Antioxidants in Algae: Extraction, Components, and Applications

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Extraction and Industrial Applications of Antioxidants".

Deadline for manuscript submissions: closed (15 December 2023) | Viewed by 18108

Special Issue Editors


E-Mail Website
Guest Editor
Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
Interests: metabolic diseases; peptide; anti-obesity; anti-diabetic; inflammation; isulin resistance
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
Interests: marine natural products; marine algae; marine resource; marine biotechnology; biological activities; antioxidants; medicinal and pharmaceutical chemistry; chemical biology

Special Issue Information

Dear Colleagues,

Marine algae contain polyphenols, terpenoids, polyketides, alkaloids, sterols, and pigments, as well as carbohydrates, polyunsaturated fatty acids, and peptides. Additionally, they serve as valuable raw materials for discovering new agents that can act as antioxidants, which have an established therapeutic use. The potential of algae as an antioxidant is therefore gaining interest for treating or preventing the increasing global prevalence of health issues.

This Special Issue will cover recent advances and future perspectives that elucidate the potential of marine algae as an antioxidant. This will include the screening of marine biota, the isolation of high-value molecules with pharmacological effects and as possible food sources, and the discovery of new compounds and their applications. As the Guest Editor, I would like to invite authors to share their recent advances on the antioxidant properties of marine algae.

Prof. Dr. BoMi Ryu
Prof. Dr. You-Jin Jeon
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine resources
  • antioxidant
  • natural products
  • algae
  • dietary constituents
  • molecular targets
  • marine biotechnology

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

12 pages, 4871 KiB  
Article
The Synergistic Effects of Corbicula fluminea and Sarcodia montagneana on Alleviating Systemic Inflammation and Osteoarthritis Progression
by Tse-Hung Huang, Bang-Hung Liu, Chia-Hui Hsu, Chang-Jer Wu, Kuang-Wen Liao, Chen-Si Lin and Yi-Lin Chan
Antioxidants 2023, 12(12), 2068; https://doi.org/10.3390/antiox12122068 - 01 Dec 2023
Viewed by 838
Abstract
Osteoarthritis (OA) is a progressive disease that causes pain, stiffness, and inflammation in the affected joints. Currently, there are no effective treatments for preventing the worst outcomes, such as synovitis or cartilage degradation. Sarcodia montagneana and Corbicula fluminea are common species found in [...] Read more.
Osteoarthritis (OA) is a progressive disease that causes pain, stiffness, and inflammation in the affected joints. Currently, there are no effective treatments for preventing the worst outcomes, such as synovitis or cartilage degradation. Sarcodia montagneana and Corbicula fluminea are common species found in the ocean or in freshwater areas. Their extracts are demonstrated to possess both antioxidative and anti-inflammatory functions. This study aimed to investigate the synergistic effects of the extracts of Sarcodia montagneana (SME) and Corbicula fluminea (FCE) on reducing local and systemic inflammation, as well as their efficacy in OA symptom relief. An in vitro monocytic LPS-treated THP-1 cell model and in vivo MIA-induced mouse OA model were applied, and the results showed that the combinatory usage of SME and FCE effectively suppressed IFN-γ and TNF-α production when THP-1 cells were treated with LPS. SME and FCE also significantly decreased the systemic TNF-α level and joint swelling and prevented the loss of proteoglycan in the cartilage within the joints of OA mice. The data shown here provide a potential solution for the treatment of osteoarthritis. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Figure 1

19 pages, 13949 KiB  
Article
Exploring the Potential of Olive Flounder Processing By-Products as a Source of Functional Ingredients for Muscle Enhancement
by Jimin Hyun, Sang-In Kang, Sang-Woon Lee, R. P. G. S. K. Amarasiri, D. P. Nagahawatta, Yujin Roh, Lei Wang, Bomi Ryu and You-Jin Jeon
Antioxidants 2023, 12(9), 1755; https://doi.org/10.3390/antiox12091755 - 13 Sep 2023
Cited by 2 | Viewed by 1238
Abstract
Olive flounder (OF) is a widely aqua-cultivated and recognized socioeconomic resource in Korea. However, more than 50% of by-products are generated when processing one OF, and there is no proper way to utilize them. With rising awareness and interest in eco-friendly bio-materialization recycling, [...] Read more.
Olive flounder (OF) is a widely aqua-cultivated and recognized socioeconomic resource in Korea. However, more than 50% of by-products are generated when processing one OF, and there is no proper way to utilize them. With rising awareness and interest in eco-friendly bio-materialization recycling, this research investigates the potential of enzymatic hydrolysis of OF by-products (OFB) to produce functional ingredients. Various enzymatic hydrolysates of OFB (OFBEs) were generated using 11 commercial enzymes. Among them, Prozyme 2000P-assisted OFBE (OFBP) exhibited the highest protein content and yield, as well as low molecularization. The muscle regenerative potential of OFBEs was evaluated using C2C12 myoblasts, revealing that OFBP positively regulated myoblast differentiation. In an in vitro Dex-induced myotube atrophy model, OFBP protected against muscle atrophy and restored myotube differentiation and Dex-induced reactive oxygen species (ROS) production. Furthermore, zebrafish treated with OFBEs showed improved locomotor activity and body weight, with OFBP exhibiting outstanding restoration in the Dex-induced muscle atrophy zebrafish in vivo model. In conclusion, OFBEs, particularly OFBP, produce hydrolysates with enhanced physiological usability and muscle regenerative potential. Further research on its industrial application and mechanistic insights is needed to realize its potential as a high-quality protein food ingredient derived from OF processing by-products. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Figure 1

18 pages, 3844 KiB  
Article
New Insights into the Dermocosmetic Potential of the Red Seaweed Gelidium corneum
by Margarida Matias, Alice Martins, Celso Alves, Joana Silva, Susete Pinteus, Manuel Fitas, Pedro Pinto, Joana Marto, Helena Ribeiro, Patrick Murray and Rui Pedrosa
Antioxidants 2023, 12(9), 1684; https://doi.org/10.3390/antiox12091684 - 29 Aug 2023
Cited by 2 | Viewed by 1170
Abstract
This work addresses the potential of the red seaweed Gelidium corneum as a source of bioactive ingredients for skin health and wellness in response to the growing awareness regarding the significance of sustainable strategies in developing new nature-based dermocosmetic products. Hydroalcoholic extracts from [...] Read more.
This work addresses the potential of the red seaweed Gelidium corneum as a source of bioactive ingredients for skin health and wellness in response to the growing awareness regarding the significance of sustainable strategies in developing new nature-based dermocosmetic products. Hydroalcoholic extracts from the dried biomass were subjected to sequential liquid–liquid partitions, affording five different fractions (F1–F5). Their cosmetic potential was assessed through a set of in vitro assays concerning their antioxidant, photoprotective, and healing properties. Additionally, their cytotoxicity in HaCaT cells and their capacity to induce inflammation in RAW 264.7 cells were also evaluated. As a proof-of-concept, O/W emulsions were prepared, and emulsion stability was assessed by optical microscopy, droplet size analysis, centrifugation tests, and rheology analysis. Furthermore, in vivo tests were conducted with the final formulation to assess its antioxidant capacity. At subtoxic concentrations, the most lipophilic fraction has provided photoprotection against UV light-induced photooxidation in HaCaT cells. This was conducted together with the aqueous fraction, which also displayed healing capacities. Regarding the physical and stability assays, the best performance was achieved with the formulation containing 1% aqueous extract, which exhibited water retention and antioxidant properties in the in vivo assay. In summary, Gelidium corneum displayed itself as a potential source of bioactive ingredients with multitarget properties for dermatological use. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Graphical abstract

16 pages, 4044 KiB  
Article
Sulfated Polysaccharide from Caulerpa racemosa Attenuates the Obesity-Induced Cardiometabolic Syndrome via Regulating the PRMT1-DDAH-ADMA with mTOR-SIRT1-AMPK Pathways and Gut Microbiota Modulation
by Nelly Mayulu, William Ben Gunawan, Moon Nyeo Park, Sanghyun Chung, Jin Young Suh, Hangyul Song, Rio Jati Kusuma, Nurpudji Astuti Taslim, Rudy Kurniawan, Felicia Kartawidjajaputra, Fahrul Nurkolis and Bonglee Kim
Antioxidants 2023, 12(8), 1555; https://doi.org/10.3390/antiox12081555 - 03 Aug 2023
Cited by 1 | Viewed by 1553
Abstract
Our investigation intended to analyze the effects of sulfated polysaccharides from Caulerpa racemosa (SPCr) in attenuating obesity-induced cardiometabolic syndrome via regulating the protein arginine N-methyltransferase 1-asymmetric dimethylarginine-dimethylarginine dimethylamino-hydrolase (PRMT1-DDAH-ADMA) with the mammalian target of rapamycin-Sirtuin 1–5′ AMP-activated protein kinase (mTOR-SIRT1-AMPK) pathways and gut [...] Read more.
Our investigation intended to analyze the effects of sulfated polysaccharides from Caulerpa racemosa (SPCr) in attenuating obesity-induced cardiometabolic syndrome via regulating the protein arginine N-methyltransferase 1-asymmetric dimethylarginine-dimethylarginine dimethylamino-hydrolase (PRMT1-DDAH-ADMA) with the mammalian target of rapamycin-Sirtuin 1–5′ AMP-activated protein kinase (mTOR-SIRT1-AMPK) pathways and gut microbiota modulation. This is a follow-up study that used SPs from previous in vitro studies, consisting of 2,3-di-O-methyl-1,4,5-tri-O-acetylarabinitol, 2,3,4,6-tetra-O-methyl-D-mannopyranose, and type B ulvanobiuronicacid 3-sulfate. A total of forty rats were randomly divided into four treatment groups: Group A received a standard diet; Group B was provided with a diet enriched in cholesterol and fat (CFED); and Groups C and D were given the CFED along with ad libitum water, and daily oral supplementation of 65 or 130 mg/kg of body weight (BW) of SPCr, respectively. Group D showed the lowest low-density lipoprotein, triglyceride, total cholesterol, and blood glucose levels, and the highest HDL level compared to the other groups in this study. These results in the group fed high-dose SPCr demonstrated a significant effect compared to the group fed low-dose SPCr (p < 0.0001), as well as in total cholesterol and blood glucose (p < 0.05). Supplementation with SPCr was also observed to have an upregulation effect on peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, interleukin 10, Sirtuin 1, DDAH-II, superoxide dismutase (SOD) cardio, and AMPK, which was also followed by a downregulation of PRMT-1, TNF-α, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, and mTOR. Interestingly, gut microbiota modulation was also observed; feeding the rats with a cholesterol-enriched diet shifted the gut microbiota composition toward the Firmicutes level, lowered the Bacteroidetes level, and increased the Firmicutes level. A dose of 130 mg/kg BW of SPCr is the recommended dose, and investigation still needs to be continued in clinical trials with humans to see its efficacy at an advanced level. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Figure 1

25 pages, 8142 KiB  
Article
Bio-Assay-Guided Isolation of Fractions and Constituents with Antioxidant and Lipid-lowering Activity from Allium cepa
by Kongming Fan, Yan Li, Qiaofeng Fu, Jinmin Wang, Yong Lin, Linyu Qiu, Li Ran, Junli Yang and Chunyan Yang
Antioxidants 2023, 12(7), 1448; https://doi.org/10.3390/antiox12071448 - 18 Jul 2023
Viewed by 1110
Abstract
Active fractions and constituents with antioxidant and lipid-lowering activities were investigated using bio-assay-guided isolation and identification. The data showed that the antioxidant fraction of A. cepa was AC50%, the main constituents of which were quercetin and isoquercitrin, by way of both ultra-high performance [...] Read more.
Active fractions and constituents with antioxidant and lipid-lowering activities were investigated using bio-assay-guided isolation and identification. The data showed that the antioxidant fraction of A. cepa was AC50%, the main constituents of which were quercetin and isoquercitrin, by way of both ultra-high performance liquid chromatography–mass spectrometry (UPLC-MS) and bio-assay-guided purification and elucidation. Similarly, the lipid-lowering active fraction of A. cepa was AC30% with the main constituents of 3,4-dihydroxybenzoic acid and quercetin 3,4′-O-diglucoside. Also, bio-assay-guided isolation led to the isolation and identification of five known compounds with a purity of more than 98%, and quercetin was both the best free radical scavenger and lipid-lowering constituent. Moreover, the mechanism of the lipid-lowering effect of AC30% might be its reduction in mRNA expression levels of sterol regulatory element binding protein 2 (SREBP2) and FAS gene in lipid synthesis. Otherwise, reducing the mRNA expression level of lipid synthesis genes, including SREBP1, SREBP2, fatty acid synthetase (FASN), β-Hydroxy β-methylglutaryl-CoA (HMGCR), stearoyl CoA desaturase 1 (SCD1), and increasing the mRNA expression level of lipid decomposition gene, such as carnitine palmitoyl transferease-1 (CPT1), might be involved in the lipid-lowering activity of quercetin. This study suggested that Allium cepa might be used to prevent and treat oxidative stress and dislipidemia-related disorders, including NAFLD. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Figure 1

18 pages, 2061 KiB  
Article
First Insight into the Neuroprotective and Antibacterial Effects of Phlorotannins Isolated from the Cell Walls of Brown Algae Fucus vesiculosus and Pelvetia canaliculata
by Darya Meshalkina, Elena Tsvetkova, Anastasia Orlova, Renata Islamova, Maria Grashina, Daria Gorbach, Vladimir Babakov, Antonio Francioso, Claudia Birkemeyer, Luciana Mosca, Elena Tarakhovskaya and Andrej Frolov
Antioxidants 2023, 12(3), 696; https://doi.org/10.3390/antiox12030696 - 11 Mar 2023
Cited by 4 | Viewed by 1747
Abstract
Phaeophyceae (brown algae) essentially contribute to biotopes of cold and temperate seas. Their thalli are rich in biologically active natural products, which are strongly and universally dominated with phlorotannins—polyphenols of complex and diverse structure based on multiple differently arranged phloroglucinol units and well [...] Read more.
Phaeophyceae (brown algae) essentially contribute to biotopes of cold and temperate seas. Their thalli are rich in biologically active natural products, which are strongly and universally dominated with phlorotannins—polyphenols of complex and diverse structure based on multiple differently arranged phloroglucinol units and well known as strong antioxidants with a broad spectrum of biological activities. In the algal cells, phlorotannins can either accumulate in the cytoplasm or can be secreted into the cell wall (CW). The biological activities of extractable intracellular phlorotannins have been comprehensively characterized, whereas the properties of the CW-bound polyphenol fraction are still mostly unknown. Recently, we identified dibenzodioxin bonding as the principal structural feature of the CW-bound phlorotannins in fucoid algae, whereas soluble intracellular phlorotannins rely on aryl and ether bonds. However, profiles of biological activity associated with these structural differences are still unknown. Therefore, to the best of our knowledge, for the first time we address the antioxidant, cytotoxic, neuroprotective, and antibacterial properties of the CW-bound phlorotannin fractions isolated from two representatives of the order Fucales—Fucus vesiculosus and Pelvetia canaliculata. The CW-bound phlorotannins appeared to be softer antioxidants, stronger antibacterial agents and were featured with essentially less cytotoxicity in comparison to the intracellular fraction. However, the neuroprotective effects of both sub-cellular phlorotannin fractions of F. vesiculosus and P. canaliculata were similar. Thus, due to their lower cytotoxicity, CW-bound phlorotannins can be considered as promising antioxidants and neuroprotectors. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Figure 1

16 pages, 1187 KiB  
Article
Phlorotannins of the Brown Algae Sargassum vulgare from the Mediterranean Sea Coast
by Amina Chouh, Tahar Nouadri, Marcelo D. Catarino, Artur M. S. Silva and Susana M. Cardoso
Antioxidants 2022, 11(6), 1055; https://doi.org/10.3390/antiox11061055 - 26 May 2022
Cited by 14 | Viewed by 4998
Abstract
Brown seaweeds are a good source of bioactive compounds, particularly of phlorotannins, which may exert a wide spectrum of pharmacological properties. In the present study, phlorotannins of S. vulgare were extracted using a 70% acetone solution and the crude extract was further purified [...] Read more.
Brown seaweeds are a good source of bioactive compounds, particularly of phlorotannins, which may exert a wide spectrum of pharmacological properties. In the present study, phlorotannins of S. vulgare were extracted using a 70% acetone solution and the crude extract was further purified through liquid–liquid partition, giving rise to n-hexane, ethyl acetate and aqueous residue fractions. The crude extract and the purified fractions were evaluated for potential antioxidant abilities as well as for inhibitory potential towards the digestive enzymes α-amylase and pancreatic lipase, and anti-inflammatory potential through the hindering of albumin denaturation. Overall, the ethyl acetate fraction was the richest in phlorotannins (9.4 ± 0.03 mg PGE/g) and was also the most promising regarding the tested bioactive properties. Of note, its inhibitory potential towards α-amylase was about nine times that of the commercial drug acarbose and its inhibitory activity against high temperature-induced protein denaturation was superior to that of the non-steroidal drug ketoprofen. According to UHPLC-DAD-ESI-MS/MS analysis, this fraction contained a range of phlorotannins with at least six units of phloroglucinol, including dibenzodioxine-1,3,6,8-tetraol, fuhalol, pentaphlorethol, fucopentaphlorethol and dihydroxypentafuhalol, in addition to several less common phlorotannin sulfate derivatives. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Graphical abstract

20 pages, 4477 KiB  
Article
Polyphenols of Edible Macroalgae: Estimation of In Vitro Bio-Accessibility and Cytotoxicity, Quantification by LC-MS/MS and Potential Utilization as an Antimicrobial and Functional Food Ingredient
by Yogesh Kumar, Ayon Tarafdar, Deepak Kumar, Chakkaravarthi Saravanan, Prarabdh C. Badgujar, Aparna Pharande, Sunil Pareek and Olaniyi Amos Fawole
Antioxidants 2022, 11(5), 993; https://doi.org/10.3390/antiox11050993 - 19 May 2022
Cited by 7 | Viewed by 2298
Abstract
Macroalgae are a rich source of polyphenols, and their ingestion promotes various health benefits. However, information on factors contributing to health benefits such as antioxidants, antimicrobial properties, bioaccessibility, and cytotoxicity is less explored and often unavailable. Therefore, this study aims to investigate the [...] Read more.
Macroalgae are a rich source of polyphenols, and their ingestion promotes various health benefits. However, information on factors contributing to health benefits such as antioxidants, antimicrobial properties, bioaccessibility, and cytotoxicity is less explored and often unavailable. Therefore, this study aims to investigate the above-mentioned parameters for the brown and green macroalgae Sargassum wightii and Ulva rigida, respectively, collected from the southeast coast of India. S. wightii exhibited higher antioxidant activity and moderate antimicrobial activity against major food pathogens in an agar well diffusion assay and in the broth microdilution method (MIC50 being <0.5 mg/mL for all microorganisms tested). Both macroalgae extracts exhibited significantly high bioaccessibility of polyphenols. To evaluate the safety of the extracts, in vitro cytotoxicity by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was carried out on the primary cells: mouse splenic lymphocytes. An almost complete decline in the cell viability was seen at considerably high concentration (50 mg/mL), expressing the reasonably high safety of the extracts. The extracts of both macroalgae were quantified for polyphenols, wherein fucoxanthin (9.27 ± 2.28 mg/kg DW) and phloroglucinol (17.96 ± 2.80 mg/kg DW) were found to be greater in the S. wightii apart from other phenolics, like gallic acid, quercetin, vanillin, and ferulic acid. The results signify the tremendous scope for the value addition of S. wightii through extraction and purification of polyphenols for its potential exploitation in functional foods and nutraceuticals or as an antimicrobial ingredient in active or smart packaging. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Figure 1

Other

Jump to: Research

9 pages, 1027 KiB  
Opinion
Selenoprotein: Potential Player in Redox Regulation in Chlamydomonas reinhardtii
by Sandip A. Ghuge, Ulhas Sopanrao Kadam and Jong Chan Hong
Antioxidants 2022, 11(8), 1630; https://doi.org/10.3390/antiox11081630 - 22 Aug 2022
Cited by 8 | Viewed by 2013
Abstract
Selenium (Se) is an essential micro-element for many organisms, including Chlamydomonas reinhardtii, and is required in trace amounts. It is obtained from the 21st amino acid selenocysteine (Sec, U), genetically encoded by the UGA codon. Proteins containing Sec are known as selenoproteins. [...] Read more.
Selenium (Se) is an essential micro-element for many organisms, including Chlamydomonas reinhardtii, and is required in trace amounts. It is obtained from the 21st amino acid selenocysteine (Sec, U), genetically encoded by the UGA codon. Proteins containing Sec are known as selenoproteins. In eukaryotes, selenoproteins are present in animals and algae, whereas fungi and higher plants lack them. The human genome contains 25 selenoproteins, most of which are involved in antioxidant defense activity, redox regulation, and redox signaling. In algae, 42 selenoprotein families were identified using various bioinformatics approaches, out of which C. reinhardtii is known to have 10 selenoprotein genes. However, the role of selenoproteins in Chlamydomonas is yet to be reported. Chlamydomonas selenoproteins contain conserved domains such as CVNVGC and GCUG, in the case of thioredoxin reductase, and CXXU in other selenoproteins. Interestingly, Sec amino acid residue is present in a catalytically active domain in Chlamydomonas selenoproteins, similar to human selenoproteins. Based on catalytical active sites and conserved domains present in Chlamydomonas selenoproteins, we suggest that Chlamydomonas selenoproteins could have a role in redox regulation and defense by acting as antioxidants in various physiological conditions. Full article
(This article belongs to the Special Issue Antioxidants in Algae: Extraction, Components, and Applications)
Show Figures

Figure 1

Back to TopTop