Previous Issue
Volume 3, March
 
 

Meteorology, Volume 3, Issue 2 (June 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
30 pages, 8701 KiB  
Article
Use of CAMS near Real-Time Aerosols in the HARMONIE-AROME NWP Model
by Daniel Martín Pérez, Emily Gleeson, Panu Maalampi and Laura Rontu
Meteorology 2024, 3(2), 161-190; https://doi.org/10.3390/meteorology3020008 (registering DOI) - 26 Apr 2024
Viewed by 116
Abstract
Near real-time aerosol fields from the Copernicus Atmospheric Monitoring Services (CAMS), operated by the European Centre for Medium-Range Weather Forecasts (ECMWF), are configured for use in the HARMONIE-AROME Numerical Weather Prediction model. Aerosol mass mixing ratios from CAMS are introduced in the model [...] Read more.
Near real-time aerosol fields from the Copernicus Atmospheric Monitoring Services (CAMS), operated by the European Centre for Medium-Range Weather Forecasts (ECMWF), are configured for use in the HARMONIE-AROME Numerical Weather Prediction model. Aerosol mass mixing ratios from CAMS are introduced in the model through the first guess and lateral boundary conditions and are advected by the model dynamics. The cloud droplet number concentration is obtained from the aerosol fields and used by the microphysics and radiation schemes in the model. The results show an improvement in radiation, especially during desert dust events (differences of nearly 100 W/m2 are obtained). There is also a change in precipitation patterns, with an increase in precipitation, mainly during heavy precipitation events. A reduction in spurious fog is also found. In addition, the use of the CAMS near real-time aerosols results in an improvement in global shortwave radiation forecasts when the clouds are thick due to an improved estimation of the cloud droplet number concentration. Full article
Show Figures

Figure 1

20 pages, 16787 KiB  
Article
Tropical and Subtropical South American Intraseasonal Variability: A Normal-Mode Approach
by André S. W. Teruya, Víctor C. Mayta, Breno Raphaldini, Pedro L. Silva Dias and Camila R. Sapucci
Meteorology 2024, 3(2), 141-160; https://doi.org/10.3390/meteorology3020007 - 25 Mar 2024
Viewed by 449
Abstract
Instead of using the traditional space-time Fourier analysis of filtered specific atmospheric fields, a normal-mode decomposition method was used to analyze South American intraseasonal variability (ISV). Intraseasonal variability was examined separately in the 30–90-day band, 20–30-day band, and 10–20-day band. The most characteristic [...] Read more.
Instead of using the traditional space-time Fourier analysis of filtered specific atmospheric fields, a normal-mode decomposition method was used to analyze South American intraseasonal variability (ISV). Intraseasonal variability was examined separately in the 30–90-day band, 20–30-day band, and 10–20-day band. The most characteristic structure in the intraseasonal time-scale, in the three bands, was the dipole-like convection between the South Atlantic Convergence Zone (SACZ) and the central-east South America (CESA) region. In the 30–90-day band, the convective and circulation patterns were modulated by the large-scale Madden–Julian oscillation (MJO). In the 20–30-day and 10–20-day bands, the convection structures were primarily controlled by extratropical Rossby wave trains. The normal-mode decomposition of reanalysis data based on 30–90-day, 20–30-day, and 10–20-day ISV showed that the tropospheric circulation and CESA–SACZ convective structure observed over South America were dominated by rotational modes (i.e., Rossby waves, mixed Rossby-gravity waves). A considerable portion of the 30–90-day ISV was also associated with the inertio-gravity (IGW) modes (e.g., Kelvin waves), mainly prevailing during the austral rainy season. The proposed decomposition methodology demonstrated that a realistic circulation can be reproduced, giving a powerful tool for diagnosing and studying the dynamics of waves and the interactions between them in terms of their ability to provide causal accounts of the features seen in observations. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop