Next Issue
Volume 2, June
Previous Issue
Volume 1, December
 
 

Meteorology, Volume 2, Issue 1 (March 2023) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
3 pages, 182 KiB  
Editorial
Early Career Scientists’ (ECS) Contributions to Meteorology
by Edoardo Bucchignani
Meteorology 2023, 2(1), 146-148; https://doi.org/10.3390/meteorology2010010 - 15 Mar 2023
Viewed by 1146
Abstract
The importance of meteorological events is felt in everyday life and the critical impact of the weather on human activities has led to the development of the science of weather forecasting [...] Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2022))
18 pages, 5569 KiB  
Article
A Statistical Model for Estimating the Amount of Monthly Global Radiation in the Horizontal Plane
by Károly Tar and Andrea Bíróné Kircsi
Meteorology 2023, 2(1), 128-145; https://doi.org/10.3390/meteorology2010009 - 10 Mar 2023
Viewed by 1260
Abstract
In addition to dynamic methods, purely statistical models, i.e., findings from the statistical analysis of the existing measured database, also play an important role in predicting the different characteristics of climate elements. In our article, we try to estimate the monthly amount of [...] Read more.
In addition to dynamic methods, purely statistical models, i.e., findings from the statistical analysis of the existing measured database, also play an important role in predicting the different characteristics of climate elements. In our article, we try to estimate the monthly amount of global radiation in each day of the month. In our previous articles, we presented the sliding-average model developed for estimating the average or amount of a climatic element, measured over a time interval, from within the interval. A version of this model for estimating the end-of-interval sums, the sliding-sum model, was used to estimate the amount of monthly global radiation. After generating the characteristics required for the estimation and analyzing their properties, we examined the errors of the performed estimation. Our model can also help solar energy users create the schedule. Full article
Show Figures

Figure 1

21 pages, 10591 KiB  
Article
The Challenges of Micro-Nowcasting and the Women’s Slope Style Event at the PyeongChang 2018 Olympic Winter Games
by Paul Joe, GyuWon Lee and Kwonil Kim
Meteorology 2023, 2(1), 107-127; https://doi.org/10.3390/meteorology2010008 - 16 Feb 2023
Cited by 1 | Viewed by 1240
Abstract
The Women’s Slope Style event of 11–12 February 2018 at the PyeongChang 2018 Olympic Winter Games posed considerable challenges to the competitors and decision-makers, requiring sub-kilometer and sub-minute weather predictions in complex terrain. The gusty wind conditions were unfair and unsafe as the [...] Read more.
The Women’s Slope Style event of 11–12 February 2018 at the PyeongChang 2018 Olympic Winter Games posed considerable challenges to the competitors and decision-makers, requiring sub-kilometer and sub-minute weather predictions in complex terrain. The gusty wind conditions were unfair and unsafe as the competitors could not achieve sufficient speed to initiate or complete their jumps. The term micro-nowcasting is used here to reflect the extreme high-resolution nature of these science and service requirements. The World Meteorological Organization has conducted several research development and forecast demonstration projects to advance, accelerate and promote the art of nowcasting. Data from compact automatic weather stations, located along the field of play, reported every minute and were post-processed using time series, Hovmöller and wavelet transforms to succinctly present the information. The analyses revealed dominant frequencies of about 20 min, presumed to be associated with vortex shedding from the mountain ridges, but were unable to directly capture the gusts that affected the competitors. The systemic challenges from this and previous projects are reviewed. They include the lack of adequate scientific knowledge of microscale processes, gaps in modeling, the need for post-processing, forecast techniques, managing ever-changing service requirements and highlights the role of observations and the critical role of the forecaster. These challenges also apply to future high-resolution operational weather and warning services. Full article
Show Figures

Figure 1

20 pages, 8721 KiB  
Article
Diurnal Valley Winds in a Deep Alpine Valley: Model Results
by Juerg Schmidli and Julian Quimbayo-Duarte
Meteorology 2023, 2(1), 87-106; https://doi.org/10.3390/meteorology2010007 - 14 Feb 2023
Viewed by 2056
Abstract
Thermally driven local winds are ubiquitous in deep Alpine valleys during fair weather conditions resulting in a unique wind climatology for any given valley. The accurate forecasting of these local wind systems is challenging, as they are the result of complex and multi-scale [...] Read more.
Thermally driven local winds are ubiquitous in deep Alpine valleys during fair weather conditions resulting in a unique wind climatology for any given valley. The accurate forecasting of these local wind systems is challenging, as they are the result of complex and multi-scale interactions. Even more so, if the aim is an accurate forecast of the winds from the near-surface to the free atmosphere, which can be considered a prerequisite for the accurate prediction of mountain weather. This study combines the evaluation of the simulated surface winds in several Alpine valleys with a more detailed evaluation of the wind evolution for a particular location in the Swiss Rhone valley, at the town of Sion during the month of September 2016. Four numerical simulations using the COSMO model are evaluated, two using a grid spacing of 1.1 km and two with a grid spacing of 550 m. For each resolution, one simulation is initialised with the soil moisture from the COSMO analysis and one with an increased soil moisture (+30%). In a first part, a comparison with observations from the operational measurement network of MeteoSwiss is used to evaluate the model performance, while, in a second part, data from a wind profiler stationed at Sion airport is used for a more detailed evaluation of the valley atmosphere near the town of Sion. The analysis focuses on 18 valley wind days observed in the Sion region in September 2016. Only the combination of an increased soil moisture and a finer grid spacing resulted in a significant improvement of the simulated flow patterns in the Sion region. This includes a stronger and more homogeneous along-valley wind in the Wallis and a more realistic cross-valley wind and temperature profile near the town of Sion. It is shown that the remaining differences between the observed and simulated near-surface wind are likely due to very local topographic features. Small-scale hills, not resolved on even the finer model grid, result in a constriction of the valley cross section and an acceleration of the observed low-level up-valley wind in the region of Sion. Full article
Show Figures

Figure 1

13 pages, 6877 KiB  
Article
Changes in the Seasonality of Fire Activity and Fire Weather in Portugal: Is the Wildfire Season Really Longer?
by Pedro Silva, Miguel Carmo, João Rio and Ilda Novo
Meteorology 2023, 2(1), 74-86; https://doi.org/10.3390/meteorology2010006 - 02 Feb 2023
Cited by 3 | Viewed by 2696
Abstract
The length of the fire season has not garnered much attention within the broad field of meteorological research on fire regime change. Fire weather research on the Iberian Peninsula is no exception in this case; there is no solid understanding on fire season [...] Read more.
The length of the fire season has not garnered much attention within the broad field of meteorological research on fire regime change. Fire weather research on the Iberian Peninsula is no exception in this case; there is no solid understanding on fire season lengthening in Portugal, although recent decades do suggest ongoing transitions. Based on a complete record of fire occurrence and burned area between 1980 and 2018, we first searched for consistent trends in the monthly distribution of fire activity. To determine day-scale changes, an exceedance date method based on annual cumulative burned area was developed. Results show an early onset of fire activity in a range of 23–50 days and no significant extension into autumn, suggesting that existing projections of the lengthening of the fire season in Portugal over the present century have been already achieved. Fire weather results show a trend in the cumulative Daily Severity Rating (DSR), with the last two decades (2000–2018) displaying an early build-up of meteorological fire danger in late spring and early summer. The detailed spatio-temporal analysis based on the daily Fire Weather Index (FWI) shows that June stands out with the largest increase (year-round) in days per month with an FWI above 38.3, the threshold above which fire conditions make suppression uncertain. This aggravated fire weather is likely sustaining early fire activity, thus contributing to a longer critical fire season. Full article
Show Figures

Figure 1

2 pages, 226 KiB  
Editorial
Acknowledgment to the Reviewers of Meteorology in 2022
by Meteorology Editorial Office
Meteorology 2023, 2(1), 72-73; https://doi.org/10.3390/meteorology2010005 - 18 Jan 2023
Viewed by 910
Abstract
High-quality academic publishing is built on rigorous peer review [...] Full article
20 pages, 8478 KiB  
Article
Study of Extreme Cold Surges in Hong Kong
by Man-Lok Chong, Hon-Yin Yeung and Kai-Kwong Hon
Meteorology 2023, 2(1), 52-71; https://doi.org/10.3390/meteorology2010004 - 16 Jan 2023
Viewed by 3162
Abstract
Temperatures over Hong Kong have shown a marked increasing trend since the 1970s due to global warming and urbanization, but outbreaks of intense winter monsoon can bring very low temperatures in Hong Kong at times. This study aims at establishing criteria of extreme [...] Read more.
Temperatures over Hong Kong have shown a marked increasing trend since the 1970s due to global warming and urbanization, but outbreaks of intense winter monsoon can bring very low temperatures in Hong Kong at times. This study aims at establishing criteria of extreme cold surges that suit the climatological characteristics of Hong Kong. Surges in this study were selected through percentile ranking of three weather attributes of each cold event: the lowest temperature, the largest temperature drop and the maximum sustained wind speed. Out of 152 cold events in 1991–2020, only four significant cold events in 1991, 1993, 2010 and 2016 met the most extreme 10th percentile of the three attributes concurrently and could be classified operationally as “extreme cold surge”. Very cold temperatures (at or below 7.0 °C), a temperature drop of at least 8.0 °C in two days and gale force wind speed (at or above 17.5 m/s) were recorded in all four surges. The results of classification are illustrated by selected cases. As ensemble products of some numerical weather prediction models tend to have a stable indication of extremity of cold events, the potential applications of cross-referencing the forecast and actual extremity in operational forecasting are also discussed. Full article
Show Figures

Figure 1

15 pages, 8351 KiB  
Article
Influence of Air Mass Advection on the Amount of Global Solar Radiation Reaching the Earth’s Surface in Poland, Based on the Analysis of Backward Trajectories (1986–2015)
by Kinga Kulesza
Meteorology 2023, 2(1), 37-51; https://doi.org/10.3390/meteorology2010003 - 09 Jan 2023
Viewed by 1443
Abstract
The paper aims to analyse the relationship between the amount of global solar radiation (GSR) reaching the Earth’s surface in Poland and the direction of air mass advection, using 72-h backward trajectories (1986–2015). The study determined average daily sums of GSR related to [...] Read more.
The paper aims to analyse the relationship between the amount of global solar radiation (GSR) reaching the Earth’s surface in Poland and the direction of air mass advection, using 72-h backward trajectories (1986–2015). The study determined average daily sums of GSR related to groups of trajectories with certain similarities in shape. It was found that the average daily sums of GSR during air mass inflow from all the directions (clusters) identified were significantly different from the average daily sum in the multi-year period. A significant increase in the amount of GSR over Poland is accompanied by air mass inflow from the north and east. The frequency of these advection directions is 27% of all days. The western directions of advection prompt different GSR sums: from slightly increased during advection from the north-west, to significantly decreased during advection from the west (from the central and western part of the North Atlantic). Special attention was given to days with extremely large (above the 0.95 percentile) and with the largest (above the 0.99 percentile) GSR sums. These are prompted by two main types of synoptic conditions: the Azores High ridge covering Central and Southern Europe; and the high-pressure areas which appear in Northern and Central Europe. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2023))
Show Figures

Figure 1

22 pages, 11446 KiB  
Article
Evaluating Possible Changes in Air Temperature and Precipitation Patterns in Mozambique by Comparing Present and Future RegCM4 Simulation
by Telmo Cosme A. Sumila, Simone E. T. Ferraz and Angelica Durigon
Meteorology 2023, 2(1), 15-36; https://doi.org/10.3390/meteorology2010002 - 06 Jan 2023
Cited by 1 | Viewed by 1587
Abstract
Unlike global and regional assessments, the spatio-temporal variability of air temperature and precipitation, caused by climate change, must be more useful when the assessment is made at the sub-regional to local scale. Thus, this study aims to assess the possible changes in air [...] Read more.
Unlike global and regional assessments, the spatio-temporal variability of air temperature and precipitation, caused by climate change, must be more useful when the assessment is made at the sub-regional to local scale. Thus, this study aims to assess the possible changes in air temperature and precipitation in patterns for the late 21st century relative to the present climate in Mozambique. The regional model, RegCM4, driven by the global model HadGEM2, was used to perform the downscaling process under two Representative Concentration Pathways (RCPs), moderate RCP4.5 and strong RCP8.5. The three experiments were analyzed in the baseline (1971–2000) and future (2070−2099) range at the subregional scale in Mozambique. In this study domain, the highest amounts of precipitation and the highest air temperatures are observed during the extended summer season. However, the central region is rather warmer and rainier than the northern- and southernmost regions. Hence, the regional model RegCM4 demonstrated agreement relative to the observed weather stations and interpolated dataset from the Climate Research Unit. The strong performance of RegCM4 is revealed by its more realistic local spatio-temporal climate features, tied to the topography and geographical location of the study domain. The future increases in mean annual air temperature are well simulated by the model but, the spatial distribution and magnitude differ between the RCPs and over each of the three regions throughout the country. The sharp hottest response at the end of 21st century occurs in the summer and spring seasons under RCP8.5, spatially over the central and northern region of the study domain, with a hot-spot in the southern region. There is a predominantly drier response in the annual mean precipitation but, during the summer season, a meridional dipolarization pattern is observed, with the wettest response being over the southernmost region and a drier response in the northern and central regions of Mozambique. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2022))
Show Figures

Figure 1

14 pages, 3738 KiB  
Article
Airplane Emergency Landing Due to Quick Development of Mesoscale Convective Complexes
by Renata Barros Vasconcelos Leirias, Natalia Fedorova and Vladimir Levit
Meteorology 2023, 2(1), 1-14; https://doi.org/10.3390/meteorology2010001 - 03 Jan 2023
Cited by 1 | Viewed by 1757
Abstract
Some meteorological phenomena in South America develop quickly and take on large dimensions. These phenomena cause disasters for aviation, such as incidents and accidents. Mesoscale convective complexes (MCCs) forced a commercial airplane into an emergency landing at Ezeiza International Airport in Buenos Aires [...] Read more.
Some meteorological phenomena in South America develop quickly and take on large dimensions. These phenomena cause disasters for aviation, such as incidents and accidents. Mesoscale convective complexes (MCCs) forced a commercial airplane into an emergency landing at Ezeiza International Airport in Buenos Aires (Argentina) in October 2018. The airplane took off from São Paulo (Brazil) to Santiago (Chile) and had to alternate to Ezeiza after encountering unanticipated agglomerations of MCCs along the flight route; its structure was seriously damaged, which affected the safety of the flight. A synoptic and thermodynamic analysis of the atmosphere, prior to the event, was made based on GOES16 infrared satellite data, radiosonde data, maps of several variables such as stream lines, temperature advection, surface synoptic maps and layer thickness from CPTEC/INPE and NCEP reanalysis data. The main observed processes that influenced the formation and development of conglomerates of MCCs were the following: (1) the cyclogenesis of a baroclinic cyclone on the cold front; (2) the coupling of subtropical and polar jet streams; (3) the advection of warm and humid air along a low-level jet stream. Recommendations for meteorologists in weather forecasting and for aviators in flight safety were prepared. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2022))
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop