Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Review
How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes
Biomedicines 2022, 10(11), 2940; https://doi.org/10.3390/biomedicines10112940 - 15 Nov 2022
Cited by 3 | Viewed by 1658
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, [...] Read more.
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

Article
osr1 Maintains Renal Progenitors and Regulates Podocyte Development by Promoting wnt2ba via the Antagonism of hand2
Biomedicines 2022, 10(11), 2868; https://doi.org/10.3390/biomedicines10112868 - 09 Nov 2022
Cited by 7 | Viewed by 1378
Abstract
Knowledge about the genetic pathways that control nephron development is essential for better understanding the basis of congenital malformations of the kidney. The transcription factors Osr1 and Hand2 are known to exert antagonistic influences to balance kidney specification. Here, we performed a forward [...] Read more.
Knowledge about the genetic pathways that control nephron development is essential for better understanding the basis of congenital malformations of the kidney. The transcription factors Osr1 and Hand2 are known to exert antagonistic influences to balance kidney specification. Here, we performed a forward genetic screen to identify nephrogenesis regulators, where whole genome sequencing identified an osr1 lesion in the novel oceanside (ocn) mutant. The characterization of the mutant revealed that osr1 is needed to specify not renal progenitors but rather their maintenance. Additionally, osr1 promotes the expression of wnt2ba in the intermediate mesoderm (IM) and later the podocyte lineage. wnt2ba deficiency reduced podocytes, where overexpression of wnt2ba was sufficient to rescue podocytes and osr1 deficiency. Antagonism between osr1 and hand2 mediates podocyte development specifically by controlling wnt2ba expression. These studies reveal new insights about the roles of Osr1 in promoting renal progenitor survival and lineage choice. Full article
(This article belongs to the Special Issue Zebrafish Models for Development and Disease 3.0)
Show Figures

Figure 1

Article
Predictive Risk Factors Associated with Severe Radiation-Induced Mucositis in Nasopharyngeal or Oropharyngeal Cancer Patients: A Retrospective Study
Biomedicines 2022, 10(10), 2661; https://doi.org/10.3390/biomedicines10102661 - 21 Oct 2022
Cited by 2 | Viewed by 1163
Abstract
Radiation-induced mucositis in head and neck cancer patients generates difficulties in eating and swallowing, and may influence treatment tolerance, compliance, and quality of life. However, predictive factors have not been studied in detail. Thus, the aim of this study was to describe the [...] Read more.
Radiation-induced mucositis in head and neck cancer patients generates difficulties in eating and swallowing, and may influence treatment tolerance, compliance, and quality of life. However, predictive factors have not been studied in detail. Thus, the aim of this study was to describe the association between pre-radiotherapy clinical factors and the incidence of severe radiation-induced mucositis in nasopharyngeal or oropharyngeal cancer patients. This retrospective study included all patients with definitive radiotherapy or chemoradiotherapy for nasopharyngeal or oropharyngeal cancer between July 2011 and June 2021 in a single center. The eligibility criteria included patients who received oral management during radiotherapy. Exclusion criteria was patients who received postoperative radiotherapy. The data were acquired from the medical records of patients. One hundred patients were included in this retrospective study. Grade 3 radiation-induced mucositis occurred in 47 patients (47%). Lymphocyte count was significantly associated with grade 3 mucositis (OR = 0.40; 95% CI = 0.19–0.86; p = 0.018). It is suggested that pre-radiation lower lymphocyte counts are a predictive risk factor for severe mucositis in patients who undergo definitive radiotherapy or chemoradiotherapy for nasopharyngeal or oropharyngeal cancer Full article
Article
Bronchial Asthma as a Cardiovascular Risk Factor: A Prospective Observational Study
Biomedicines 2022, 10(10), 2614; https://doi.org/10.3390/biomedicines10102614 - 18 Oct 2022
Cited by 1 | Viewed by 5820
Abstract
Introduction: Asthma as a chronic inflammatory disorder has been suggested as a risk factor for endothelial dysfunction (ED), but studies on the association between asthma and cardiovascular disease (CVD) risk are limited. Background: We assessed associations of ED with the severity of asthma, [...] Read more.
Introduction: Asthma as a chronic inflammatory disorder has been suggested as a risk factor for endothelial dysfunction (ED), but studies on the association between asthma and cardiovascular disease (CVD) risk are limited. Background: We assessed associations of ED with the severity of asthma, eosinophilic inflammation, lung function, and asthma control. Methods: 52 young asthmatics (median age of 25.22 years) and 45 healthy individuals were included. Demographic, clinical, and laboratory findings were recorded. We evaluated microvascular responsiveness by recording the reactive hyperemia index (RHI) indicating post-occlusive peripheral endothelium-dependent changes in vascular tone using the Itamar Medical EndoPAT2000. VCAM-1, ADMA, high-sensitive CRP (hsCRP), and E-selectin were measured. Results: Asthmatics had considerably lower RHI values (p < 0.001) with a dynamic decreasing trend by asthma severity and higher hsCRP levels (p < 0.001). A substantial increase in hsCRP and E-selectin with asthma severity (p < 0.05) was also observed. We confirmed a higher body mass index (BMI) in asthmatics (p < 0.001), especially in women and in severe asthma. Conclusions: We demonstrated the progression of CVD in asthmatics and the association of the ongoing deterioration of ED with the inflammatory severity, suggesting that the increased risk of CVD in young asthmatics is dependent on disease severity. The underlying mechanisms of risk factors for CVD and disease control require further study. Full article
Show Figures

Figure 1

Review
Role of Extracellular Vesicles in Thyroid Physiology and Diseases: Implications for Diagnosis and Treatment
Biomedicines 2022, 10(10), 2585; https://doi.org/10.3390/biomedicines10102585 - 15 Oct 2022
Cited by 2 | Viewed by 2870
Abstract
Extracellular vesicles are spherical subcellular structures delimited by a lipid bilayer and released by most cells in the human body. They are loaded with a myriad of molecules (i.e., nucleic acids and proteins) depending on their cell of origin and provide the ability [...] Read more.
Extracellular vesicles are spherical subcellular structures delimited by a lipid bilayer and released by most cells in the human body. They are loaded with a myriad of molecules (i.e., nucleic acids and proteins) depending on their cell of origin and provide the ability to transmit a message to surrounding or distant target cells. In several organs, including the thyroid, abundant recent literature reports that extracellular vesicles are responsible for intercellular communication in physiological and pathological processes, and that their utilization as a potential biomarker of pathological states (i.e., cancer, autoimmune diseases) or as therapeutic delivery vehicles promise clinical options. In this review, we present the current knowledge and understanding regarding the role of extracellular vesicles in developing thyroid diseases and diagnosis. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Thyroid Diseases)
Show Figures

Figure 1

Article
Prognostic Significance of STING Immunoexpression in Relation to HPV16 Infection in Patients with Squamous Cell Carcinomas of Oral Cavity and Oropharynx
Biomedicines 2022, 10(10), 2538; https://doi.org/10.3390/biomedicines10102538 - 12 Oct 2022
Cited by 1 | Viewed by 1077
Abstract
Infection with HPV16 in cancers of the oral cavity (OCSCC) and oropharynx (OPSCC) is, today, an important etiological and prognostic factor. Patients with HPV-positive OPSCC have a better prognosis than uninfected patients. However, in over 40% of these patients, cancer progression is noticed. [...] Read more.
Infection with HPV16 in cancers of the oral cavity (OCSCC) and oropharynx (OPSCC) is, today, an important etiological and prognostic factor. Patients with HPV-positive OPSCC have a better prognosis than uninfected patients. However, in over 40% of these patients, cancer progression is noticed. Their identification is particularly important due to the ongoing clinical trials regarding the possibility of de-escalation of anticancer treatment in patients with HPV-positive OPSCC. Some studies suggest that there is possibility to differentiate prognosis of HPV16-positive patients by STING (Stimulator of Interferon Genes) immunoexpression. The aim of the present study was to analyze the influence of STING immunoexpression on overall (OS) and disease-free survival (DFS) of patients with HPV16-positive and -negative OCSCC and OPSCC. The study was performed in a group of 87 patients with OCSCC and OPSCC for which in our earlier study active HPV16 infection was assessed by P16 expression followed by HPV DNA detection. To analyze STING immunoexpression in tumor area (THS) and in adjacent stromal tissues (SHS) H score (HS) was applied. In the subgroup with HPV16, active infection patients with tumors with THS had significantly better DFS (p = 0.047) than those without THS. In this subgroup, TSH did not significantly influence OS, and SHS did not significantly correlate with OS and DFS. In the subgroup of patients without active HPV16 infection, THS and SHS also did not significantly influence patients’ survival. Presented results indicated prognostic potential of tumor STING immunoexpression in patients with active HPV16 infection in cancers of oral cavity and oropharynx. Full article
(This article belongs to the Special Issue State-of-the-Art Cancer Biology and Therapeutics in Poland)
Show Figures

Figure 1

Article
Adalimumab Originator vs. Biosimilar in Hidradenitis Suppurativa: A Multicentric Retrospective Study
Biomedicines 2022, 10(10), 2522; https://doi.org/10.3390/biomedicines10102522 - 09 Oct 2022
Cited by 2 | Viewed by 1558
Abstract
This study aimed to compare adalimumab originator vs. biosimilar in HS patients, and to evaluate the effect of a switch to a biosimilar, or a switch back to the originator, in terms of treatment ineffectiveness. Patients with a diagnosis of HS were enrolled [...] Read more.
This study aimed to compare adalimumab originator vs. biosimilar in HS patients, and to evaluate the effect of a switch to a biosimilar, or a switch back to the originator, in terms of treatment ineffectiveness. Patients with a diagnosis of HS were enrolled from 14 Italian sites. Treatment ineffectiveness was measured using Hurley score. The major analyses were 1) comparison between the two treatment groups (non-switcher analysis), and 2) the cross-over trend of Hurley score between treatment switchers (switcher analysis). Cox and Poisson regression models were used to compare the treatment ineffectiveness between groups. A total of 326 patients were divided into four groups: 171 (52.5%) taking originator; 61 (18.7%) patients taking biosimilar; 66 (20.2%) switchers; 28 (8.6%) switchers from originator to biosimilar and switched. A greater loss of efficacy was observed in the group allocated to the biosimilar than the originator group. The switcher analysis showed an effectiveness loss in the biosimilar compared to the originator. These results seem to indicate that a switch from one drug to the other may lead to a greater risk of inefficacy. A return to the previous treatment also does not ensure efficaciousness. Full article
Show Figures

Figure 1

Review
Immune Checkpoint Inhibitors and Other Immune Therapies in Breast Cancer: A New Paradigm for Prolonged Adjuvant Immunotherapy
Biomedicines 2022, 10(10), 2511; https://doi.org/10.3390/biomedicines10102511 - 08 Oct 2022
Cited by 2 | Viewed by 3075
Abstract
Background: Breast cancer is the most common form of cancer in women worldwide. Advances in the early diagnosis and treatment of cancer in the last decade have progressively decreased the cancer mortality rate, and in recent years, immunotherapy has emerged as a relevant [...] Read more.
Background: Breast cancer is the most common form of cancer in women worldwide. Advances in the early diagnosis and treatment of cancer in the last decade have progressively decreased the cancer mortality rate, and in recent years, immunotherapy has emerged as a relevant tool against cancer. HER2+ and triple-negative breast cancers (TNBCs) are considered more immunogenic and suitable for this kind of treatment due to the higher rate of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression. In TNBC, genetic aberrations further favor immunogenicity due to more neo-antigens in cancer cells. Methods: This review summarizes the principal ongoing conventional and investigational immunotherapies in breast cancer. Particularly, immune checkpoint inhibitors (ICIs) and their use alone or combined with DNA damage repair inhibitors (DDRis) are described. Then, the issue on immunotherapy with monoclonal antibodies against HER-2 family receptors is updated. Other investigational immunotherapies include a new schedule based on the interferon beta-interleukin-2 sequence that was given in ER+ metastatic breast cancer patients concomitant with anti-estrogen therapy, which surprisingly showed promising results. Results: Based on the scientific literature and our own findings, the current evaluation of tumor immunogenicity and the conventional model of adjuvant chemotherapy (CT) are questioned. Conclusions: A novel strategy based on additional prolonged adjuvant immunotherapy combined with hormone therapy or alternated with CT is proposed. Full article
(This article belongs to the Special Issue Immune Checkpoints and Autoimmunity)
Show Figures

Figure 1

Review
Vericiguat in Heart Failure: Characteristics, Scientific Evidence and Potential Clinical Applications
Biomedicines 2022, 10(10), 2471; https://doi.org/10.3390/biomedicines10102471 - 03 Oct 2022
Cited by 5 | Viewed by 3393
Abstract
Despite recent advances in heart failure (HF) management, the risk of death and hospitalizations remains high in the long term. HF is characterized by endothelial dysfunction, inflammation and increased oxidative stress, due to a reduction in the activity of the nitric oxide (NO)-soluble [...] Read more.
Despite recent advances in heart failure (HF) management, the risk of death and hospitalizations remains high in the long term. HF is characterized by endothelial dysfunction, inflammation and increased oxidative stress, due to a reduction in the activity of the nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling pathway. All these factors contribute to direct damage at the myocardial, vascular and renal level. Vericiguat restores the deficiency in this signaling pathway, through stimulation and activation of sGC, aiming to increase cGMP levels, with a reduction in HF-related oxidative stress and endothelial dysfunction. Two main clinical trials were developed in this setting: the SOCRATES-REDUCED phase II study and the VICTORIA phase III study. They found that vericiguat is safe, well tolerated and effective with an absolute event-rate reduction in patients affected by HF with reduced ejection fraction (HFrEF) and recent cardiac decompensation. In patients with HF with preserved ejection fraction (HfpEF), the SOCRATES-PRESERVED trial demonstrated an improvement in quality of life and health status, but the proven beneficial effects with vericiguat are still limited. Further studies are needed to correctly define the role of this drug in heart failure syndromes. Our paper reviews the potential applications and pharmacological characteristics of vericiguat in HFrEF and HFpEF. Full article
(This article belongs to the Special Issue Advances in Therapy for Heart Failure)
Show Figures

Figure 1

Article
Study on Tissue Homogenization Buffer Composition for Brain Mass Spectrometry-Based Proteomics
Biomedicines 2022, 10(10), 2466; https://doi.org/10.3390/biomedicines10102466 - 02 Oct 2022
Cited by 2 | Viewed by 1402
Abstract
Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from [...] Read more.
Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from brain tissue on the yield of protein extraction and the number and type of extracted proteins. Three different types of buffers were compared—detergent-based buffer (DB), chaotropic agent-based buffer (CAB) and buffer without detergent and chaotropic agent (DFB). Based on label-free quantitative protein analysis, detergent buffer was identified as the most suitable for global proteomic profiling of brain tissue. It allows the most efficient extraction of membrane proteins, synaptic and synaptic membrane proteins along with ribosomal, mitochondrial and myelin sheath proteins, which are of particular interest in the field of neurodegenerative disorders research. Full article
(This article belongs to the Special Issue Mass Spectrometry Based Proteomics in Medical Research)
Show Figures

Figure 1

Article
Plasma and Peritoneal Fluid ZEB Levels in Patients with Endometriosis and Infertility
Biomedicines 2022, 10(10), 2460; https://doi.org/10.3390/biomedicines10102460 - 01 Oct 2022
Cited by 3 | Viewed by 1222
Abstract
Zinc finger E-box-binding homeobox 1 (ZEB1) and zinc finger E-box-binding homeobox 2 (ZEB2) are transcription factors that regulate epithelial–mesenchymal transformation (EMT). The aim of this study was to compare levels of ZEB1 and ZEB2 in the peritoneal fluid and plasma between patients with [...] Read more.
Zinc finger E-box-binding homeobox 1 (ZEB1) and zinc finger E-box-binding homeobox 2 (ZEB2) are transcription factors that regulate epithelial–mesenchymal transformation (EMT). The aim of this study was to compare levels of ZEB1 and ZEB2 in the peritoneal fluid and plasma between patients with and without endometriosis in order to assess their utility in the diagnostic process. Plasma and peritoneal fluid samples were collected from 50 patients with and 48 without endometriosis during planned surgical procedures in eight clinical centers. Quantitative ZEB1 and ZEB2 levels analyses were performed using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). No significant differences were observed in ZEB1 levels in any of the subanalyses nor any differences regarding ZEB2 levels between patients with and without endometriosis. Plasma ZEB2 levels were significantly higher among patients with infertility compared to fertile women (16.07 ± 12.70 ng/L vs. 12.07 ± 11.92 ng/L; p < 0.04). Both ZEB1 and ZEB2 do not seem to have a significant value in the initial diagnosis of endometriosis as a single marker. The differences in ZEB2 plasma levels between patients with and without infertility indicate the possibility of EMT dysregulation in the pathogenesis of adverse fertility outcomes. Full article
(This article belongs to the Special Issue Advanced Research in Endometriosis 3.0)
Article
The Role of [18F]F-Choline PET/CT in the Initial Management and Outcome Prediction of Prostate Cancer: A Real-World Experience from a Multidisciplinary Approach
Biomedicines 2022, 10(10), 2463; https://doi.org/10.3390/biomedicines10102463 - 01 Oct 2022
Cited by 3 | Viewed by 1000
Abstract
Initial staging of prostate cancer (PCa) is usually performed with conventional imaging (CI), involving computed tomography (CT) and bone scanning (BS). The aim of this study was to analyze the role of [18F]F-choline positron emission tomography (PET)/CT in the initial management [...] Read more.
Initial staging of prostate cancer (PCa) is usually performed with conventional imaging (CI), involving computed tomography (CT) and bone scanning (BS). The aim of this study was to analyze the role of [18F]F-choline positron emission tomography (PET)/CT in the initial management and outcome prediction of PCa patients by analyzing data from a multidisciplinary approach. We retrospectively analyzed 82 patients who were discussed by the uro-oncology board of the University Hospital of Ferrara for primary staging newly diagnosed PCa (median age 72 (56–86) years; median baseline prostate specific antigen (PSA) equal to 8.73 ng/mL). Patients were divided into three groups based on the imaging performed: group A = only CI; group B = CI + [18F]F-choline PET/CT; group C = only [18F]F-choline PET/CT. All data on imaging findings, therapy decisions and patient outcomes were retrieved from hospital information systems. Moreover, we performed a sub-analysis of semiquantitative parameters extracted from [18F]F-choline PET/CT to search any correlation with patient outcomes. The number of patients included in each group was 35, 35 and 12, respectively. Patients with higher values of initial PSA were subjected to CI + PET/CT (p = 0.005). Moreover, the use of [18F]F-choline PET/CT was more frequent in patients with higher Gleason score (GS) or ISUP grade (p = 0.013). The type of treatment performed (surgery n = 33; radiation therapy n = 22; surveillance n = 6; multimodality therapy n = 6; systemic therapy n = 13; not available n = 2) did not show any relationship with the modality adopted to stage the disease. [18F]F-choline PET/CT induced a change of planned therapy in 5/35 patients in group B (14.3%). Moreover, patients investigated with [18F]F-choline PET/CT alone demonstrated longer biochemical recurrence (BCR)-free survival (30.8 months) in comparison to patients of groups A and B (15.5 and 23.5 months, respectively, p = 0.006), probably due to a more accurate selection of primary treatment. Finally, total lesion choline kinase activity (TLCKA) of the primary lesion, calculated by multiplying metabolic tumor volume and mean standardized uptake value (SUVmean), was able to more effectively discriminate patients who had recurrence after therapy compared to those without (p = 0.03). In our real-world experience [18F]F-choline PET/CT as a tool for the initial management of PCa had a relevant impact in terms of therapy selection and was associated with longer BCR-free survival. Moreover, TLCKA of the primary lesion looks a promising parameter for predicting recurrence after curative therapy. Full article
Show Figures

Figure 1

Article
High Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Are Associated with a Higher Risk of Hemodialysis Vascular Access Failure
Biomedicines 2022, 10(9), 2218; https://doi.org/10.3390/biomedicines10092218 - 07 Sep 2022
Cited by 10 | Viewed by 908
Abstract
Our aim was to determine the predictive role of the preoperative neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in vascular access malfunctioning in patients who had undergone their first native arterio-venous fistula (AVF) for hemodialysis. Methods: This was a single-center retrospective observational study. [...] Read more.
Our aim was to determine the predictive role of the preoperative neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in vascular access malfunctioning in patients who had undergone their first native arterio-venous fistula (AVF) for hemodialysis. Methods: This was a single-center retrospective observational study. All patients who underwent the procedure of the creation of a first native AVF for hemodialysis from January 2019 to December 2020 were considered eligible to be part of this study. Reinterventions for AVF malfunctioning were registered and the population was subdivided into two groups with respect to AVF malfunctioning. ROC curves were obtained to find the appropriate cut-off values for the NLR and PLR. A multivariate analysis was used to identify the independent predictors for an AVF malfunction. Kaplan–Meier curves were used to evaluate the AVF patency rates. A total of 178 patients were enrolled in the study, of them 70% (n = 121) were male. The mean age was 67.5 ± 12 years. Reinterventions for AVF malfunctioning were performed on 102 patients (57.3%). An NLR > 4.21 and a PLR > 208.8 was selected as the cut-off for AVF malfunctioning. The study population was divided into two groups depending on the NLR and PLR values of the individual. For the NLR < 4.21 group, the AVF patency rates were 90.7%, 85.3%, and 84% at the 3-, 6-, and 12-month follow-up, respectively, and 77.5%, 65.8%, and 39.3% at 3, 6, and 12 months for the NLR > 4.21 group, respectively (p < 0.0001). For the PLR < 208.8 group, the patency rates were 85.6%, 76.7%, and 67.7% at the 3-, 6-, and 12-month follow-up. For the PLR > 208.28 group, the patency rates were 80.8%, 71.2%, and 50.7% for the 3-, 6-, and 12-month follow-up, respectively (p = 0.014). The multivariate analysis highlighted that diabetes mellitus, the neutrophil count, the lymphocyte count, and the NLR were independent risk factors for an AVF failure. In our experience, the NLR and PLR are useful markers for the stratification of vascular access failure in hemodialysis patients. The inexpensive nature and ready availability of the values of these biomarkers are two points of strength for everyday clinical practice. Full article
(This article belongs to the Special Issue Neutrophils, Fast and Strong 2.0)
Show Figures

Figure 1

Article
Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease
Biomedicines 2022, 10(8), 1946; https://doi.org/10.3390/biomedicines10081946 - 11 Aug 2022
Cited by 5 | Viewed by 2414
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal [...] Read more.
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD. Full article
(This article belongs to the Special Issue Alzheimer's Disease—115 Years after Its Discovery)
Show Figures

Figure 1

Review
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy
Biomedicines 2022, 10(8), 1895; https://doi.org/10.3390/biomedicines10081895 - 05 Aug 2022
Cited by 5 | Viewed by 2313
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the [...] Read more.
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients. Full article
Show Figures

Figure 1

Article
Bioactive Cell-Derived ECM Scaffold Forms a Unique Cellular Microenvironment for Lung Tissue Engineering
Biomedicines 2022, 10(8), 1791; https://doi.org/10.3390/biomedicines10081791 - 26 Jul 2022
Cited by 5 | Viewed by 1125
Abstract
Chronic lung diseases are one of the leading causes of death worldwide. Lung transplantation is currently the only causal therapeutic for lung diseases, which is restricted to end-stage disease and limited by low access to donor lungs. Lung tissue engineering (LTE) is a [...] Read more.
Chronic lung diseases are one of the leading causes of death worldwide. Lung transplantation is currently the only causal therapeutic for lung diseases, which is restricted to end-stage disease and limited by low access to donor lungs. Lung tissue engineering (LTE) is a promising approach to regenerating a replacement for at least a part of the damaged lung tissue. Currently, lung regeneration is limited to a simplified local level (e.g., alveolar–capillary barrier) due to the sophisticated and complex structure and physiology of the lung. Here, we introduce an extracellular matrix (ECM)-integrated scaffold using a cellularization–decellularization–recellularization technique. This ECM-integrated scaffold was developed on our artificial co-polymeric BETA (biphasic elastic thin for air–liquid interface cell culture conditions) scaffold, which were initially populated with human lung fibroblasts (IMR90 cell line), as the main generator of ECM proteins. Due to the interconnected porous structure of the thin (<5 µm) BETA scaffold, the cells can grow on and infiltrate into the scaffold and deposit their own ECM. After a mild decellularization procedure, the ECM proteins remained on the scaffold, which now closely mimicked the cellular microenvironment of pulmonary cells more realistically than the plain artificial scaffolds. We assessed several decellularization methods and found that 20 mM NH4OH and 0.1% Triton X100 with subsequent DNase treatment completely removed the fibroblasts (from the first cellularization) and maintains collagen I and IV as the key ECM proteins on the scaffold. We also showed the repopulation of the primary fibroblast from human (without chronic lung disease (non-CLD) donors) and human bronchial epithelial (16HBE14o) cells on the ECM-integrated BETA scaffold. With this technique, we developed a biomimetic scaffold that can mimic both the physico-mechanical properties and the native microenvironment of the lung ECM. The results indicate the potential of the presented bioactive scaffold for LTE application. Full article
(This article belongs to the Special Issue Human ECM in Homeostasis and Pathology)
Show Figures

Figure 1

Review
Obesity and Endothelial Function
Biomedicines 2022, 10(7), 1745; https://doi.org/10.3390/biomedicines10071745 - 19 Jul 2022
Cited by 9 | Viewed by 2094
Abstract
Obesity is a major public health problem and is related to increasing rates of cardiovascular morbidity and mortality. Over 1.9 billion adults are overweight or obese worldwide and the prevalence of obesity is increasing. Obesity influences endothelial function through obesity-related complications such as [...] Read more.
Obesity is a major public health problem and is related to increasing rates of cardiovascular morbidity and mortality. Over 1.9 billion adults are overweight or obese worldwide and the prevalence of obesity is increasing. Obesity influences endothelial function through obesity-related complications such as hypertension, dyslipidemia, diabetes, metabolic syndrome, and obstructive sleep apnea syndrome. The excess fat accumulation in obesity causes adipocyte dysfunction and induces oxidative stress, insulin resistance, and inflammation leading to endothelial dysfunction. Several anthropometric indices and imaging modalities that are used to evaluate obesity have demonstrated an association between obesity and endothelial function. In the past few decades, there has been great focus on the mechanisms underlying endothelial dysfunction caused by obesity for the prevention and treatment of cardiovascular events. This review focuses on pathophysiological mechanisms of obesity-induced endothelial dysfunction and therapeutic targets of obesity. Full article
Show Figures

Figure 1

Article
Diminazene Aceturate Reduces Angiotensin II Constriction and Interacts with the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2
Biomedicines 2022, 10(7), 1731; https://doi.org/10.3390/biomedicines10071731 - 18 Jul 2022
Cited by 7 | Viewed by 1541
Abstract
Diminazene aceturate (DIZE) is a putative angiotensin-converting enzyme 2 (ACE2) activator and angiotensin type 1 receptor antagonist (AT1R). Its simple chemical structure possesses a negatively charged triazene segment that is homologous to the tetrazole of angiotensin receptor blockers (ARB), which explains [...] Read more.
Diminazene aceturate (DIZE) is a putative angiotensin-converting enzyme 2 (ACE2) activator and angiotensin type 1 receptor antagonist (AT1R). Its simple chemical structure possesses a negatively charged triazene segment that is homologous to the tetrazole of angiotensin receptor blockers (ARB), which explains its AT1R antagonistic activity. Additionally, the activation of ACE2 by DIZE converts the toxic octapeptide angiotensin II (AngII) to the heptapeptides angiotensin 1–7 and alamandine, which promote vasodilation and maintains homeostatic balance. Due to DIZE’s protective cardiovascular and pulmonary effects and its ability to target ACE2 (the predominant receptor utilized by severe acute respiratory syndrome coronavirus 2 to enter host cells), it is a promising treatment for coronavirus 2019 (COVID-19). To determine DIZE’s ability to inhibit AngII constriction, in vitro isometric tension analysis was conducted on rabbit iliac arteries incubated with DIZE or candesartan and constricted with cumulative doses of AngII. In silico docking and ligand interaction studies were performed to investigate potential interactions between DIZE and other ARBs with AT1R and the spike protein/ACE2 complex. DIZE, similar to the other ARBs investigated, was able to abolish vasoconstriction in response to AngII and exhibited a binding affinity for the spike protein/ACE2 complex (PDB 6LZ6). These results support the potential of DIZE as a treatment for COVID-19. Full article
(This article belongs to the Special Issue Cardiovascular Diseases and COVID-19)
Show Figures

Graphical abstract

Article
Urine Oxidative Stress Biomarkers as Novel Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome
Biomedicines 2022, 10(7), 1701; https://doi.org/10.3390/biomedicines10071701 - 14 Jul 2022
Cited by 7 | Viewed by 1074
Abstract
Both hypoxia and chronic suburothelial inflammation are important pathophysiological findings in patients with interstitial cystitis/bladder pain syndrome (IC/BPS). This study investigated the roles of urine oxidative stress biomarkers and inflammatory cytokines in patients with IC/BPS. Urine samples were collected from 159 IC/BPS patients [...] Read more.
Both hypoxia and chronic suburothelial inflammation are important pathophysiological findings in patients with interstitial cystitis/bladder pain syndrome (IC/BPS). This study investigated the roles of urine oxidative stress biomarkers and inflammatory cytokines in patients with IC/BPS. Urine samples were collected from 159 IC/BPS patients and 28 controls. The targeted analytes included oxidative stress biomarkers (8-OHdG, 8-isoprostane, and total antioxidant capacity) and inflammatory cytokines (MCP-1, RANTES, CXCL10, Eotaxin, MIP-1β, and IL-8). IC/BPS patients were classified into four clinical subgroups, based on the glomerulation grade and the maximal bladder capacity under anesthesia. Patients with IC/BPS had urine oxidative stress biomarkers and inflammatory cytokines profiles that were distinct from those of the controls and among each subgroup. Both 8-OHdG and 8-isoprostane showed a high diagnostic ability to distinguish type 2 IC/BPS patients (as classified by the European Society for the Study of Interstitial Cystitis) from controls. Additionally, they both showed positive and negative correlations with the glomerulation grade and the maximal bladder capacity under anesthesia, respectively. Limitations included intra-individual variation and sex influence. Urine oxidative stress biomarkers might have a role in diagnosing IC/BPS and differentiating its clinical subtypes. In addition to inflammatory cytokines, urine oxidative stress biomarkers have the potential to be novel biomarkers in patients with IC/BPS. Full article
Show Figures

Figure 1

Review
Micro- and Nanosized Carriers for Nose-to-Brain Drug Delivery in Neurodegenerative Disorders
Biomedicines 2022, 10(7), 1706; https://doi.org/10.3390/biomedicines10071706 - 14 Jul 2022
Cited by 7 | Viewed by 1695
Abstract
Neurodegenerative disorders (NDs) have become a serious health problem worldwide due to the rapid increase in the number of people that are affected and the constantly aging population. Among all NDs, Alzheimer’s and Parkinson’s disease are the most common, and many efforts have [...] Read more.
Neurodegenerative disorders (NDs) have become a serious health problem worldwide due to the rapid increase in the number of people that are affected and the constantly aging population. Among all NDs, Alzheimer’s and Parkinson’s disease are the most common, and many efforts have been made in the development of effective and reliable therapeutic strategies. The intranasal route of drug administration offers numerous advantages, such as bypassing the blood–brain barrier and providing a direct entrance to the brain through the olfactory and trigeminal neurons. The present review summarizes the available information on recent advances in micro- and nanoscale nose-to-brain drug-delivery systems as a novel strategy for the treatment of Alzheimer’s and Parkinson’s disease. Specifically, polymer- and lipid-base micro- and nanoparticles have been studied as a feasible approach to increase the brain bioavailability of certain drugs. Furthermore, nanocomposites are discussed as a suitable formulation for administration into the nasal cavity. Full article
(This article belongs to the Special Issue Targeted Drug Delivery to Brain)
Show Figures

Figure 1

Review
Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities
Biomedicines 2022, 10(7), 1686; https://doi.org/10.3390/biomedicines10071686 - 13 Jul 2022
Cited by 16 | Viewed by 3834
Abstract
Naringin and naringenin are the main bioactive polyphenols in citrus fruits, the consumption of which is beneficial for human health and has been practiced since ancient times. Numerous studies have reported these substances’ antioxidant and antiandrogenic properties, as well as their ability to [...] Read more.
Naringin and naringenin are the main bioactive polyphenols in citrus fruits, the consumption of which is beneficial for human health and has been practiced since ancient times. Numerous studies have reported these substances’ antioxidant and antiandrogenic properties, as well as their ability to protect from inflammation and cancer, in various in vitro and in vivo experimental models in animals and humans. Naringin and naringenin can suppress cancer development in various body parts, alleviating the conditions of cancer patients by acting as effective alternative supplementary remedies. Their anticancer activities are pleiotropic, and they can modulate different cellular signaling pathways, suppress cytokine and growth factor production and arrest the cell cycle. In this narrative review, we discuss the effects of naringin and naringenin on inflammation, apoptosis, proliferation, angiogenesis, metastasis and invasion processes and their potential to become innovative and safe anticancer drugs. Full article
(This article belongs to the Special Issue Anticancer Activity and Metabolic Pathways of Natural Products)
Show Figures

Figure 1

Article
Therapeutic miR-506-3p Replacement in Pancreatic Carcinoma Leads to Multiple Effects including Autophagy, Apoptosis, Senescence, and Mitochondrial Alterations In Vitro and In Vivo
Biomedicines 2022, 10(7), 1692; https://doi.org/10.3390/biomedicines10071692 - 13 Jul 2022
Cited by 3 | Viewed by 1128
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality. Considering its very poor prognosis, novel treatment options are urgently needed. MicroRNAs (miRNAs) are involved in the regulation of various physiological and pathological processes. In tumors, aberrant downregulation of given miRNAs may [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality. Considering its very poor prognosis, novel treatment options are urgently needed. MicroRNAs (miRNAs) are involved in the regulation of various physiological and pathological processes. In tumors, aberrant downregulation of given miRNAs may result in pathological overexpression of oncogenes, rendering miRNA replacement as a promising therapeutic strategy. In different tumor entities, miRNA-506-3p (miR506-3p) has been ambivalently described as tumor suppressing or oncogenic. In PDAC, miR-506 is mainly considered as a tumor-suppressing miRNA. In this study, we extensively analyze the cellular and molecular effects of miRNA-506-3p replacement in different PDAC cell lines. Beyond profound antiproliferation and induction of cell death and autophagy, we describe new cellular miR506-3p effects, i.e., induction of senescence and reactive oxygen species (ROS), as well as alterations in mitochondrial potential and structure, and identify multiple underlying molecular effects. In a preclinical therapy study, PDAC xenograft-bearing mice were treated with nanoparticle-formulated miRNA-506 mimics. Profound tumor inhibition upon systemic miRNA-506 administration was associated with multiple cellular and molecular effects. This demonstrates miRNA replacement as a potential therapeutic option for PDAC patients. Due to its broad mechanisms of action on multiple relevant target genes, miR506-3p is identified as a particularly powerful tumor-inhibitory miRNA. Full article
(This article belongs to the Special Issue MicroRNA in Solid Tumor and Hematological Diseases 2.0)
Show Figures

Figure 1

Article
Distinct Subtyping of Successful Weaning from Acute Kidney Injury Requiring Renal Replacement Therapy by Consensus Clustering in Critically Ill Patients
Biomedicines 2022, 10(7), 1628; https://doi.org/10.3390/biomedicines10071628 - 07 Jul 2022
Cited by 3 | Viewed by 897
Abstract
Background: Clinical decisions regarding the appropriate timing of weaning off renal replacement therapy (RRT) in critically ill patients are complex and multifactorial. The aim of the current study was to identify which critical patients with acute kidney injury (AKI) may be more likely [...] Read more.
Background: Clinical decisions regarding the appropriate timing of weaning off renal replacement therapy (RRT) in critically ill patients are complex and multifactorial. The aim of the current study was to identify which critical patients with acute kidney injury (AKI) may be more likely to be successfully weaned off RRT using consensus cluster analysis. Methods: In this study, critically ill patients who received RRT at three multicenter referral hospitals at several timepoints from August 2016 to July 2018 were enrolled. An unsupervised consensus clustering algorithm was used to identify distinct phenotypes. The outcomes of interest were the ability to wean off RTT and 90-day mortality. Results: A total of 124 patients with AKI requiring RRT (AKI-RRT) were enrolled. The 90-day mortality rate was 30.7% (38/124), and 49.2% (61/124) of the patients were successfully weaned off RRT for over 90 days. The consensus clustering algorithm identified three clusters from a total of 45 features. The three clusters had distinct features and could be separated according to the combination of urinary neutrophil gelatinase-associated lipocalin to creatinine ratio (uNGAL/Cr), Sequential Organ Failure Assessment (SOFA) score, and estimated glomerular filtration rate at the time of weaning off RRT. uNGAL/Cr (hazard ratio [HR] 2.43, 95% confidence interval [CI]: 1.36–4.33) and clustering phenotype (cluster 1 vs. 3, HR 2.7, 95% CI: 1.11–6.57; cluster 2 vs. 3, HR 44.5, 95% CI: 11.92–166.39) could predict 90-day mortality or re-dialysis. Conclusions: Almost half of the critical patients with AKI-RRT could wean off dialysis for over 90 days. Urinary NGAL/Cr and distinct clustering phenotypes could predict 90-day mortality or re-dialysis. Full article
Show Figures

Graphical abstract

Article
Solubility-Aware Protein Binding Peptide Design Using AlphaFold
Biomedicines 2022, 10(7), 1626; https://doi.org/10.3390/biomedicines10071626 - 07 Jul 2022
Cited by 2 | Viewed by 2654
Abstract
New protein–protein interactions (PPIs) are identified, but PPIs have different physicochemical properties compared with conventional targets, making it difficult to use small molecules. Peptides offer a new modality to target PPIs, but designing appropriate peptide sequences by computation is challenging. Recently, AlphaFold and [...] Read more.
New protein–protein interactions (PPIs) are identified, but PPIs have different physicochemical properties compared with conventional targets, making it difficult to use small molecules. Peptides offer a new modality to target PPIs, but designing appropriate peptide sequences by computation is challenging. Recently, AlphaFold and RoseTTAFold have made it possible to predict protein structures from amino acid sequences with ultra-high accuracy, enabling de novo protein design. We designed peptides likely to have PPI as the target protein using the “binder hallucination” protocol of AfDesign, a de novo protein design method using AlphaFold. However, the solubility of the peptides tended to be low. Therefore, we designed a solubility loss function using solubility indices for amino acids and developed a solubility-aware AfDesign binder hallucination protocol. The peptide solubility in sequences designed using the new protocol increased with the weight of the solubility loss function; moreover, they captured the characteristics of the solubility indices. Moreover, the new protocol sequences tended to have higher affinity than random or single residue substitution sequences when evaluated by docking binding affinity. Our approach shows that it is possible to design peptide sequences that can bind to the interface of PPI while controlling solubility. Full article
(This article belongs to the Special Issue Peptide-Based Drug Development)
Show Figures

Figure 1

Review
Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target?
Biomedicines 2022, 10(7), 1611; https://doi.org/10.3390/biomedicines10071611 - 06 Jul 2022
Cited by 6 | Viewed by 2327
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria’s role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to [...] Read more.
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria’s role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt’s role in diseases, and its possible negative consequences in particular pathological conditions. Full article
(This article belongs to the Special Issue Mitochondria and Brain Disease 2.0)
Show Figures

Figure 1

Review
Brain Cancer Chemotherapy through a Delivery System across the Blood-Brain Barrier into the Brain Based on Receptor-Mediated Transcytosis Using Monoclonal Antibody Conjugates
Biomedicines 2022, 10(7), 1597; https://doi.org/10.3390/biomedicines10071597 - 05 Jul 2022
Cited by 7 | Viewed by 2271
Abstract
Advances in pharmacotherapy have brought extraordinary benefits to humanity. However, unmet medical needs in patients remain, particularly in the treatment of central nervous system (CNS) diseases and cancers. CNS drug delivery into the brain across the endothelium is difficult due to the blood-brain [...] Read more.
Advances in pharmacotherapy have brought extraordinary benefits to humanity. However, unmet medical needs in patients remain, particularly in the treatment of central nervous system (CNS) diseases and cancers. CNS drug delivery into the brain across the endothelium is difficult due to the blood-brain barrier (BBB), which is composed mainly of tight junctions and efflux transporters, such as multiple drug resistance 1 (MDR1) (P-glycoprotein). On the other hand, the development of anti-cancer drugs is a challenging task due to their frequent off-target side effects and the complicated mechanisms of cancer pathogenesis and progression. Brain cancer treatment options are surgery, radiation therapy, and chemotherapy. It is difficult to remove all tumor cells, even by surgical removal after a craniotomy. Accordingly, innovative brain cancer drugs are needed. Currently, antibody (Ab) drugs that show high therapeutic effects are often used clinically. Furthermore, antibody-drug conjugates (ADCs), such as trastuzumab deruxtecan, an anti-HER2 (human epidermal receptor 2) ADC with low-molecular cancer drugs through the suitable linker, have been developed. In the case of trastuzumab deruxtecan, it is internalized into cancer cells across the membrane via receptor-mediated endocytosis. Moreover, it is reported that drug delivery into the brain across the BBB was carried out via receptor-mediated transcytosis (RMT), using anti-receptor Abs as a vector against the transferrin receptor (TfR) or insulin receptor (InsR). Thus, anti-TfR ADCs with cancer drugs are promising brain cancer agents due to their precise distribution and low side effects. In this review, I introduce the implementations and potential of brain cancer drug delivery into the brain across the BBB, based on RMT using ADCs. Full article
Show Figures

Figure 1

Article
N-3 PUFA Ameliorates the Gut Microbiota, Bile Acid Profiles, and Neuropsychiatric Behaviours in a Rat Model of Geriatric Depression
Biomedicines 2022, 10(7), 1594; https://doi.org/10.3390/biomedicines10071594 - 04 Jul 2022
Cited by 4 | Viewed by 1523
Abstract
The brain−gut−microbiome (BGM) axis affects host bioinformation. N-3 polyunsaturated fatty acids (PUFAs) alleviate cognitive impairment and depression in older adults. This study investigated altered microbiota−bile acid signalling as a potential mechanism linking fish oil-induced gut changes in microbiota to alleviate psychological symptoms. Sprague [...] Read more.
The brain−gut−microbiome (BGM) axis affects host bioinformation. N-3 polyunsaturated fatty acids (PUFAs) alleviate cognitive impairment and depression in older adults. This study investigated altered microbiota−bile acid signalling as a potential mechanism linking fish oil-induced gut changes in microbiota to alleviate psychological symptoms. Sprague Dawley rats were fed a fish oil diet and administered D-galactose combined with chronic unpredictable mild stress (CUMS) to simulate geriatric depression. The cognitive function, psychological symptoms, microbiota compositions, and faecal bile acid profiles of the rats were assessed thereafter. A correlation analysis was conducted to determine whether the fish oil-induced alteration of the rats’ microbiota and bile acid profiles affected the rats’ behaviour. D-galactose and CUMS resulted in lower concentrations of Firmicutes, significantly altered bile acid profiles, and abnormal neurobehaviours. Fish oil intake alleviated the rats’ emotional symptoms and increased the abundance of Bacteroidetes, Prevotellaceae, Marinifilaceae, and Bacteroidesuniformis. It also elevated the concentrations of primary bile acids and taurine-conjugated bile acids in the rats’ faeces. The rats’ taurine-conjugated bile acid levels were significantly correlated with their behavioural outcomes. In short, fish oil intake may alleviate psychological symptoms by altering the microbial metabolites involved in the BGM axis, especially in the conjugation of bile acids. Full article
(This article belongs to the Special Issue The Lipid Metabolism in Health and Diseases)
Show Figures

Figure 1

Article
Novel Phenotyping for Acute Heart Failure—Unsupervised Machine Learning-Based Approach
Biomedicines 2022, 10(7), 1514; https://doi.org/10.3390/biomedicines10071514 - 27 Jun 2022
Cited by 6 | Viewed by 1966
Abstract
Acute heart failure (AHF) is a life-threatening, heterogeneous disease requiring urgent diagnosis and treatment. The clinical severity and medical procedures differ according to a complex interplay between the deterioration cause, underlying cardiac substrate, and comorbidities. This study aimed to analyze the natural phenotypic [...] Read more.
Acute heart failure (AHF) is a life-threatening, heterogeneous disease requiring urgent diagnosis and treatment. The clinical severity and medical procedures differ according to a complex interplay between the deterioration cause, underlying cardiac substrate, and comorbidities. This study aimed to analyze the natural phenotypic heterogeneity of the AHF population and evaluate the possibilities offered by clustering (unsupervised machine-learning technique) in a medical data assessment. We evaluated data from 381 AHF patients. Sixty-three clinical and biochemical features were assessed at the admission of the patients and were included in the analysis after the preprocessing. The K-medoids algorithm was implemented to create the clusters, and optimization, based on the Davies-Bouldin index, was used. The clustering was performed while blinded to the outcome. The outcome associations were evaluated using the Kaplan-Meier curves and Cox proportional-hazards regressions. The algorithm distinguished six clusters that differed significantly in 58 variables concerning i.e., etiology, clinical status, comorbidities, laboratory parameters and lifestyle factors. The clusters differed in terms of the one-year mortality (p = 0.002). Using the clustering techniques, we extracted six phenotypes from AHF patients with distinct clinical characteristics and outcomes. Our results can be valuable for future trial constructions and customized treatment. Full article
(This article belongs to the Special Issue Advances in Therapy for Heart Failure)
Show Figures

Figure 1

Article
Discovering the Effects of Fisetin on NF-κB/NLRP-3/NRF-2 Molecular Pathways in a Mouse Model of Vascular Dementia Induced by Repeated Bilateral Carotid Occlusion
Biomedicines 2022, 10(6), 1448; https://doi.org/10.3390/biomedicines10061448 - 19 Jun 2022
Cited by 10 | Viewed by 1765
Abstract
Vascular dementia (VaD) is the second leading cause of dementia. The majority of VaD patients have cognitive abnormalities, which are caused by cerebral hypoperfusion-induced ischemia, endothelial dysfunction, oxidative stress, and neuroinflammation. Natural products are receiving increasing attention for the treatment of neuroinflammatory diseases. [...] Read more.
Vascular dementia (VaD) is the second leading cause of dementia. The majority of VaD patients have cognitive abnormalities, which are caused by cerebral hypoperfusion-induced ischemia, endothelial dysfunction, oxidative stress, and neuroinflammation. Natural products are receiving increasing attention for the treatment of neuroinflammatory diseases. The aim of this study was to investigate the molecular pathways underlying the protective effects of fisetin, a flavonoid present in many fruits and vegetables, in a mouse model of VaD induced by repeated ischemia-reperfusion (IR) of the total bilateral carotid artery. Here, we found that VaD caused brain injury, lipid peroxidation, and neuronal death in the hippocampus, as well as astrocyte and microglial activation, and reduced BDNF neurotrophic factor expression together with behavioral alterations. In addition, VaD induced the activation of inflammasome components (NLRP-3, ASC, and caspase 1), and their downstream products (IL-1β and IL-18) release and promote activation of apoptotic cell death. Fisetin attenuated histological injury, malondialdehyde levels, inflammasome pathway activation, apoptosis, as well as increased BDNF expression, reduced astrocyte, microglial activation, and cognitive deficits. In conclusion, the protective effects of fisetin could be due to the inhibition of the ROS-induced activation of NF-κB/NLRP3 inflammasome together with the activation of antioxidant Nrf2/HO-1, suggesting a possible crosstalk between these molecular pathways. Full article
(This article belongs to the Special Issue Molecular Pathology and Biomarkers of Neurodegenerative Diseases)
Show Figures

Figure 1

Article
Isoliquiritigenin Inhibits Gastric Cancer Stemness, Modulates Tumor Microenvironment, and Suppresses Tumor Growth through Glucose-Regulated Protein 78 Downregulation
Biomedicines 2022, 10(6), 1350; https://doi.org/10.3390/biomedicines10061350 - 08 Jun 2022
Cited by 5 | Viewed by 1809
Abstract
Chemotherapy is the treatment of choice for gastric cancer; however, the currently available therapeutic drugs for treatment have limited efficacy. Cancer stemness and the tumor microenvironment may play crucial roles in tumor growth and chemoresistance. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum [...] Read more.
Chemotherapy is the treatment of choice for gastric cancer; however, the currently available therapeutic drugs for treatment have limited efficacy. Cancer stemness and the tumor microenvironment may play crucial roles in tumor growth and chemoresistance. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum chaperone facilitating protein folding and cell homeostasis during stress and may participate in chemoresistance. Isoliquiritigenin (ISL) is a bioactive flavonoid found in licorice. In this study, we demonstrated the role of GRP78 in gastric cancer stemness and evaluated GRP78-mediated stemness inhibition, tumor microenvironment regulation, and chemosensitivity promotion by ISL. ISL not only suppressed GRP78-mediated gastric cancer stem cell–like characteristics, stemness-related protein expression, and cancer-associated fibroblast activation but also gastric tumor growth in xenograft animal studies. The findings indicated that ISL is a promising candidate for clinical use in combination chemotherapy. Full article
(This article belongs to the Special Issue Tumor Microenvironment Regulation and Anti-cancer Natural Products)
Show Figures

Figure 1

Article
Metabolic Profile and Pathological Alterations in the Muscle of Patients with Early-Stage Amyotrophic Lateral Sclerosis
Biomedicines 2022, 10(6), 1307; https://doi.org/10.3390/biomedicines10061307 - 02 Jun 2022
Cited by 5 | Viewed by 2220
Abstract
Diverse biomarkers and pathological alterations have been found in muscle of patients with Amyotrophic lateral sclerosis (ALS), but the relation between such alterations and dysfunction in energetic metabolism remains to be investigated. We established the metabolome of muscle and serum of ALS patients [...] Read more.
Diverse biomarkers and pathological alterations have been found in muscle of patients with Amyotrophic lateral sclerosis (ALS), but the relation between such alterations and dysfunction in energetic metabolism remains to be investigated. We established the metabolome of muscle and serum of ALS patients and correlated these findings with the clinical status and pathological alterations observed in the muscle. We obtained data from 20 controls and 17 ALS patients (disease duration: 9.4 ± 6.8 months). Multivariate metabolomics analysis identified a distinct serum metabolome for ALS compared to controls (p-CV-ANOVA < 0.035) and revealed an excellent discriminant profile for muscle metabolome (p-CV-ANOVA < 0.0012). Citramalate was discriminant for both muscle and serum. High lauroylcarnitine levels in muscle were associated with low Forced Vital Capacity. Transcriptomics analysis of key antioxidant enzymes showed an upregulation of SOD3 (p = 0.0017) and GLRX2(1) (p = 0.0022) in ALS muscle. Analysis of mitochondrial enzymatic activity in muscle revealed higher complex II/CS (p = 0.04) and lower LDH (p = 0.03) activity in ALS than in controls. Our study showed, for the first time, a global dysfunction in the muscle of early-stage ALS patients. Furthermore, we identified novel metabolites to be employed as biomarkers for diagnosis and prognosis of ALS patients. Full article
Show Figures

Figure 1

Article
The Predictive Value of NLR, MLR, and PLR in the Outcome of End-Stage Kidney Disease Patients
Biomedicines 2022, 10(6), 1272; https://doi.org/10.3390/biomedicines10061272 - 29 May 2022
Cited by 23 | Viewed by 2092
Abstract
Background: Chronic kidney disease (CKD) is a global public health problem with a high mortality rate and a rapid progression to end-stage kidney disease (ESKD). Recently, the role of inflammation and the correlation between inflammatory markers and CKD progression have been studied. This [...] Read more.
Background: Chronic kidney disease (CKD) is a global public health problem with a high mortality rate and a rapid progression to end-stage kidney disease (ESKD). Recently, the role of inflammation and the correlation between inflammatory markers and CKD progression have been studied. This study aimed to analyze the predictive value of the neutrophil–lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and platelet-to-lymphocyte ratio (PLR) in assessing the outcome of ESKD patients. Methods: A retrospective study which included all patients admitted in the Department of Nephrology of the County Emergency Clinical Hospital, Târgu-Mureș, Romania, between January 2016 and December 2019, diagnosed with ESKD. Results: Mortality at 30 days was clearly higher in the case of the patients in the high-NLR groups (40.12% vs. 1.97%; p < 0.0001), high-MLR (32.35% vs. 4.81%; p < 0.0001), and respectively high-PLR (25.54% vs. 7.94%; p < 0.0001). There was also a significant increase in the number of hospital days and the average number of dialysis sessions in patients with high-NLR (p < 0.0001), high-MLR (p < 0.0001), and high-PLR (p < 0.0001). The multivariate analysis showed that a high baseline value for NLR (p < 0.0001), MLR (p < 0.0001), and PLR (p < 0.0001) was an independent predictor of 30-day mortality for all recruited patients. Conclusions: Our findings established that NLR, MLR, and PLR determined at hospital admission had a strong predictive capacity of all-cause 30-day mortality in ESKD patients who required RRT for at least 6 months. Elevated values of the ratios were also associated with longer hospital stays and more dialysis sessions per patient. Full article
(This article belongs to the Special Issue Kidney Disease: From Pathophysiology to Novel Therapeutic Approaches)
Show Figures

Figure 1

Review
Health Benefits of Dietary Fiber for the Management of Inflammatory Bowel Disease
Biomedicines 2022, 10(6), 1242; https://doi.org/10.3390/biomedicines10061242 - 26 May 2022
Cited by 10 | Viewed by 6257
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC), two components of inflammatory bowel disease (IBD), are painful conditions that affect children and adults. Despite substantial research, there is no permanent cure for IBD, and patients face an increased risk of colon cancer. Dietary fiber’s [...] Read more.
Crohn’s disease (CD) and ulcerative colitis (UC), two components of inflammatory bowel disease (IBD), are painful conditions that affect children and adults. Despite substantial research, there is no permanent cure for IBD, and patients face an increased risk of colon cancer. Dietary fiber’s health advantages have been thoroughly investigated, and it is recommended for its enormous health benefits. This review article discusses the importance of appropriate fiber intake in managing IBD, emphasizing how optimal fiber consumption can significantly help IBD patients. Full article
(This article belongs to the Special Issue Novel Therapeutic Approaches in Inflammatory Bowel Diseases 2.0)
Show Figures

Figure 1

Article
Natural Polyphenols, 1,2,3,4,6-O-Pentagalloyglucose and Proanthocyanidins, as Broad-Spectrum Anticoronaviral Inhibitors Targeting Mpro and RdRp of SARS-CoV-2
Biomedicines 2022, 10(5), 1170; https://doi.org/10.3390/biomedicines10051170 - 18 May 2022
Cited by 6 | Viewed by 1398
Abstract
The natural plant dietary polyphenols 1,2,3,4,6-O-Pentagalloylglucose (PGG) and proanthocyanidin (PAC) have potent antioxidant activity and a variety of pharmacological activities, including antiviral activity. In this study, we examined the inhibitory effect of PGG and PAC on SARS-CoV-2 virus infection, and elucidated its mode [...] Read more.
The natural plant dietary polyphenols 1,2,3,4,6-O-Pentagalloylglucose (PGG) and proanthocyanidin (PAC) have potent antioxidant activity and a variety of pharmacological activities, including antiviral activity. In this study, we examined the inhibitory effect of PGG and PAC on SARS-CoV-2 virus infection, and elucidated its mode of action. PGG and PAC have dose-dependent inhibitory activity against SARS-CoV-2 infection in Vero cells. PGG has a lower IC50 (15.02 ± 0.75 μM) than PAC (25.90 ± 0.81 μM), suggesting that PGG has better inhibitory activity against SARS-CoV-2 than PAC. The PGG and PAC inhibit similar Mpro activities in a protease activity assay, with IC50 values of 25–26 μM. The effects of PGG and PAC on the activity of the other essential SARS-CoV-2 viral protein, RdRp, were analyzed using a cell-based activity assay system. The activity of RdRp is inhibited by PGG and PAC, and PGG has a lower IC50 (5.098 ± 1.089 μM) than PAC (21.022 ± 1.202 μM), which is consistent with their inhibitory capacity of SARS-CoV-2 infection. PGG and PAC also inhibit infection by SARS-CoV and MERS-CoV. These data indicate that PGG and PAC may be candidate broad-spectrum anticoronaviral therapeutic agents, simultaneously targeting the Mpro and RdRp proteins of SARS-CoV-2. Full article
(This article belongs to the Special Issue Non-antiviral Agents for Treatment of COVID-19)
Show Figures

Figure 1

Article
Use of Urinary Cytokine and Chemokine Levels for Identifying Bladder Conditions and Predicting Treatment Outcomes in Patients with Interstitial Cystitis/Bladder Pain Syndrome
Biomedicines 2022, 10(5), 1149; https://doi.org/10.3390/biomedicines10051149 - 17 May 2022
Cited by 7 | Viewed by 2181
Abstract
Background: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a condition causing bladder inflammation. Urinary biomarkers have been assessed as suitable for the diagnosis and treatment. This study aimed at investigating the role of urinary biomarkers in identifying bladder conditions and predicting the treatment outcome [...] Read more.
Background: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a condition causing bladder inflammation. Urinary biomarkers have been assessed as suitable for the diagnosis and treatment. This study aimed at investigating the role of urinary biomarkers in identifying bladder conditions and predicting the treatment outcome of IC/BPS. Methods: A total of 309 patients with IC/BPS and 30 controls were enrolled in this study. All patients underwent a comprehensive urological workup of symptoms, pain severity, and cystoscopic hydrodistention findings including maximal bladder capacity (MBC) and glomerulation grade. Urine samples were collected to investigate the levels of urinary cytokines and chemokines. According to MBC and glomerulation grade, patients with IC/BPS were further classified into the Hunner’s IC (HIC) and non-HIC groups. The urinary biomarkers between IC/BPS and control groups and HIC and non-HIC groups were compared. Moreover, the treatment response was graded according to global response assessment (GRA) scores, and urinary biomarker levels were analyzed based on different GRAs. Results: Patients with IC/BPS had significantly high urinary monocyte chemoattractant protein-1, eotaxin, tumor necrosis factor -alpha (TNF-α), and prostaglandin E2 levels. Significantly higher levels of urinary interleukin-8, C-X-C motif chemokine ligand 10 (CXCL 10), brain-derived neurotrophic factor, eotaxin, and regulated-on-activation, normal T-cell expressed and secreted (RANTES) were noted in HIC than those with non-HIC and controls. Among all biomarkers, TNF-α had the best sensitivity, specificity, positive predictive value, and negative predictive value. There was a significant correlation between biomarker levels and GRA. Conclusions: Significantly higher urine cytokines and chemokine levels were found in patients with IC/BPS. Most urinary biomarkers were significantly associated with MBC, glomerulation grade, and treatment outcome. Full article
Show Figures

Figure 1

Review
Targeted Strategy in Lipid-Lowering Therapy
Biomedicines 2022, 10(5), 1090; https://doi.org/10.3390/biomedicines10051090 - 08 May 2022
Cited by 12 | Viewed by 4199
Abstract
Dyslipidemia is characterized by a diminished lipid profile, including increased level of total cholesterol and low-density lipoprotein cholesterol (LDL-c) and reduced level of high-density lipoprotein cholesterol (HDL-c). Lipid-lowering agents represent an efficient tool for the prevention or reduction of progression of atherosclerosis, coronary [...] Read more.
Dyslipidemia is characterized by a diminished lipid profile, including increased level of total cholesterol and low-density lipoprotein cholesterol (LDL-c) and reduced level of high-density lipoprotein cholesterol (HDL-c). Lipid-lowering agents represent an efficient tool for the prevention or reduction of progression of atherosclerosis, coronary heart diseases and metabolic syndrome. Statins, ezetimibe, and recently proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are the most effective and used drugs in clinical lipid-lowering therapy. These drugs are mainly aimed to lower cholesterol levels by different mechanisms of actions. Statins, the agents of the first-line therapy—known as 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors—suppress the liver cholesterol synthesis. Ezetimibe as the second-line therapy can decrease cholesterol by inhibiting cholesterol absorption. Finally, the PCSK9 inhibitors act as an inducer of LDL excretion. In spite of their beneficial lipid-lowering properties, many patients suffer from their serious side effects, route of administration, or unsatisfactory physicochemical characteristics. Clinical demand for dose reduction and the improvement of bioavailability as well as pharmacodynamic and pharmacokinetic profile has resulted in the development of a new targeted therapy that includes nanoparticle carriers, emulsions or vaccination often associated with another more subtle form of administration. Targeted therapy aims to exert a more potent drug profile with lipid-lowering properties either alone or in mutual combination to potentiate their beneficial effects. This review describes the most effective lipid-lowering drugs, their favorable and adverse effects, as well as targeted therapy and alternative treatments to help reduce or prevent atherosclerotic processes and cardiovascular events. Full article
(This article belongs to the Special Issue The Lipid Metabolism in Health and Diseases)
Show Figures

Figure 1

Article
Non-Invasive Physical Plasma Generated by a Medical Argon Plasma Device Induces the Expression of Regenerative Factors in Human Gingival Keratinocytes, Fibroblasts, and Tissue Biopsies
Biomedicines 2022, 10(4), 889; https://doi.org/10.3390/biomedicines10040889 - 13 Apr 2022
Cited by 6 | Viewed by 1340
Abstract
After oral surgery, intraoral wound healing and tissue regeneration is an important factor for the success of the entire therapy. In recent years, non-invasive medical plasma (NIPP) has been shown to accelerate wound healing, which would be particularly beneficial for patients with wound [...] Read more.
After oral surgery, intraoral wound healing and tissue regeneration is an important factor for the success of the entire therapy. In recent years, non-invasive medical plasma (NIPP) has been shown to accelerate wound healing, which would be particularly beneficial for patients with wound healing disorders. Since the application of NIPP in dentistry has not been sufficiently understood, the aim of the present study was to investigate the effect of a medical argon plasma device on gingival cells. Human gingival fibroblasts, keratinocytes, and tissue biopsies were treated with NIPP for different durations. Crucial markers associated with wound healing were examined at the mRNA and protein levels by real-time PCR, ELISA and immunohistochemistry. NIPP treatment led to an increase in Ki67 and MMP1 at mRNA and protein levels. NIPP application lasting longer than 60 s resulted in an increase in apoptotic genes at mRNA level and superficial damage to the epithelium in the tissue biopsies. Overall, our experimental setup demonstrated that NIPP application times of 30 s were most suitable for the treatment of gingival cells and tissue biopsies. Our study provides evidence for potential use of NIPP in dentistry, which would be a promising treatment option for oral surgery. Full article
(This article belongs to the Special Issue The Advances of Cold Plasma in the Biomedicines)
Show Figures

Figure 1

Review
Ion Channels and Transporters as Therapeutic Agents: From Biomolecules to Supramolecular Medicinal Chemistry
Biomedicines 2022, 10(4), 885; https://doi.org/10.3390/biomedicines10040885 - 12 Apr 2022
Cited by 7 | Viewed by 3017
Abstract
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet [...] Read more.
Ion channels and transporters typically consist of biomolecules that play key roles in a large variety of physiological and pathological processes. Traditional therapies include many ion-channel blockers, and some activators, although the exact biochemical pathways and mechanisms that regulate ion homeostasis are yet to be fully elucidated. An emerging area of research with great innovative potential in biomedicine pertains the design and development of synthetic ion channels and transporters, which may provide unexplored therapeutic opportunities. However, most studies in this challenging and multidisciplinary area are still at a fundamental level. In this review, we discuss the progress that has been made over the last five years on ion channels and transporters, touching upon biomolecules and synthetic supramolecules that are relevant to biological use. We conclude with the identification of therapeutic opportunities for future exploration. Full article
(This article belongs to the Collection Feature Papers in Cell Biology and Pathology)
Show Figures

Figure 1

Article
Effects of CB2 Receptor Modulation on Macrophage Polarization in Pediatric Celiac Disease
Biomedicines 2022, 10(4), 874; https://doi.org/10.3390/biomedicines10040874 - 09 Apr 2022
Cited by 6 | Viewed by 1433
Abstract
Celiac Disease (CD) represents an autoimmune disorder triggered by the exposure to gluten in genetically susceptible individuals. Recent studies suggest the involvement of macrophages in CD pathogenesis. Macrophages are immune cells, present as pro-inflammatory classically activated macrophages (M1) or as anti-inflammatory alternatively activated [...] Read more.
Celiac Disease (CD) represents an autoimmune disorder triggered by the exposure to gluten in genetically susceptible individuals. Recent studies suggest the involvement of macrophages in CD pathogenesis. Macrophages are immune cells, present as pro-inflammatory classically activated macrophages (M1) or as anti-inflammatory alternatively activated macrophages (M2). The Cannabinoid Receptor 2 (CB2) has important anti-inflammatory and immunoregulatory properties. We previously demonstrated that a common CB2 functional variant, Q63R, causing CB2 reduced function, is associated with several inflammatory and autoimmune diseases The first aim of this study was to investigate the phenotype of macrophages isolated from peripheral blood of CD patients and CB2 expression. The second aim was to evaluate the effects of CB2 pharmacological modulation on CD macrophage polarization. Moreover, by an in vitro model of “immunocompetent gut” we investigated the role of CD macrophages in inducing intestinal barrier damage and the possibility to restore its functionality modulating their polarization. We found an increased expression of M1 macrophages and a CB2 reduced expression. We also demonstrated CD M1 macrophages in inducing the typical mucosal barrier damage of CD. CB2 stimulation switches macrophage polarization towards the anti-inflammatory M2 phenotype thus reducing inflammation but also limiting the epithelial dysfunction. Therefore, we suggest CB2 receptor as a possible novel therapeutic target for CD by regulating macrophages polarization and by preventing mucosal barrier damage. Full article
(This article belongs to the Special Issue Macrophages in Health and Non-infectious Disease 3.0)
Show Figures

Graphical abstract

Article
The Impact of Prolonged Inflammation on Wound Healing
Biomedicines 2022, 10(4), 856; https://doi.org/10.3390/biomedicines10040856 - 06 Apr 2022
Cited by 14 | Viewed by 3187
Abstract
The treatment of chronic wounds still challenges modern medicine because of these wounds’ heterogenic pathophysiology. Processes such as inflammation, ischemia and bacterial infection play major roles in the progression of a chronic wound. In recent years, preclinical wound models have been used to [...] Read more.
The treatment of chronic wounds still challenges modern medicine because of these wounds’ heterogenic pathophysiology. Processes such as inflammation, ischemia and bacterial infection play major roles in the progression of a chronic wound. In recent years, preclinical wound models have been used to understand the underlying processes of chronic wound formation. However, the wound models used to investigate chronic wounds often lack translatability from preclinical models to patients, and often do not take exaggerated inflammation into consideration. Therefore, we aimed to investigate prolonged inflammation in a porcine wound model by using resiquimod, a TLR7 and TLR8 agonist. Pigs received full thickness excisional wounds, where resiquimod was applied daily for 6 days, and untreated wounds served as controls. Dressing change, visual documentation and wound scoring were performed daily. Biopsies were collected for histological as well as gene expression analysis. Resiquimod application on full thickness wounds induced a visible inflammation of wounds, resulting in delayed wound healing compared to non-treated control wounds. Gene expression analysis revealed high levels of IL6, MMP1 and CD68 expression after resiquimod application, and histological analysis showed increased immune cell infiltration. By using resiquimod, we were able to show that prolonged inflammation delayed wound healing, which is often observed in chronic wounds in patients. The model we used shows the importance of inflammation in wound healing and gives an insight into the progression of chronic wounds. Full article
(This article belongs to the Special Issue Wound Healing at the Cellular Level)
Show Figures

Figure 1

Review
Development of Alzheimer’s Disease Biomarkers: From CSF- to Blood-Based Biomarkers
Biomedicines 2022, 10(4), 850; https://doi.org/10.3390/biomedicines10040850 - 05 Apr 2022
Cited by 7 | Viewed by 5412
Abstract
In the 115 years since the discovery of Alzheimer’s disease (AD), our knowledge, diagnosis, and therapeutics have significantly improved. Biomarkers are the primary tools for clinical research, diagnostics, and therapeutic monitoring in clinical trials. They provide much insightful information, and while they are [...] Read more.
In the 115 years since the discovery of Alzheimer’s disease (AD), our knowledge, diagnosis, and therapeutics have significantly improved. Biomarkers are the primary tools for clinical research, diagnostics, and therapeutic monitoring in clinical trials. They provide much insightful information, and while they are not clinically used routinely, they help us to understand the mechanisms of this disease. This review charts the journey of AD biomarker discovery and development from cerebrospinal fluid (CSF) amyloid-beta 1-42 (Aβ42), total tau (T-tau), and phosphorylated tau (p-tau) biomarkers and imaging technologies to the next generation of biomarkers. We also discuss advanced high-sensitivity assay platforms for CSF Aβ42, T-tau, p-tau, and blood analysis. The recently proposed Aβ deposition/tau biomarker/neurodegeneration or neuronal injury (ATN) scheme might facilitate the definition of the biological status underpinning AD and offer a common language among researchers across biochemical biomarkers and imaging. Moreover, we highlight blood-based biomarkers for AD that offer a scalable alternative to CSF biomarkers through cost-saving and reduced invasiveness, and may provide an understanding of disease initiation and development. We discuss different groups of blood-based biomarker candidates, their advantages and limitations, and paths forward, from identification and analysis to clinical validation. The development of valid blood-based biomarkers may facilitate the implementation of future AD therapeutics and diagnostics. Full article
(This article belongs to the Special Issue Alzheimer's Disease—115 Years after Its Discovery)
Show Figures

Figure 1

Review
The Role of Osteopontin in Microglia Biology: Current Concepts and Future Perspectives
Biomedicines 2022, 10(4), 840; https://doi.org/10.3390/biomedicines10040840 - 03 Apr 2022
Cited by 11 | Viewed by 6423
Abstract
The innate immune landscape of the central nervous system (CNS), including the brain and the retina, consists of different myeloid cell populations with distinct tasks to fulfill. Whereas the CNS borders harbor extraparenchymal CNS-associated macrophages whose main duty is to build up a [...] Read more.
The innate immune landscape of the central nervous system (CNS), including the brain and the retina, consists of different myeloid cell populations with distinct tasks to fulfill. Whereas the CNS borders harbor extraparenchymal CNS-associated macrophages whose main duty is to build up a defense against invading pathogens and other damaging factors from the periphery, the resident immune cells of the CNS parenchyma and the retina, microglia, are highly dynamic cells with a plethora of functions during homeostasis and disease. Therefore, microglia are constantly sensing their environment and closely interacting with surrounding cells, which is in part mediated by soluble factors. One of these factors is Osteopontin (OPN), a multifunctional protein that is produced by different cell types in the CNS, including microglia, and is upregulated in neurodegenerative and neuroinflammatory conditions. In this review, we discuss the current literature about the interaction between microglia and OPN in homeostasis and several disease entities, including multiple sclerosis (MS), Alzheimer’s and cerebrovascular diseases (AD, CVD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD) and diabetic retinopathy (DR), in the context of the molecular pathways involved in OPN signaling shaping the function of microglia. As nearly all CNS diseases are characterized by pathological alterations in microglial cells, accompanied by the disturbance of the homeostatic microglia phenotype, the emergence of disease-associated microglia (DAM) states and their interplay with factors shaping the DAM-signature, such as OPN, is of great interest for therapeutical interventions in the future. Full article
(This article belongs to the Special Issue 30 Years of OPN Milestones and Future Avenues)
Show Figures

Figure 1

Review
The Hallmarks of Glioblastoma: Heterogeneity, Intercellular Crosstalk and Molecular Signature of Invasiveness and Progression
Biomedicines 2022, 10(4), 806; https://doi.org/10.3390/biomedicines10040806 - 30 Mar 2022
Cited by 27 | Viewed by 3426
Abstract
In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among [...] Read more.
In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues. The aim of this review is to illustrate and elucidate the state of art regarding the foremost biological and molecular mechanisms that guide the beginning and the progression of this cancer, showing the salient features of tumor hallmarks in glioblastoma. Pathophysiology processes are discussed on molecular and cellular levels, highlighting the critical overlaps that are involved into the creation of a complex tumor microenvironment. The description of glioblastoma hallmarks shows how tumoral processes can be linked together, finding their involvement within distinct areas that are engaged for cancer-malignancy establishment and maintenance. The evidence presented provides the promising view that glioblastoma represents interconnected hallmarks that may led to a better understanding of tumor pathophysiology, therefore driving the development of new therapeutic strategies and approaches. Full article
Show Figures

Figure 1

Review
The Neurobiological Correlates of Gaze Perception in Healthy Individuals and Neurologic Patients
Biomedicines 2022, 10(3), 627; https://doi.org/10.3390/biomedicines10030627 - 09 Mar 2022
Cited by 38 | Viewed by 3094
Abstract
The ability to adaptively follow conspecific eye movements is crucial for establishing shared attention and survival. Indeed, in humans, interacting with the gaze direction of others causes the reflexive orienting of attention and the faster object detection of the signaled spatial location. The [...] Read more.
The ability to adaptively follow conspecific eye movements is crucial for establishing shared attention and survival. Indeed, in humans, interacting with the gaze direction of others causes the reflexive orienting of attention and the faster object detection of the signaled spatial location. The behavioral evidence of this phenomenon is called gaze-cueing. Although this effect can be conceived as automatic and reflexive, gaze-cueing is often susceptible to context. In fact, gaze-cueing was shown to interact with other factors that characterize facial stimulus, such as the kind of cue that induces attention orienting (i.e., gaze or non-symbolic cues) or the emotional expression conveyed by the gaze cues. Here, we address neuroimaging evidence, investigating the neural bases of gaze-cueing and the perception of gaze direction and how contextual factors interact with the gaze shift of attention. Evidence from neuroimaging, as well as the fields of non-invasive brain stimulation and neurologic patients, highlights the involvement of the amygdala and the superior temporal lobe (especially the superior temporal sulcus (STS)) in gaze perception. However, in this review, we also emphasized the discrepancies of the attempts to characterize the distinct functional roles of the regions in the processing of gaze. Finally, we conclude by presenting the notion of invariant representation and underline its value as a conceptual framework for the future characterization of the perceptual processing of gaze within the STS. Full article
Show Figures

Figure 1

Article
Nobiletin Alleviates Ferroptosis-Associated Renal Injury, Inflammation, and Fibrosis in a Unilateral Ureteral Obstruction Mouse Model
Biomedicines 2022, 10(3), 595; https://doi.org/10.3390/biomedicines10030595 - 03 Mar 2022
Cited by 9 | Viewed by 2332
Abstract
Nobiletin (Nob), a critical active flavonoid of citrus fruits, has received attention for its superior physical functions, which have shown to improve the progression of diseases. Chronic kidney disease (CKD) is recognized as a global health problem, and its mortality and morbidity rates [...] Read more.
Nobiletin (Nob), a critical active flavonoid of citrus fruits, has received attention for its superior physical functions, which have shown to improve the progression of diseases. Chronic kidney disease (CKD) is recognized as a global health problem, and its mortality and morbidity rates are worsened with an increased risk of accompanying disorders. In this study, we aimed to elucidate whether Nob treatment ameliorates kidney fibrosis and also to identify the potential signaling networks in a unilateral ureteral obstructive (UUO) mouse model, which was used to mimic the progression of CKD. Six-week-old C57BL/6J mice were orally treated with 50 mg/kg of Nob for 14 constitutive days after UUO surgery. We found that the administration of Nob diminished kidney fibrosis and the expression of EMT markers, ameliorated oxidative stress and ferroptosis-associated injury, and mitigated the inflammatory response in the kidneys of UUO mice. Our results suggested that Nob treatment has antiferroptosis, anti-inflammatory, and antifibrotic effects, improving the progression of CKD in UUO mice. Nob may serve as a potential therapeutic candidate for the improvement of progressive CKD in further studies. Full article
(This article belongs to the Topic Novel Therapeutic Nutrient Molecules)
Show Figures

Graphical abstract

Article
Cytoprotective Effect of Idebenone through Modulation of the Intrinsic Mitochondrial Pathway of Apoptosis in Human Retinal Pigment Epithelial Cells Exposed to Oxidative Stress Induced by Hydrogen Peroxide
Biomedicines 2022, 10(2), 503; https://doi.org/10.3390/biomedicines10020503 - 21 Feb 2022
Cited by 12 | Viewed by 2804
Abstract
Idebenone is a ubiquinone short-chain synthetic analog with antioxidant properties, which is believed to restore mitochondrial ATP synthesis. As such, idebenone is investigated in numerous clinical trials for diseases of mitochondrial aetiology and it is authorized as a drug for the treatment of [...] Read more.
Idebenone is a ubiquinone short-chain synthetic analog with antioxidant properties, which is believed to restore mitochondrial ATP synthesis. As such, idebenone is investigated in numerous clinical trials for diseases of mitochondrial aetiology and it is authorized as a drug for the treatment of Leber’s hereditary optic neuropathy. Mitochondria of retinal pigment epithelium (RPE) are particularly vulnerable to oxidative damage associated with cellular senescence. Therefore, the aim of this study was to explore idebenone’s cytoprotective effect and its underlying mechanism. We used a human-RPE cell line (ARPE-19) exposed to idebenone pre-treatment for 24 h followed by conditions inducing H2O2 oxidative damage for a further 24 h. We found that idebenone: (a) ameliorated H2O2-lowered cell viability in the RPE culture; (b) activated Nrf2 signaling pathway by promoting Nrf2 nuclear translocation; (c) increased Bcl-2 protein levels, leaving unmodified those of Bax, thereby reducing the Bax/Bcl-2 ratio; (d) maintained the mitochondrial membrane potential (ΔΨm) at physiological levels, preserving the functionality of mitochondrial respiratory complexes and counteracting the excessive production of ROS; and (e) reduced mitochondrial cytochrome C-mediated caspase-3 activity. Taken together, our findings show that idebenone protects RPE from oxidative damage by modulating the intrinsic mitochondrial pathway of apoptosis, suggesting its possible role in retinal epitheliopathies associated with mitochondrial dysfunction. Full article
(This article belongs to the Special Issue Mitochondrial Dysfunction and Oxidative Stress in Aging and Disease)
Show Figures

Figure 1

Review
Gastrointestinal Microbiome and Neurologic Injury
Biomedicines 2022, 10(2), 500; https://doi.org/10.3390/biomedicines10020500 - 21 Feb 2022
Cited by 12 | Viewed by 2969
Abstract
Communication between the enteric nervous system (ENS) of the gastrointestinal (GI) tract and the central nervous system (CNS) is vital for maintaining systemic homeostasis. Intrinsic and extrinsic neurological inputs of the gut regulate blood flow, peristalsis, hormone release, and immunological function. The health [...] Read more.
Communication between the enteric nervous system (ENS) of the gastrointestinal (GI) tract and the central nervous system (CNS) is vital for maintaining systemic homeostasis. Intrinsic and extrinsic neurological inputs of the gut regulate blood flow, peristalsis, hormone release, and immunological function. The health of the gut microbiome plays a vital role in regulating the overall function and well-being of the individual. Microbes release short-chain fatty acids (SCFAs) that regulate G-protein-coupled receptors to mediate hormone release, neurotransmitter release (i.e., serotonin, dopamine, noradrenaline, γ-aminobutyric acid (GABA), acetylcholine, and histamine), and regulate inflammation and mood. Further gaseous factors (i.e., nitric oxide) are important in regulating inflammation and have a response in injury. Neurologic injuries such as ischemic stroke, spinal cord injury, traumatic brain injury, and hemorrhagic cerebrovascular lesions can all lead to gut dysbiosis. Additionally, unfavorable alterations in the composition of the microbiota may be associated with increased risk for these neurologic injuries due to increased proinflammatory molecules and clotting factors. Interventions such as probiotics, fecal microbiota transplantation, and oral SCFAs have been shown to stabilize and improve the composition of the microbiome. However, the effect this has on neurologic injury prevention and recovery has not been studied extensively. The purpose of this review is to elaborate on the complex relationship between the nervous system and the microbiome and to report how neurologic injury modulates the status of the microbiome. Finally, we will propose various interventions that may be beneficial in the recovery from neurologic injury. Full article
Show Figures

Figure 1

Review
Neutrophil Extracellular Traps, Angiogenesis and Cancer
Biomedicines 2022, 10(2), 431; https://doi.org/10.3390/biomedicines10020431 - 12 Feb 2022
Cited by 20 | Viewed by 5674
Abstract
Human neutrophils, the most abundant circulating leukocytes, are fundamental components of the host response against different pathogens. Until a few years ago, neutrophils received limited attention in cancer immunology. Recently, it was discovered that both circulating, and tumor-associated, neutrophils possess functional plasticity when [...] Read more.
Human neutrophils, the most abundant circulating leukocytes, are fundamental components of the host response against different pathogens. Until a few years ago, neutrophils received limited attention in cancer immunology. Recently, it was discovered that both circulating, and tumor-associated, neutrophils possess functional plasticity when exposed to various inflammatory stimuli and in the tumor microenvironment. Neutrophils and their mediators can exert several pro-tumor activities in cancer and promote metastasis through different mechanisms. Angiogenesis plays a pivotal role in inflammation and tumor growth. Activated human neutrophils release several angiogenic factors [vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (ANGPT1), CXCL8, hepatocyte growth factor (HGF), and metalloproteinase 9 (MMP-9)] and form neutrophil extracellular traps (NETs). NETs promote tumor growth and metastasis formation through several mechanisms: they can awake dormant cancer cells, capture circulating tumor cells, coat and shield cancer cells, thus preventing CD8+- and natural killer (NK) cell-mediated cytotoxicity. ANGPTs released by endothelial and periendothelial mural cells induce platelet-activating factor (PAF) synthesis and neutrophil adhesion to endothelial cells. NETs can directly exert several proangiogenic activities in human endothelial cells and NETs induced by ANGPTs and PAF increase several aspects of angiogenesis in vitro and in vivo. A better understanding of the pathophysiological functions of NETs in cancer and angiogenesis could be of importance in the early diagnosis, prevention and treatment of tumors. Full article
(This article belongs to the Special Issue Angiogenesis and Anti-angiogenesis in Health and Diseases)
Show Figures

Figure 1

Article
Influence of DNA Mismatch Repair (MMR) System in Survival and Response to Immune Checkpoint Inhibitors (ICIs) in Non-Small Cell Lung Cancer (NSCLC): Retrospective Analysis
Biomedicines 2022, 10(2), 360; https://doi.org/10.3390/biomedicines10020360 - 02 Feb 2022
Cited by 11 | Viewed by 1743
Abstract
Mutations in the mismatch repair (MMR) system predict the response to immune checkpoint inhibitors (ICIs) like colon or gastric cancer. However, the MMR system’s involvement in non-small cell lung cancer (NSCLC) remains unknown. Addressing this issue will improve clinical guidelines in the case [...] Read more.
Mutations in the mismatch repair (MMR) system predict the response to immune checkpoint inhibitors (ICIs) like colon or gastric cancer. However, the MMR system’s involvement in non-small cell lung cancer (NSCLC) remains unknown. Addressing this issue will improve clinical guidelines in the case of mutations in the main genes of the MMR system (MLH1, MSH2, MSH6, and PMS2). This work retrospectively assessed the role that these gene mutations play in the response to and survival of ICIs in NSCLC. Patients with NSCLC treated with nivolumab as the second-line treatment in the University Hospital of Salamanca were enrolled in this study. Survival and response analyses were performed according to groups of MMR system gene expression (MMR expression present or deficiency) and other subgroups, such as toxicity. There was a statistically significant relationship between the best response obtained and the expression of the MMR system (p = 0.045). The presence of toxicity grade ≥ 3 was associated with the deficiency expression of MMR (dMMR/MSI-H) group (p = 0.022; odds ratio = 10.167, 95% confidence interval (CI) 1.669–61.919). A trend towards greater survival and response to ICIs was observed in NSCLC and dMMR. Assessing the genes in the MMR system involved in NSCLC is key to obtaining personalized immunotherapy treatments. Full article
(This article belongs to the Section Cancer Biology and Therapeutics)
Show Figures

Figure 1

Article
Gel-Forming of Self-Assembling Peptides Functionalized with Food Bioactive Motifs Modulate DPP-IV and ACE Inhibitory Activity in Human Intestinal Caco-2 Cells
Biomedicines 2022, 10(2), 330; https://doi.org/10.3390/biomedicines10020330 - 31 Jan 2022
Cited by 8 | Viewed by 1984
Abstract
Food bioactive peptides are increasingly used for formulating food products, nutraceuticals, and functional food, since they are generally considered safe for human consumption and metabolic syndrome prevention. They are also becoming popular as sustainable sources of novel functional biomaterials such as hydrogels, edible [...] Read more.
Food bioactive peptides are increasingly used for formulating food products, nutraceuticals, and functional food, since they are generally considered safe for human consumption and metabolic syndrome prevention. They are also becoming popular as sustainable sources of novel functional biomaterials such as hydrogels, edible nanonutraceuticals, delivery systems, and packing materials. However, such food peptides are mostly unstable, and degrade during food processing, or in a gastrointestinal environment, thus resulting in low bioavailability precluding their practical applications. Here, we decided to functionalize the well-known and characterized self-assembling peptide RADA16 with two synthetic analogues of food bioactive peptides deriving from the hydrolysis of soybean glycinin and lupin β-conglutin (namely IAVPTGVA and LTFPGSAED) for control of and improvement in their gel-forming nanostructures, biomechanics, and biological features. Extensive characterization was performed via Circular Dichroism (CD) spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), Thioflavin T (ThT) binding assay, rheological measurements, and Atomic Force Microscopy (AFM) analysis. Lastly, since self-assembling peptides (SAPs) can be co-assembled with diluent SAPs (without a bioactive epitope) as an approach to control the density of biological signals and therefore attain enhanced bioactivity, we investigated the effect of the co-assembly of RADA16 and functionalized food bioactive SAPs (dubbed cAP-Soy1 and cAP-Lup1) for the growth of Caco-2 human intestinal cells and contextually we characterized their biological activities as DPP-IV and ACE inhibitors, in order to demonstrate their potential use for the prevention of metabolic syndrome. Full article
Show Figures

Figure 1