and peripheral [...] Read more.
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system. Although the etiology of MS is still unknown, both genetic and environmental factors contribute to the pathogenesis of the disease. Acetylcholine participates in the modulation of central and peripheral inflammation. The cells of the immune system, as well as microglia, astrocytes and oligodendrocytes express cholinergic markers and receptors of muscarinic and nicotinic type. The role played by acetylcholine in MS has been recently investigated. In the present review, we summarize the evidence indicating the cholinergic dysfunction in serum and cerebrospinal fluid of relapsing–remitting (RR)-MS patients and in the brains of the MS animal model experimental autoimmune encephalomyelitis (EAE). The correlation between the increased activity of the cholinergic hydrolyzing enzymes acetylcholinesterase and butyrylcholinesterase, the reduced levels of acetylcholine and the increase of pro-inflammatory cytokines production were recently described in immune cells of MS patients. Moreover, the genetic polymorphisms for both hydrolyzing enzymes and the possible correlation with the altered levels of their enzymatic activity have been also reported. Finally, the changes in cholinergic markers expression in the central nervous system of EAE mice in peak and chronic phases suggest the involvement of the acetylcholine also in neuro-inflammatory processes. Full article
(This article belongs to the Special Issue Multiple Sclerosis: Diagnosis and Treatment II)
Show Figures

Graphical abstract

45 pages, 3809 KiB  
Review
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View
by Sidharth P. Mishra, Prashantha Karunakar, Subhash Taraphder and Hariom Yadav
Biomedicines 2020, 8(6), 154; https://doi.org/10.3390/biomedicines8060154 - 08 Jun 2020
Cited by 52 | Viewed by 6560
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment [...] Read more.
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases. Full article
Show Figures

Graphical abstract

19 pages, 592 KiB  
Review
Biomarkers for Liquid Biopsies of Pituitary Neuroendocrine Tumors
by Wilhelm Gossing, Marcus Frohme and Lars Radke
Biomedicines 2020, 8(6), 148; https://doi.org/10.3390/biomedicines8060148 - 02 Jun 2020
Cited by 8 | Viewed by 2447
Abstract
Pituitary neuroendocrine tumors (PitNET) do not only belong to the most common intracranial neoplasms but seem to be generally more common than has been thought. Minimally invasive liquid biopsies have the potential to improve their early screening efficiency as well as monitor prognosis [...] Read more.
Pituitary neuroendocrine tumors (PitNET) do not only belong to the most common intracranial neoplasms but seem to be generally more common than has been thought. Minimally invasive liquid biopsies have the potential to improve their early screening efficiency as well as monitor prognosis by facilitating the diagnostic procedures. This review aims to assess the potential of using liquid biopsies of different kinds of biomarker species that have only been obtained from solid pituitary tissues so far. Numerous molecules have been associated with the development of a PitNET, suggesting that it often develops from the cumulative effects of many smaller genetic or epigenetic changes. These minor changes eventually pile up to switch critical molecules into tumor-promoting states, which may be the key regulatory nodes representing the most potent marker substances for a diagnostic test. Drugs targeting these nodes may be superior for the therapeutic outcome and therefore the identification of such pituitary-specific cellular key nodes will help to accelerate their application in medicine. The ongoing genetic degeneration in pituitary adenomas suggests that repeated tumor profiling via liquid biopsies will be necessary for personalized and effective treatment solutions. Full article
(This article belongs to the Section Tumor Cell Biology)
Show Figures

Figure 1

17 pages, 1422 KiB  
Article
RNA Sequencing-Based Identification of Ganglioside GD2-Positive Cancer Phenotype
by Maxim Sorokin, Irina Kholodenko, Daniel Kalinovsky, Tatyana Shamanskaya, Igor Doronin, Dmitry Konovalov, Aleksei Mironov, Denis Kuzmin, Daniil Nikitin, Sergey Deyev, Anton Buzdin and Roman Kholodenko
Biomedicines 2020, 8(6), 142; https://doi.org/10.3390/biomedicines8060142 - 30 May 2020
Cited by 25 | Viewed by 5879
Abstract
The tumor-associated ganglioside GD2 represents an attractive target for cancer immunotherapy. GD2-positive tumors are more responsive to such targeted therapy, and new methods are needed for the screening of GD2 molecular tumor phenotypes. In this work, we built a gene expression-based binary classifier [...] Read more.
The tumor-associated ganglioside GD2 represents an attractive target for cancer immunotherapy. GD2-positive tumors are more responsive to such targeted therapy, and new methods are needed for the screening of GD2 molecular tumor phenotypes. In this work, we built a gene expression-based binary classifier predicting the GD2-positive tumor phenotypes. To this end, we compared RNA sequencing data from human tumor biopsy material from experimental samples and public databases as well as from GD2-positive and GD2-negative cancer cell lines, for expression levels of genes encoding enzymes involved in ganglioside biosynthesis. We identified a 2-gene expression signature combining ganglioside synthase genes ST8SIA1 and B4GALNT1 that serves as a more efficient predictor of GD2-positive phenotype (Matthews Correlation Coefficient (MCC) 0.32, 0.88, and 0.98 in three independent comparisons) compared to the individual ganglioside biosynthesis genes (MCC 0.02–0.32, 0.1–0.75, and 0.04–1 for the same independent comparisons). No individual gene showed a higher MCC score than the expression signature MCC score in two or more comparisons. Our diagnostic approach can hopefully be applied for pan-cancer prediction of GD2 phenotypes using gene expression data. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

10 pages, 2081 KiB  
Article
Characterisation of a Novel A-Superfamily Conotoxin
by David T. Wilson, Paramjit S. Bansal, David A. Carter, Irina Vetter, Annette Nicke, Sébastien Dutertre and Norelle L. Daly
Biomedicines 2020, 8(5), 128; https://doi.org/10.3390/biomedicines8050128 - 20 May 2020
Cited by 10 | Viewed by 3317
Abstract
Conopeptides belonging to the A-superfamily from the venomous molluscs, Conus, are typically α-conotoxins. The α-conotoxins are of interest as therapeutic leads and pharmacological tools due to their selectivity and potency at nicotinic acetylcholine receptor (nAChR) subtypes. Structurally, the α-conotoxins have a consensus [...] Read more.
Conopeptides belonging to the A-superfamily from the venomous molluscs, Conus, are typically α-conotoxins. The α-conotoxins are of interest as therapeutic leads and pharmacological tools due to their selectivity and potency at nicotinic acetylcholine receptor (nAChR) subtypes. Structurally, the α-conotoxins have a consensus fold containing two conserved disulfide bonds that define the two-loop framework and brace a helical region. Here we report on a novel α-conotoxin Pl168, identified from the transcriptome of Conus planorbis, which has an unusual 4/8 loop framework. Unexpectedly, NMR determination of its three-dimensional structure reveals a new structural type of A-superfamily conotoxins with a different disulfide-stabilized fold, despite containing the conserved cysteine framework and disulfide connectivity of classical α-conotoxins. The peptide did not demonstrate activity on a range of nAChRs, or Ca2+ and Na+ channels suggesting that it might represent a new pharmacological class of conotoxins. Full article
(This article belongs to the Special Issue Animal Venoms–Curse or Cure?)
Show Figures

Figure 1

14 pages, 1873 KiB  
Article
Inflammatory and Oxidative Stress Markers—Mirror Tools in Rheumatoid Arthritis
by Radu Răzvan Mititelu, Rodica Pădureanu, Manuela Băcănoiu, Vlad Pădureanu, Anca Oana Docea, Daniela Calina, Andreea Lili Barbulescu and Ana Maria Buga
Biomedicines 2020, 8(5), 125; https://doi.org/10.3390/biomedicines8050125 - 15 May 2020
Cited by 60 | Viewed by 5067
Abstract
Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease, associated with significant morbidity, mainly due to progressive damage and consequent disability. Oxidative stress is an important part of RA pathophysiology, as in autoimmune disease the interaction between immune response and endogenous/exogenous antigens subsequently [...] Read more.
Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease, associated with significant morbidity, mainly due to progressive damage and consequent disability. Oxidative stress is an important part of RA pathophysiology, as in autoimmune disease the interaction between immune response and endogenous/exogenous antigens subsequently induce the production of reactive oxygen species. The oxidative stress process seems to be positively strongly correlated with inflammation and accelerated joint destruction. We were asking ourselves if the oxidative stress biomarkers are the mirror tools of disease activity, outcome, and inflammation level in a group of RA patients under standard or biological therapy compared to healthy age-matched controls. In order to do this, the oxidative stress damage biomarkers (lipids peroxide and protein carbonyl level), antioxidant defense capacity, and pro-inflammatory status of plasma were quantified. In this study, we took into account the complete picture of RA diseases and assessed, for the first time, the inflammatory level in correlation with the oxidative stress level and antioxidant capacity of RA patients. Our results revealed that protein oxidation through carbonylation is significantly increased in RA groups compared to controls, and both protein carbonyl Pcarb and thiobarbituric acid reactive substance (TBARS) are reliable markers of ROS damage. Therefore, it is unanimous that neutrophil/lymphocyte ratio (NLR), monocyte/lymphocyte ratio (MLR), platelet/lymphocyte ratio (PltLR) correlated with Pcarb, and TBARS can provide a view of the complex phenomenon represented by proteins/lipids damage, key contributors to disease outcome, and an increased awareness should be attributed to these biomarkers. Full article
(This article belongs to the Special Issue Immunoglobulins in Inflammation)
Show Figures

Figure 1

20 pages, 904 KiB  
Review
Non-Invasive Delivery of Therapeutics into the Brain: The Potential of Aptamers for Targeted Delivery
by Bakhtiar Bukari, Rasika M. Samarasinghe, Jinjutha Noibanchong and Sarah L. Shigdar
Biomedicines 2020, 8(5), 120; https://doi.org/10.3390/biomedicines8050120 - 14 May 2020
Cited by 29 | Viewed by 4129
Abstract
The blood-brain barrier (BBB) is a highly specialised network of blood vessels that effectively separates the brain environment from the circulatory system. While there are benefits, in terms of keeping pathogens from entering the brain, the BBB also complicates treatments of brain pathologies [...] Read more.
The blood-brain barrier (BBB) is a highly specialised network of blood vessels that effectively separates the brain environment from the circulatory system. While there are benefits, in terms of keeping pathogens from entering the brain, the BBB also complicates treatments of brain pathologies by preventing efficient delivery of macromolecular drugs to diseased brain tissue. Although current non-invasive strategies of therapeutics delivery into the brain, such as focused ultrasound and nanoparticle-mediated delivery have shown various levels of successes, they still come with risks and limitations. This review discusses the current approaches of therapeutic delivery into the brain, with a specific focus on non-invasive methods. It also discusses the potential for aptamers as alternative delivery systems and several reported aptamers with promising preliminary results. Full article
(This article belongs to the Special Issue Engineering Aptamers for Biomedical Applications II)
Show Figures

Figure 1

19 pages, 5878 KiB  
Article
RNA Sequencing in Comparison to Immunohistochemistry for Measuring Cancer Biomarkers in Breast Cancer and Lung Cancer Specimens
by Maxim Sorokin, Kirill Ignatev, Elena Poddubskaya, Uliana Vladimirova, Nurshat Gaifullin, Dmitriy Lantsov, Andrew Garazha, Daria Allina, Maria Suntsova, Victoria Barbara and Anton Buzdin
Biomedicines 2020, 8(5), 114; https://doi.org/10.3390/biomedicines8050114 - 09 May 2020
Cited by 23 | Viewed by 6386
Abstract
RNA sequencing is considered the gold standard for high-throughput profiling of gene expression at the transcriptional level. Its increasing importance in cancer research and molecular diagnostics is reflected in the growing number of its mentions in scientific literature and clinical trial reports. However, [...] Read more.
RNA sequencing is considered the gold standard for high-throughput profiling of gene expression at the transcriptional level. Its increasing importance in cancer research and molecular diagnostics is reflected in the growing number of its mentions in scientific literature and clinical trial reports. However, the use of different reagents and protocols for RNA sequencing often produces incompatible results. Recently, we published the Oncobox Atlas of RNA sequencing profiles for normal human tissues obtained from healthy donors killed in road accidents. This is a database of molecular profiles obtained using uniform protocol and reagents settings that can be broadly used in biomedicine for data normalization in pathology, including cancer. Here, we publish new original 39 breast cancer (BC) and 19 lung cancer (LC) RNA sequencing profiles obtained for formalin-fixed paraffin-embedded (FFPE) tissue samples, fully compatible with the Oncobox Atlas. We performed the first correlation study of RNA sequencing and immunohistochemistry-measured expression profiles for the clinically actionable biomarker genes in FFPE cancer tissue samples. We demonstrated high (Spearman’s rho 0.65–0.798) and statistically significant (p < 0.00004) correlations between the RNA sequencing (Oncobox protocol) and immunohistochemical measurements for HER2/ERBB2, ER/ESR1 and PGR genes in BC, and for PDL1 gene in LC; AUC: 0.963 for HER2, 0.921 for ESR1, 0.912 for PGR, and 0.922 for PDL1. To our knowledge, this is the first validation that total RNA sequencing of archived FFPE materials provides a reliable estimation of marker protein levels. These results show that in the future, RNA sequencing can complement immunohistochemistry for reliable measurements of the expression biomarkers in FFPE cancer samples. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

18 pages, 1033 KiB  
Review
The Role of IL-6 in Skin Fibrosis and Cutaneous Wound Healing
by Blair Z. Johnson, Andrew W. Stevenson, Cecilia M. Prêle, Mark W. Fear and Fiona M. Wood
Biomedicines 2020, 8(5), 101; https://doi.org/10.3390/biomedicines8050101 - 30 Apr 2020
Cited by 195 | Viewed by 16004
Abstract
The timely resolution of wound healing is critical for restoring the skin as a protective barrier. The switch from a proinflammatory to a reparative microenvironment must be tightly regulated. Interleukin (IL)-6 is a key modulator of the inflammatory and reparative process: it is [...] Read more.
The timely resolution of wound healing is critical for restoring the skin as a protective barrier. The switch from a proinflammatory to a reparative microenvironment must be tightly regulated. Interleukin (IL)-6 is a key modulator of the inflammatory and reparative process: it is involved in the differentiation, activation, and proliferation of leukocytes, endothelial cells, keratinocytes, and fibroblasts. This review examines the role of IL-6 in the healing of cutaneous wounds, and how dysregulation of IL-6 signaling can lead to either fibrosis or a failure to heal. The role of an IL-6/TGF-β feedback loop is discussed in the context of fibrogenesis, while IL-6 expression and responses in advanced age, diabetes, and obesity is outlined regarding the development of chronic wounds. Current research on therapies that modulate IL-6 is explored. Here, we consider IL-6′s diverse impact on cutaneous wound healing. Full article
(This article belongs to the Special Issue The Interleukin-6 Family in Disease Pathogenesis and Therapy)
Show Figures

Figure 1

20 pages, 1185 KiB  
Article
Effect of the Most Relevant CYP3A4 and CYP3A5 Polymorphisms on the Pharmacokinetic Parameters of 10 CYP3A Substrates
by Miriam Saiz-Rodríguez, Susana Almenara, Marcos Navares-Gómez, Dolores Ochoa, Manuel Román, Pablo Zubiaur, Dora Koller, María Santos, Gina Mejía, Alberto M. Borobia, Cristina Rodríguez-Antona and Francisco Abad-Santos
Biomedicines 2020, 8(4), 94; https://doi.org/10.3390/biomedicines8040094 - 22 Apr 2020
Cited by 58 | Viewed by 5879
Abstract
Several cytochrome P450 (CYP) CYP3A polymorphisms were associated with reduced enzyme function. We aimed to evaluate the influence of these alleles on the pharmacokinetic parameters (PK) of several CYP3A substrates. We included 251 healthy volunteers who received a single dose of ambrisentan, atorvastatin, [...] Read more.
Several cytochrome P450 (CYP) CYP3A polymorphisms were associated with reduced enzyme function. We aimed to evaluate the influence of these alleles on the pharmacokinetic parameters (PK) of several CYP3A substrates. We included 251 healthy volunteers who received a single dose of ambrisentan, atorvastatin, imatinib, aripiprazole, fentanyl, amlodipine, donepezil, olanzapine, fesoterodine, or quetiapine. The volunteers were genotyped for CYP3A4 and CYP3A5 polymorphisms by qPCR. To compare the PK across studies, measurements were corrected by the mean of each parameter for every drug and were logarithmically transformed. Neither CYP3A phenotype nor individual CYP3A4 or CYP3A5 polymorphisms were significantly associated with differences in PK. However, regarding the substrates that are exclusively metabolized by CYP3A, we observed a higher normalized AUC (p = 0.099) and a tendency of lower normalized Cl (p = 0.069) in CYP3A4 mutated allele carriers what was associated with diminished drug metabolism capacity. CYP3A4 polymorphisms did not show a pronounced influence on PK of the analysed drugs. If so, their impact could be detectable in a very small percentage of subjects. Although there are few subjects carrying CYP3A4 double mutations, the effect in those might be relevant, especially due to the majority of subjects lacking the CYP3A5 enzyme. In heterozygous subjects, the consequence might be less noticeable due to the high inducible potential of the CYP3A4 enzyme. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

20 pages, 344 KiB  
Review
Cancer Vaccines and Oncolytic Viruses Exert Profoundly Lower Side Effects in Cancer Patients than Other Systemic Therapies: A Comparative Analysis
by Volker Schirrmacher
Biomedicines 2020, 8(3), 61; https://doi.org/10.3390/biomedicines8030061 - 16 Mar 2020
Cited by 39 | Viewed by 4535
Abstract
This review compares cytotoxic drugs, targeted therapies, and immunotherapies with regard to mechanisms and side effects. Targeted therapies relate to small molecule inhibitors. Immunotherapies include checkpoint inhibitory antibodies, chimeric antigen receptor (CAR) T-cells, cancer vaccines, and oncolytic viruses. All these therapeutic approaches fight [...] Read more.
This review compares cytotoxic drugs, targeted therapies, and immunotherapies with regard to mechanisms and side effects. Targeted therapies relate to small molecule inhibitors. Immunotherapies include checkpoint inhibitory antibodies, chimeric antigen receptor (CAR) T-cells, cancer vaccines, and oncolytic viruses. All these therapeutic approaches fight systemic disease, be it micro-metastatic or metastatic. The analysis includes only studies with a proven therapeutic effect. A clear-cut difference is observed with regard to major adverse events (WHO grades 3–4). Such severe side effects are not observed with cancer vaccines/oncolytic viruses while they are seen with all the other systemic therapies. Reasons for this difference are discussed. Full article
(This article belongs to the Special Issue Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer II)
20 pages, 278 KiB  
Review
Viral Vector-Based Melanoma Gene Therapy
by Altijana Hromic-Jahjefendic and Kenneth Lundstrom
Biomedicines 2020, 8(3), 60; https://doi.org/10.3390/biomedicines8030060 - 16 Mar 2020
Cited by 16 | Viewed by 5479
Abstract
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in [...] Read more.
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in diverse preclinical and clinical studies for the treatment of various diseases, including colon, head-and-neck, prostate and breast cancer as well as squamous cell carcinoma and glioma. The majority of studies have focused on immunotherapy and several drugs based on viral vectors have been approved. However, gene therapy for malignant melanoma based on viral vectors has not been utilized to its full potential yet. This review represents a summary of the achievements of preclinical and clinical studies using viral vectors, with the focus on malignant melanoma. Full article
(This article belongs to the Special Issue Gene Therapy Coming of Age)
20 pages, 1010 KiB  
Review
New Insights into Mechanisms of Long-term Protective Anti-tumor Immunity Induced by Cancer Vaccines Modified by Virus Infection
by Volker Schirrmacher
Biomedicines 2020, 8(3), 55; https://doi.org/10.3390/biomedicines8030055 - 06 Mar 2020
Cited by 12 | Viewed by 3811
Abstract
The topic is how to achieve long-term protective anti-tumor immunity by anti-cancer vaccination and what are its mechanisms. Cancer vaccines should instruct the immune system regarding relevant cancer targets and contain signals for innate immunity activation. Of central importance is T-cell mediated immunity [...] Read more.
The topic is how to achieve long-term protective anti-tumor immunity by anti-cancer vaccination and what are its mechanisms. Cancer vaccines should instruct the immune system regarding relevant cancer targets and contain signals for innate immunity activation. Of central importance is T-cell mediated immunity and thus a detailed understanding of cognate interactions between tumor antigen (TA)-specific T cells and TA-presenting dendritic cells. Microbes and their associated molecular patterns initiate early inflammatory defense reactions that can contribute to the activation of antigen-presenting cells (APCs) and to costimulation of T cells. The concommitant stimulation of naive TA-specific CD4+ and CD8+ T cells with TAs and costimulatory signals occurs in T-APC clusters that generate effectors, such as cytotoxic T lymphocytes and T cell mediated immunological memory. Information about how such memory can be maintained over long times is updated. The role that the bone marrow with its specialized niches plays for the survival of memory T cells is emphasized. Examples are presented that demonstrate long-term protective anti-tumor immunity can be achieved by post-operative vaccination with autologous cancer vaccines that are modified by virus infection. Full article
(This article belongs to the Special Issue Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer II)
Show Figures

Figure 1

14 pages, 2857 KiB  
Review
Correlations between Microbiota Bioactivity and Bioavailability of Functional Compounds: A Mini-Review
by Emanuel Vamanu and Florentina Gatea
Biomedicines 2020, 8(2), 39; https://doi.org/10.3390/biomedicines8020039 - 20 Feb 2020
Cited by 61 | Viewed by 5859
Abstract
Numerous studies have demonstrated the role of the microbiota in supporting the physiological functions, owing to its metabolomic component. The presence of biocomponents generally leads to the correction of the microbial pattern correlated with the reduction of oxidative pressure. This study aims to [...] Read more.
Numerous studies have demonstrated the role of the microbiota in supporting the physiological functions, owing to its metabolomic component. The presence of biocomponents generally leads to the correction of the microbial pattern correlated with the reduction of oxidative pressure. This study aims to present the main processes that correlate the bioavailability and bioactivity of some functional components through the action of the human microbiota. The use of probiotics and prebiotics is an innovative manner involving alternatives that increase the bioavailability of certain natural or metabolic components has been proposed. Probiotic strains (Saccharomyces cerevisiae or Lactobacillus (L.) plantarum) may represent an intermediary for increasing the antioxidant bioactivity, and they may be administered in the form of a biomass enriched with functional compounds, such as phenolic acids. The limiting effect of gastrointestinal transit is, in several cases, the key to the biopharmaceutical value of new products (or supplements). The identification of newer ways of formulating supplements also involves the compatibility of different types of products, the testing of bioaccessibility, and the elimination of biotransformations. Full article
Show Figures

Graphical abstract

11 pages, 1731 KiB  
Article
The Co-Expression of Programmed Death-Ligand 1 (PD-L1) in Untreated EGFR-Mutated Metastatic Lung Adenocarcinoma
by Ping-Chih Hsu, Chih-Wei Wang, Scott Chih-Hsi Kuo, Shu-Min Lin, Yu-Lun Lo, Allen Chung-Cheng Huang, Li-Chung Chiu and Cheng-Ta Yang
Biomedicines 2020, 8(2), 36; https://doi.org/10.3390/biomedicines8020036 - 19 Feb 2020
Cited by 13 | Viewed by 2913
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) is the standard first-line therapy for metastatic lung adenocarcinoma harboring sensitive EGFR mutations. Tumor surface programmed death-ligand 1 (PD-L1) is expressed in some metastatic EGFR-mutated lung adenocarcinoma, but its impact on the efficacy of EGFR-TKIs [...] Read more.
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) is the standard first-line therapy for metastatic lung adenocarcinoma harboring sensitive EGFR mutations. Tumor surface programmed death-ligand 1 (PD-L1) is expressed in some metastatic EGFR-mutated lung adenocarcinoma, but its impact on the efficacy of EGFR-TKIs is unclear. We retrospectively investigated 117 untreated metastatic lung EGFR mutated adenocarcinoma patients with a PD-L1 immunohistochemistry test. The PD-L1 expression level was classified by tumor proportion scores (TPS). Forty-five patients had negative expression (TPS < 1%), 45 had a weak expression (TPS 1–49%), and 27 had a strong expression (≥50%). All patients recruited in this study received EGFR-TKIs as a first-line therapy. No significant differences were observed for objective response rates (68.9% versus 62.2% versus 73.1%, p = 0.807) and median time to treatment failure (TTF) (12.17 versus 13.17 versus 11.0 months, p = 0.443) of first-line EGFR-TKIS among the three groups of patients (negative versus weak versus strong). The median overall survival was 21.27 versus 20.63 versus 19.43 months among the three groups of patients (p = 0.77). Our results demonstrated that PD-L1 did not affect the efficacy of first-line EGFR-TKIs in metastatic EGFR mutated lung adenocarcinoma. Thus, EGFR-TKIs are suggested as the preferred clinical therapy for these patients, despite their PD-L1 levels. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Graphical abstract

17 pages, 2800 KiB  
Article
5-(Carbamoylmethylene)-oxazolidin-2-ones as a Promising Class of Heterocycles Inducing Apoptosis Triggered by Increased ROS Levels and Mitochondrial Dysfunction in Breast and Cervical Cancer
by Biagio Armentano, Rosita Curcio, Matteo Brindisi, Raffaella Mancuso, Vittoria Rago, Ida Ziccarelli, Luca Frattaruolo, Marco Fiorillo, Vincenza Dolce, Bartolo Gabriele and Anna Rita Cappello
Biomedicines 2020, 8(2), 35; https://doi.org/10.3390/biomedicines8020035 - 18 Feb 2020
Cited by 22 | Viewed by 3494
Abstract
Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 [...] Read more.
Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 and HeLa cells. The tested compounds displayed a wide range of cytotoxicity on these cancer cell lines, measured by MTT assay, exhibiting no cytotoxicity on non-tumorigenic MCF-10A cells. Among the nine tested derivatives, four displayed a good anticancer potential. Remarkably, OI compound showed IC50 values of 17.66 and 31.10 µM for MCF-7 and HeLa cancer cells, respectively. Furthermore, we assessed OI effect on the cell cycle by FACS analysis, highlighting a G1 phase arrest after 72 h, supported by a low expression level of Cyclin D1 protein. Moreover, mitochondrial membrane potential was reduced after OI treatment driven by high levels of ROS. These findings demonstrate that OI treatment can inhibit MCF-7 and HeLa cell proliferation and induce apoptosis by caspase-9 activation and cytochrome c release in the cytosol. Hence, 5-(carbamoylmethylene)-oxazolidin-2-ones have a promising anticancer activity, in particular, OI derivative could represent a good candidate for in vivo further studies and potential clinical use. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Graphical abstract

13 pages, 1771 KiB  
Article
Impact of Statin Use on Dementia Incidence in Elderly Men and Women with Ischemic Heart Disease
by Mi-Young Kim, Minji Jung, Yoojin Noh, Sooyoung Shin, Chang Hyung Hong, Sukhyang Lee and Yi-Sook Jung
Biomedicines 2020, 8(2), 30; https://doi.org/10.3390/biomedicines8020030 - 09 Feb 2020
Cited by 12 | Viewed by 3328
Abstract
This study aimed to determine the association between statins and the prevention of dementia according to sex differences in elderly patients with ischemic heart disease (IHD). We performed a nationwide retrospective cohort study using the Korean Health Insurance Review and Assessment Service database [...] Read more.
This study aimed to determine the association between statins and the prevention of dementia according to sex differences in elderly patients with ischemic heart disease (IHD). We performed a nationwide retrospective cohort study using the Korean Health Insurance Review and Assessment Service database (2007–2015). Among the 264,036 eligible patients aged ≥65 years with IHD, statin users were compared with non–users by propensity score matching at a 1:1 ratio (71,587 in each group). The primary outcome was dementia risk by estimating hazard ratios (HRs) and 95% confidence intervals (CIs). Differential risks of dementia were assessed by sex in the subgroups of statin types, exposure duration, and patient age, implying that sex is an influential factor for the link between statin use and dementia incidence. Among seven commonly prescribed statins, rosuvastatin was associated with the greatest preventive effect on dementia incidence, with an adjusted HR of 0.82 (95% CI = 0.78–0.87). In a subgroup analysis organized by sex, the differential risk of dementia incidence was assessed in each statin group, implying that sex is an influential factor for the link between statin and dementia. This study suggests that appropriate statin use considering sex differences may have beneficial effects on the development of dementia. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

12 pages, 1078 KiB  
Article
Circulating MyomiRs as Potential Biomarkers to Monitor Response to Nusinersen in Pediatric SMA Patients
by Silvia Bonanno, Stefania Marcuzzo, Claudia Malacarne, Eleonora Giagnorio, Riccardo Masson, Riccardo Zanin, Maria Teresa Arnoldi, Francesca Andreetta, Ornella Simoncini, Anna Venerando, Cinzia Gellera, Chiara Pantaleoni, Renato Mantegazza, Pia Bernasconi, Giovanni Baranello and Lorenzo Maggi
Biomedicines 2020, 8(2), 21; https://doi.org/10.3390/biomedicines8020021 - 26 Jan 2020
Cited by 30 | Viewed by 4720
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by mutations in survival motor neuron (SMN) 1 gene, resulting in a truncated SMN protein responsible for degeneration of brain stem and spinal motor neurons. The paralogous SMN2 gene partially compensates full-length SMN [...] Read more.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by mutations in survival motor neuron (SMN) 1 gene, resulting in a truncated SMN protein responsible for degeneration of brain stem and spinal motor neurons. The paralogous SMN2 gene partially compensates full-length SMN protein production, mitigating the phenotype. Antisense oligonucleotide nusinersen (Spinraza®) enhances SMN2 gene expression. SMN is involved in RNA metabolism and biogenesis of microRNA (miRNA), key gene expression modulators, whose dysregulation contributes to neuromuscular diseases. They are stable in body fluids and may reflect distinct pathophysiological states, thus acting as promising biomarkers. Muscle-specific miRNAs (myomiRs) as biomarkers for clinical use in SMA have not been investigated yet. Here, we analyzed the expression of miR-133a, -133b, -206 and -1, in serum of 21 infantile SMA patients at baseline and after 6 months of nusinersen treatment, and correlated molecular data with response to therapy evaluated by the Hammersmith Functional Motor Scale Expanded (HFMSE). Our results demonstrate that myomiR serological levels decrease over disease course upon nusinersen treatment. Notably, miR-133a reduction predicted patients’ response to therapy. Our findings identify myomiRs as potential biomarkers to monitor disease progression and therapeutic response in SMA patients. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

11 pages, 1667 KiB  
Article
2-deoxy-d-glucose Ameliorates Animal Models of Dermatitis
by Soo Young Choi, Min-Jeong Heo, Chanmi Lee, Yeong Min Choi, In-sook An, Seunghee Bae, Sungkwan An and Jin Hyuk Jung
Biomedicines 2020, 8(2), 20; https://doi.org/10.3390/biomedicines8020020 - 24 Jan 2020
Cited by 14 | Viewed by 3974
Abstract
Glucose metabolism is a key metabolic pathway that orchestrates cellular homeostasis by generating ATP, nucleotides, and amino acids. Abnormal glucose signaling has been found in many diseases including cancers and inflammatory diseases. According to recent report, glycolysis contributes to pathogenesis of psoriasis and [...] Read more.
Glucose metabolism is a key metabolic pathway that orchestrates cellular homeostasis by generating ATP, nucleotides, and amino acids. Abnormal glucose signaling has been found in many diseases including cancers and inflammatory diseases. According to recent report, glycolysis contributes to pathogenesis of psoriasis and ablation of Glut1 attenuates animal models of psoriasis. While we were screening a molecular target for atopic dermatitis, we found the levels of glucose transporters including Glut1 (SLC2a1) and Glut3 (SLC2a3) are highly expressed in skin biopsies of dermatitis patients from multiple datasets. We demonstrated that administration of 2-deoxy-d-glucose (2DG) ameliorates animal models of 12-o-tetradecanoylphorbol-13-acetate (TPA) and oxazolone induced dermatitis using morphological and histological analysis. These results suggest that inhibition of glucose metabolism ameliorates dermatitis in animal models. Full article
(This article belongs to the Section Drug Discovery and Development)
Show Figures

Figure 1

14 pages, 3219 KiB  
Article
Protective Effects of Astaxanthin Supplementation against Ultraviolet-Induced Photoaging in Hairless Mice
by Xing Li, Tomohiro Matsumoto, Miho Takuwa, Mahmood Saeed Ebrahim Shaiku Ali, Takumi Hirabashi, Hiroyo Kondo and Hidemi Fujino
Biomedicines 2020, 8(2), 18; https://doi.org/10.3390/biomedicines8020018 - 21 Jan 2020
Cited by 27 | Viewed by 6371
Abstract
Ultraviolet (UV) light induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Astaxanthin (AST), a ketocarotenoid isolated from Haematococcus pluvialis, has been extensively studied owing to its possible effects on skin health as well as UV protection. In addition, [...] Read more.
Ultraviolet (UV) light induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Astaxanthin (AST), a ketocarotenoid isolated from Haematococcus pluvialis, has been extensively studied owing to its possible effects on skin health as well as UV protection. In addition, AST attenuates the increased generation of reactive oxygen species (ROS) and capillary regression of the skeletal muscle. In this study, we investigated whether AST could protect against UV-induced photoaging and reduce capillary regression in the skin of HR-1 hairless mice. UV light induces wrinkle formation, epidermal thickening, and capillary regression in the dermis of HR-1 hairless mice. The administration of AST reduced the UV-induced wrinkle formation and skin thickening, and increased collagen fibers in the skin. AST supplementation also inhibited the generation of ROS, decreased wrinkle formation, reduced epidermal thickening, and increased the density of capillaries in the skin. We also found an inverse correlation between wrinkle formation and the density of capillaries. An association between photoaging and capillary regression in the skin was also observed. These results suggest that AST can protect against photoaging caused by UV irradiation and the inhibitory effects of AST on photoaging may be associated with the reduction of capillary regression in the skin. Full article
(This article belongs to the Section Drug Discovery and Development)
Show Figures

Graphical abstract

Back to TopTop