Next Issue
Volume 12, October
Previous Issue
Volume 12, August
 
 

Actuators, Volume 12, Issue 9 (September 2023) – 28 articles

Cover Story (view full-size image): The current reliance on manual rescue is inefficient, and lightweight, highly flexible, and intelligent robots need to be investigated. Global seismic disasters occur often, and rescue jobs are defined by tight timetables and high functional and intellectual requirements. This study develops a hydraulically powered redundant robotic arm with seven degrees of freedom. To determine the force situation of the robotic arm in various positions, the common digging and handling conditions of the robotic arm are dynamically simulated in ADAMS. A finite element analysis is then performed for the dangerous force situation to confirm the structural strength of the robotic arm. The hydraulic manipulator prototype is manufactured, and stress–strain experiments are conducted on the robotic arm to verify the finite element simulation's reliability. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 6515 KiB  
Article
Analysis of the Vibration Characteristics and Vibration Reduction Methods of Iron Core Reactor
by Zhen Wang, Runjie Yu, Changhui Duan, Zheming Fan and Xiang Li
Actuators 2023, 12(9), 365; https://doi.org/10.3390/act12090365 - 20 Sep 2023
Viewed by 1036
Abstract
Series iron core reactors are one of the most commonly used electrical equipments in power systems, which can limit short-circuit currents and suppress harmonic waves from capacitor banks. However, the vibration of the reactor will not only generate noise pollution but also diminish [...] Read more.
Series iron core reactors are one of the most commonly used electrical equipments in power systems, which can limit short-circuit currents and suppress harmonic waves from capacitor banks. However, the vibration of the reactor will not only generate noise pollution but also diminish the service life of the reactor and jeopardize power system safety. In order to reduce the vibration noise in the core disc region of the reactor, the vibration characteristics of a core reactor are calculated by modifying the anisotropy parameters of the Young’s modulus of the core disc lamellar structure and introducing the core magnetostriction effect based on the simulation analysis method of electromagnetic and mechanical coupling. A detachable single-phase series core reactor model is established, and the validity of the simulation calculation is measured and verified. At the same time, from the perspective of improving the air gap size of the series core reactor and the arrangement of electrical steel sheets, the corresponding iron core vibration reduction scheme is given. The average vibration reduction in the reactor is about 11.6% after comprehensive improvement according to the vibration reduction scheme, which provides an effective method for realizing the vibration and noise reduction in the reactor. Full article
(This article belongs to the Special Issue Vibration Control Using Electromagnetic Actuators)
Show Figures

Figure 1

27 pages, 3556 KiB  
Article
Adaptive Self-Triggered Control for Multi-Agent Systems with Actuator Failures and Time-Varying State Constraints
by Jianhui Wang, Zikai Hu, Jiarui Liu, Yuanqing Zhang, Yixiang Gu, Weicong Huang, Ruizhi Tang and Fang Wang
Actuators 2023, 12(9), 364; https://doi.org/10.3390/act12090364 - 19 Sep 2023
Cited by 1 | Viewed by 945
Abstract
This work focuses on the consensus problem for multi-agent systems (MASs) with actuator failures and time-varying state constraints, and presents a fixed-time self-triggered consensus control protocol. The use of time-varying asymmetrical barrier Lyapunov functions (BLF) avoids the violation of time-varying state constraints in [...] Read more.
This work focuses on the consensus problem for multi-agent systems (MASs) with actuator failures and time-varying state constraints, and presents a fixed-time self-triggered consensus control protocol. The use of time-varying asymmetrical barrier Lyapunov functions (BLF) avoids the violation of time-varying state constraints in MASs, ensuring stability and safety. Meanwhile, the system’s performance is further enhanced by leveraging the proposed adaptive neural networks (NNs) control method to mitigate the effects of actuator failures and nonlinear disturbances. Moreover, a self-triggered mechanism based on a fixed-time strategy is proposed to reach rapid convergence and conserve bandwidth resources in MASs. The mechanism achieves consensus within a predefined fixed time, irrespective of the system’s initial states, while conserving communication resources. Finally, the proposed method’s effectiveness is confirmed through two simulation examples, encompassing diverse actuator failure scenarios. Full article
Show Figures

Figure 1

28 pages, 14306 KiB  
Article
Computer-Aided Choosing of an Optimal Structural Variant of a Robot for Extracting Castings from Die Casting Machines
by Ivo Malakov, Velizar Zaharinov, Stiliyan Nikolov and Reneta Dimitrova
Actuators 2023, 12(9), 363; https://doi.org/10.3390/act12090363 - 15 Sep 2023
Viewed by 895
Abstract
In the present article, the solution for choosing the optimal structural variant of an industrial robot for extracting castings from die casting machines is considered. For this purpose, the process of extracting the castings from the mold is analyzed. On this basis, functions [...] Read more.
In the present article, the solution for choosing the optimal structural variant of an industrial robot for extracting castings from die casting machines is considered. For this purpose, the process of extracting the castings from the mold is analyzed. On this basis, functions are defined, and a functional structure of the robot is built. Alternative variants of devices for each function are developed. The set of possible structural variants are constructed, considering the compatibility between devices and the possibility of performing more than one function with one device. The problem of choosing an optimal structural variant is formulated, and its characteristic features are determined. The main stages of a methodology and application software for the problem’s solution are presented. After an analysis of requirements for the extractor, the set of criteria for evaluating the structural variants are determined. The set includes criteria that minimize the production costs, production floor space, as well as the energy costs in the operation process, which is of particular importance in the conditions of global energy crisis. A mathematical model of the problem is built. The formulated multi-criteria optimization problem is solved, both with equal objective functions and with different priority. Full article
(This article belongs to the Topic Industrial Robotics: 2nd Volume)
Show Figures

Figure 1

25 pages, 14633 KiB  
Article
Design and Simulation of a Seven-Degree-of-Freedom Hydraulic Robot Arm
by Jun Zhong, Wenjun Jiang, Qianzhuang Zhang and Wenhao Zhang
Actuators 2023, 12(9), 362; https://doi.org/10.3390/act12090362 - 14 Sep 2023
Cited by 2 | Viewed by 2685
Abstract
The current reliance on manual rescue is inefficient, and lightweight, highly flexible, and intelligent robots need to be investigated. Global seismic disasters occur often, and rescue jobs are defined by tight timetables and high functional and intellectual requirements. This study develops a hydraulically [...] Read more.
The current reliance on manual rescue is inefficient, and lightweight, highly flexible, and intelligent robots need to be investigated. Global seismic disasters occur often, and rescue jobs are defined by tight timetables and high functional and intellectual requirements. This study develops a hydraulically powered redundant robotic arm with seven degrees of freedom. To determine the force situation of the robotic arm in various positions, the common digging and handling conditions of the robotic arm are dynamically simulated in ADAMS. A finite element analysis is then performed for the dangerous force situation to confirm the structural strength of the robotic arm. The hydraulic manipulator prototype is manufactured, and stress–strain experiments are conducted on the robotic arm to verify the finite element simulation’s reliability. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—2nd Edition)
Show Figures

Figure 1

23 pages, 2430 KiB  
Review
Modular Self-Configurable Robots—The State of the Art
by Lu Anh Tu Vu, Zhuming Bi, Donald Mueller and Nashwan Younis
Actuators 2023, 12(9), 361; https://doi.org/10.3390/act12090361 - 14 Sep 2023
Cited by 1 | Viewed by 1755
Abstract
Modular self-configurable robot (MSR) systems have been investigated for decades, and their applications have been widely explored to meet emerging automation needs in various applications, such as space exploration, manufacturing, defense, medical industry, entertainment, and services. This paper aims to gain a deep [...] Read more.
Modular self-configurable robot (MSR) systems have been investigated for decades, and their applications have been widely explored to meet emerging automation needs in various applications, such as space exploration, manufacturing, defense, medical industry, entertainment, and services. This paper aims to gain a deep understanding of up-to-date research and development on MSR through a thorough survey of market demands and published works on design methodologies, system integration, advanced controls, and new applications. In particular, the limitations of existing mobile MSR are discussed from the reconfigurability perspective of mechanical structures. Full article
Show Figures

Figure 1

14 pages, 8266 KiB  
Article
Design and Analysis of Brake-by-Wire Unit Based on Direct Drive Pump–Valve Cooperative
by Peng Yu, Zhaoyue Sun, Haoli Xu, Yunyun Ren and Cao Tan
Actuators 2023, 12(9), 360; https://doi.org/10.3390/act12090360 - 14 Sep 2023
Viewed by 1200
Abstract
Aiming at the requirements of distributed braking and advanced automatic driving, a brake-by-wire unit based on a direct drive pump–valve cooperative is proposed. To realize the wheel cylinder pressure regulation, the hydraulic pump is directly driven by the electromagnetic linear actuator coordinates with [...] Read more.
Aiming at the requirements of distributed braking and advanced automatic driving, a brake-by-wire unit based on a direct drive pump–valve cooperative is proposed. To realize the wheel cylinder pressure regulation, the hydraulic pump is directly driven by the electromagnetic linear actuator coordinates with the active valve. It has the advantages of rapid response and no deterioration of wheel side space and unsprung mass. Firstly, by analyzing the working characteristics and braking performance requirements of the braking unit, the key parameters of the system are matched. Then, in order to ensure the accuracy of the simulation model, the co-simulation model of the brake unit is established based on the Simulink-AMESim co-simulation platform. Then, the influence law of key parameters on the control performance is analyzed. Finally, the experimental platform of the brake unit is established. The accuracy of the co-simulation model and the feasibility of the brake-by-wire unit based on direct drive pump–valve cooperative are verified through the pressure control experiment and ABS simulation, which shows that the braking unit has good dynamic response and steady-state tracking effect. Full article
(This article belongs to the Special Issue Linear Motors and Direct-Drive Technology)
Show Figures

Figure 1

29 pages, 12038 KiB  
Article
Linear Resonator Actuator-Constructed Wearable Haptic System with the Application of Converting Remote Grinding Force to Vibratory Sensation
by Shang-Hsien Liu, Yung-Chou Kao and Guo-Hua Feng
Actuators 2023, 12(9), 359; https://doi.org/10.3390/act12090359 - 14 Sep 2023
Cited by 1 | Viewed by 1439
Abstract
This study developed a three-axis vibrational haptic wearable device (RCWS) utilizing Linear Resonant Actuators (LRAs) to simulate grinding vibrations. The implementation of RCWS is described in detail. By recording the normal force during manual grinding with a load cell and converting it into [...] Read more.
This study developed a three-axis vibrational haptic wearable device (RCWS) utilizing Linear Resonant Actuators (LRAs) to simulate grinding vibrations. The implementation of RCWS is described in detail. By recording the normal force during manual grinding with a load cell and converting it into a series of PWM commands, the LRA on the RCWS was controlled in open-loop mode using these PWM commands. Three methods were tested for force-to-PWM conversion, two of which showed a linear correlation (>0.7) with raw data. In the correlation between PWM commands and generated acceleration, all three methods exhibited a high linearity of at least 0.85. This wearable RCWS offers a promising approach for users to experience the machining force from the versatile and critical remote machining process with a finger vibratory sensation. Full article
(This article belongs to the Special Issue Actuators for Haptic Feedback Applications)
Show Figures

Figure 1

20 pages, 18579 KiB  
Article
A Novel Wrench–Current Decoupling Strategy to Extend the Use of Small Lookup Data for a Long-Range Maglev Planar Motor
by Chanuphon Trakarnchaiyo and Mir Behrad Khamesee
Actuators 2023, 12(9), 358; https://doi.org/10.3390/act12090358 - 13 Sep 2023
Cited by 1 | Viewed by 1197
Abstract
The maglev planar motor is one of the most promising industrial applications. The planar motor can increase flexibility in modern manufacturing with the multidirectional motion of the mover. In levitation control, the decoupling matrix is used to decouple the strong cross-coupling effect. The [...] Read more.
The maglev planar motor is one of the most promising industrial applications. The planar motor can increase flexibility in modern manufacturing with the multidirectional motion of the mover. In levitation control, the decoupling matrix is used to decouple the strong cross-coupling effect. The Lorentz force-based wrench matrices can be precomputed and stored in the lookup table. However, the motion range is restricted by the data range. This paper presents a wrench–current decoupling strategy to extend the use of small lookup data for long-range planar motion. The horizontal data range is 40 mm by 40 mm, which is determined from the minimally repetitive area of the planar coil array. The quadrant symmetry transformation is used to estimate the data for other areas. The experiment results demonstrated the accomplishment of the developed technique for long-range motion with a maximum motion stroke of 380 mm. The disc-magnet movers can levitate with a large air gap of 30 mm and have a total roll and pitch rotation range of 20 degrees. Full article
(This article belongs to the Special Issue Conventional and Micromachined Electromagnetic Levitation Actuators)
Show Figures

Figure 1

17 pages, 5988 KiB  
Article
High-Precision Control of Industrial Robot Manipulator Based on Extended Flexible Joint Model
by Siyong Xu, Zhong Wu and Tao Shen
Actuators 2023, 12(9), 357; https://doi.org/10.3390/act12090357 - 12 Sep 2023
Cited by 1 | Viewed by 1268
Abstract
High-precision industrial manipulators are essential components in advanced manufacturing. Model-based feedforward is the key to realizing the high-precision control of industrial robot manipulators. However, traditional feedforward control approaches are based on rigid models or flexible joint models which neglect the elasticities out of [...] Read more.
High-precision industrial manipulators are essential components in advanced manufacturing. Model-based feedforward is the key to realizing the high-precision control of industrial robot manipulators. However, traditional feedforward control approaches are based on rigid models or flexible joint models which neglect the elasticities out of the rotational directions and degrade the setpoint precision significantly. To eliminate the effects of elasticities in all directions, a high-precision setpoint feedforward control method is proposed based on the output redefinition of the extended flexible joint model (EFJM). First, the flexible industrial robots are modeled by the EFJM to describe the elasticities in joint rotational directions and out of the rotational directions. Second, the nonminimum-phase EFJM is transformed into a minimum-phase system by using output redefinition. Third, the setpoint control task is transformed from Cartesian space into joint space by trajectory planning based on the EFJM. Third, a universal recursive algorithm is designed to compute the feedforward torque based on the EFJM. Moreover, the computational performance is improved. By compensating the pose errors caused by elasticities in all directions, the proposed method can effectively improve the setpoint control precision. The effectiveness of the proposed method is illustrated by simulation and experimental studies. The experimental results show that the proposed method reduces position errors by more than 65% and the orientation errors by more than 62%. Full article
(This article belongs to the Special Issue Modeling, Optimization and Control of Robotic Systems)
Show Figures

Figure 1

23 pages, 10260 KiB  
Article
A Novel Friction Identification Method Based on a Two-Axis Differential Micro-Feed System
by Zhen Zhang, Xianying Feng, Peigang Li, Anning Wang and Zhe Su
Actuators 2023, 12(9), 356; https://doi.org/10.3390/act12090356 - 11 Sep 2023
Viewed by 1013
Abstract
Ultra-precise actuation at extremely low speeds over a broad range is a major challenge for advanced manufacturing. A novel two-axis differential micro-feed system (TDMS) has been proposed recently to overcome the low-speed crawling of the worktable. However, due to the diversity of the [...] Read more.
Ultra-precise actuation at extremely low speeds over a broad range is a major challenge for advanced manufacturing. A novel two-axis differential micro-feed system (TDMS) has been proposed recently to overcome the low-speed crawling of the worktable. However, due to the diversity of the force states of the TDMS, the methods for identification identifyingof friction parameters traditionally (like the all -components identification method, ACIM) didn’t did not perform well. And many studies on the performance of the pre-sliding phase of the TDMS are missing. Therefore, a novel whole-system identification method (WSIM) based on the TDMS was proposed in this paper to precisely identify the friction parameters under different states of motion. The generalized Maxwell sliding (GMS) friction model was also applied to improve the accurate description of the pre-sliding. A novel corrected Stribeck curve based on the TDMS (TDMSSC) was proposed under the uniqueness of the TDMS structure. Control experiments showedn that the WSIM has higher precision and stability rather thancompared torather than the ACIM, and the correction of the Stribeck curve for the TDMS makes a contribution to the performance. This method significantly improves the accuracy and stability of the machine tool drive system. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

18 pages, 10088 KiB  
Article
Comparative Study of IGBT and SiC MOSFET Three-Phase Inverter: Impact of Parasitic Capacitance on the Output Voltage Distortion
by Paisak Poolphaka, Ehsan Jamshidpour, Thierry Lubin, Lotfi Baghli and Noureddine Takorabet
Actuators 2023, 12(9), 355; https://doi.org/10.3390/act12090355 - 11 Sep 2023
Viewed by 1512
Abstract
This study investigates the nonlinearities in three-phase inverters for SiC-based systems and compares their performance to IGBT-based systems. An analytical model of inverter voltage distortion is developed, which accounts not only for dead time (td), switching delay time, switching frequency (fs), and voltage [...] Read more.
This study investigates the nonlinearities in three-phase inverters for SiC-based systems and compares their performance to IGBT-based systems. An analytical model of inverter voltage distortion is developed, which accounts not only for dead time (td), switching delay time, switching frequency (fs), and voltage drops of power devices, but also for output parasitic capacitance (Cout). Experimental tests validate the model, which provides a more accurate estimate of the inverter’s output phase voltage distortion. The power device characteristics are obtained from datasheets, while Cout is determined through experimentation. Three-phase inverters with varying switching frequencies, fundamental frequencies, and dead-time values are used in simulations and experiments to determine the influence of nonlinearity on phase voltage deviation and current distortion. The results show that, due to SiC devices’ faster switching time, the phase voltage deviation and phase current distortion are lower in SiC-based inverters than in IGBT-based ones for high-frequency applications, as the dead time can be reduced. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

27 pages, 12751 KiB  
Article
The Influence of Speed Ratio on the Nonlinear Dynamics of a Magnetic Suspended Dual-Rotor System with a Fixed-Point Rubbing
by Dongxiong Wang, Songyao Chen, Nianxian Wang, Ju Zhang and Baohua Wang
Actuators 2023, 12(9), 354; https://doi.org/10.3390/act12090354 - 07 Sep 2023
Viewed by 998
Abstract
Magnetic suspended dual-rotor systems (MSDS) provide the potential to significantly improve the performance of aero-engines by eliminating the wear and lubrication system, and solve vibration control issues effectively. However, the nonlinear dynamics of MSDS with rubbing is rarely investigated. In this work, the [...] Read more.
Magnetic suspended dual-rotor systems (MSDS) provide the potential to significantly improve the performance of aero-engines by eliminating the wear and lubrication system, and solve vibration control issues effectively. However, the nonlinear dynamics of MSDS with rubbing is rarely investigated. In this work, the nonlinear support characteristics of active magnetic bearings (AMBs) are described by the equivalent magnetic circuit method, the impact force is characterized by the Lankarani–Nikravesh model, and the nonlinear dynamic model is established using the finite element method. On this basis, the influence of speed ratio on the nonlinear dynamics is investigated. Simulation results show that the fundamental sub-synchronous vibration of period n is the dominant motion of MSDS, where n is determined by the speed ratio. The frequency components of sub-synchronous vibrations of period k are integer multiples of the minimum dimensionless frequency component 1/k, where k is a positive integral multiple of n. Quasi-periodic and chaotic vibrations are more likely to occur near critical speeds, and their main frequency components can be expressed as a variety of combined frequency components of the rotating frequency difference and its fractional frequency. To reduce the severity of fluctuating stresses stemming from complicated non-synchronous vibrations, speed ratios, corresponding to smaller n and AMB control parameters attenuating vibration amplitude or avoiding critical speeds, are suggested. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

14 pages, 2880 KiB  
Article
Modelling and RBF Control of Low-Limb Swinging Dynamics of a Human–Exoskeleton System
by Xinyu Peng, Shujun Zhang, Mengling Cai and Yao Yan
Actuators 2023, 12(9), 353; https://doi.org/10.3390/act12090353 - 06 Sep 2023
Viewed by 928
Abstract
With the increase in the elderly population in China and the growing number of individuals who are unable to walk normally, research on lower limb exoskeletons is becoming increasingly important. This study proposes a complete dynamic model parameter identification scheme for the human–machine [...] Read more.
With the increase in the elderly population in China and the growing number of individuals who are unable to walk normally, research on lower limb exoskeletons is becoming increasingly important. This study proposes a complete dynamic model parameter identification scheme for the human–machine coupling model of lower limb exoskeletons. Firstly, based on the coupling model, the excitation trajectory is optimized, data collection experiments are conducted, and the dynamic parameter vector of the system is identified using the least squares method. Secondly, this lays the foundation for designing adaptive control based on RBF neural network approximation. Thirdly, the Lyapunov function is used to prove that the RBF neural network adaptive controller can achieve stable tracking of the lower limb exoskeleton. Finally, simulation analysis reveals that increasing the gains of the RBF controllers effectively reduces tracking errors. Furthermore, the tracking errors and control torques show that adaptive control based on the RBF neural network approximation works well. Full article
Show Figures

Figure 1

25 pages, 16736 KiB  
Article
Research on Speed Control Methods and Energy-Saving for High-Voltage Transmission Line Inspection Robots along Cable Downhill
by Zhiyong Yang, Xu Liu, Cheng Ning, Lanlan Liu, Wang Tian, Haoyang Wang, Daode Zhang, Huaxu Li, Dehua Zou and Jianghua Kuang
Actuators 2023, 12(9), 352; https://doi.org/10.3390/act12090352 - 05 Sep 2023
Viewed by 1165
Abstract
To ensure the safe operation of high-voltage transmission line inspection robots during downhill descents without power and extend their range after a single charge, this paper proposes an energy-saving speed control method for the inspection robot’s walking wheel motor on downhill slopes by [...] Read more.
To ensure the safe operation of high-voltage transmission line inspection robots during downhill descents without power and extend their range after a single charge, this paper proposes an energy-saving speed control method for the inspection robot’s walking wheel motor on downhill slopes by integrating feedback braking and fuzzy PID control. By combining the parameter equation of the overhead catenary line and the structural characteristics of the overhead transmission line, this paper analyzes the relationship between the driving torque of the inspection robot’s wheels and the horizontal displacement along the transmission ground wire before and after descending. Based on this analysis, a speed control and energy recovery scheme is developed for the inspection robot, which combines front-wheel feedback braking with rear-wheel regenerative braking. The fuzzy PID method is utilized to adjust the PWM duty cycle to achieve energy-efficient speed control of the inspection robot’s rear walking wheels. Additionally, to improve the energy density and specific power of the robot’s energy storage unit, a composite power source consisting of lithium batteries and supercapacitors is employed to recover energy from the front walking wheels through feedback braking. The combined simulation results indicate that, compared to fuzzy control and PID control, fuzzy PID control better regulates the robot’s speed under varying slopes, wind resistance, and cable roughness. A downhill speed control system for the inspection of the robot’s walking wheel motor was designed, and its effectiveness was validated through simulated high-voltage line experiments. The fuzzy PID control was demonstrated to effectively maintain the rear walking wheel speed within the targeted range during downhill descents. When descending along a fixed 30° angle cable, the fuzzy PID control resulted in an increase of 5.28% and 14.26% in the state of charge (SOC) of the supercapacitor compared to PID control and fuzzy control, respectively. Moreover, when descending along fixed angle cables of 10°, 20°, and 30°, as well as a variable angle cable ranging from 30° to 0°, the SOC of the supercapacitor increased by 17.55%, 26.25%, 38.45%, and 31.29%, respectively. This demonstrates the effective absorption of regenerative braking energy during the robot’s downhill movement. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

17 pages, 5523 KiB  
Article
Antagonistic Magneto-Rheological Actuators with Inherent Output Boundedness: An Ideal Solution for High-Performance and Human-Safe Actuation
by Mehrdad R. Kermani, Sergey Pisetskiy, Ilia Polushin and Zi-Qi Yang
Actuators 2023, 12(9), 351; https://doi.org/10.3390/act12090351 - 31 Aug 2023
Viewed by 1098
Abstract
This paper studies the working principles of antagonistic magneto-rheological (MR) actuators, i.e., a combination of an electric motor and a pair of MR clutches in an antagonistic configuration, for compliant actuation in robotics. The study focuses on the unique boundedness property exhibited by [...] Read more.
This paper studies the working principles of antagonistic magneto-rheological (MR) actuators, i.e., a combination of an electric motor and a pair of MR clutches in an antagonistic configuration, for compliant actuation in robotics. The study focuses on the unique boundedness property exhibited by MR actuators, which limits the output torques delivered to the load, independent of the received input torque and/or control commands. This inherent property is of significant importance for ensuring human safety in human–robot interaction applications. Through a comprehensive analysis, we provide analytical proof of the inherent output boundedness of antagonistic MR actuators and validate our findings through experimental results. Our research demonstrates that these actuators are well-suited for safe operations in robotic applications, eliminating the need for additional sensor measurements or complex control strategies. This promising capability enables the avoidance of trade-offs between actuator performance, complexity, and cost. The insights gained from this study contribute to advancing compliant actuation technology, paving the way for high-performance and human-safe robotic systems. Full article
Show Figures

Figure 1

29 pages, 9869 KiB  
Article
A Self–Tuning Intelligent Controller for a Smart Actuation Mechanism of a Morphing Wing Based on Shape Memory Alloys
by Teodor Lucian Grigorie and Ruxandra Mihaela Botez
Actuators 2023, 12(9), 350; https://doi.org/10.3390/act12090350 - 31 Aug 2023
Cited by 3 | Viewed by 1936
Abstract
The paper exposes some of the results obtained in a major research project related to the design, development, and experimental testing of a morphing wing demonstrator, with the main focus on the development of the automatic control of the actuation system, on its [...] Read more.
The paper exposes some of the results obtained in a major research project related to the design, development, and experimental testing of a morphing wing demonstrator, with the main focus on the development of the automatic control of the actuation system, on its integration into the experimental developed morphing wing system, and on the gain related to the extension of the laminar flow over the wing upper surface when it was morphed based on this control system. The project was a multidisciplinary one, being realized in collaboration between several Canadian research teams coming from universities, research institutes, and industrial entities. The project’s general aim was to reduce the operating costs for the new generation of aircraft via fuel economy in flight and also to improve aircraft performance, expand its flight envelope, replace conventional control surfaces, reduce drag to improve range, and reduce vibrations and flutter. In this regard, the research team realized theoretical studies, accompanied by the development and wind tunnel experimental testing of a rectangular wing model equipped with a morphing skin, electrical smart actuators, and pressure sensors. The wing model was designed to be actively controlled so as to change its shape and produce the expansion of laminar flow on its upper surface. The actuation mechanism used to change the wing shape by morphing its flexible upper surface (manufactured from composite materials) is based on Shape Memory Alloys (SMA) actuators. Shown here are the smart mechanism used to actuate the wing’s upper surface, the design of the intelligent actuation control concept, which uses a self–tuning fuzzy logic Proportional–Integral–Derivative plus conventional On–Off controller, and some of the results provided by the wind tunnel experimental testing of the model equipped with the intelligent controlled actuation system. The control mechanism uses two fuzzy logic controllers, one used as the main controller and the other one as the tuning controller, having the role of adjusting (to tune) the coefficients involved in the operation of the main controller. The control system also took into account the physical limitations of the SMA actuators, including a software protection section for the SMA wires, implemented by using a temperature limiter and by saturating the electrical current powering the actuators. The On–Off component of the integrated controller deactivates or activates the heating phase of the SMA wires, a situation when the actuator passes into the cooling phase or is controlled by the Self–Tuning Fuzzy Logic Controller. Full article
(This article belongs to the Special Issue Actuators in 2022)
Show Figures

Figure 1

30 pages, 13272 KiB  
Article
A Novel Low-Complexity Cascaded Model Predictive Control Method for PMSM
by Qingcheng Meng and Guangqing Bao
Actuators 2023, 12(9), 349; https://doi.org/10.3390/act12090349 - 31 Aug 2023
Cited by 1 | Viewed by 1153
Abstract
A novel low-complexity cascaded model predictive control method for permanent magnet synchronous motors is proposed to achieve a fast dynamic response to ensure the system’s steady-state performance. Firstly, a predictive speed controller based on an extended state observer is designed in the outer [...] Read more.
A novel low-complexity cascaded model predictive control method for permanent magnet synchronous motors is proposed to achieve a fast dynamic response to ensure the system’s steady-state performance. Firstly, a predictive speed controller based on an extended state observer is designed in the outer speed loop to improve the anti-interference ability of the system; then, a low-complexity three-vector predictive control algorithm is adopted in the current inner loop, taking into account the steady-state performance of the system and lower computational burden. Finally, a comparative analysis is conducted between the proposed method and traditional methods through simulation and experiments, proving that the proposed method performs well in dynamic and static performance. On this basis, the computational complexity of the current inner loop three-vector prediction algorithm is effectively reduced, indicating the correctness and effectiveness of the proposed method. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 14516 KiB  
Article
Research of Multi-Mode Pneumatic Vibroactuator
by Edmundas Kibirkštis, Darius Pauliukaitis, Kęstutis Vaitasius, Laura Gegeckienė, Ingrida Venytė and Vytautas Jurėnas
Actuators 2023, 12(9), 348; https://doi.org/10.3390/act12090348 - 29 Aug 2023
Viewed by 842
Abstract
A multi-functional, three-mode, self-exciting pneumatic vibroactuator was investigated. The special feature of this vibroactuator is that it consists of two excitation chambers connected by an elastic synchronizing chain. A mathematical model of the vibroactuator was created, which was solved by numerical methods. The [...] Read more.
A multi-functional, three-mode, self-exciting pneumatic vibroactuator was investigated. The special feature of this vibroactuator is that it consists of two excitation chambers connected by an elastic synchronizing chain. A mathematical model of the vibroactuator was created, which was solved by numerical methods. The laws (modes) of the movement of the working organ of this vibroactuator have been determined: harmonic, non-harmonic, and pulsating. The results of numerical and experimental research are compared. The vibroactuator with these extended functional capabilities can be used for the intensification of various production technological processes. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

25 pages, 6800 KiB  
Article
Standalone and Interconnected Analysis of an Independent Accumulator Pressure Compressibility Hydro-Pneumatic Suspension for the Four-Axle Heavy Truck
by Thiyagarajan Jayaraman and Muthuramalingam Thangaraj
Actuators 2023, 12(9), 347; https://doi.org/10.3390/act12090347 - 28 Aug 2023
Cited by 2 | Viewed by 1243
Abstract
This paper has proposed a new hydro-pneumatic damper, allowing independent accumulator pressure compressibility from the chamber pressure which enhances isolation performances due its lower F-V hysteresis effect at moderate velocities. The system utilizes the generic hydraulic damper with two hydro-pneumatic accumulators and four [...] Read more.
This paper has proposed a new hydro-pneumatic damper, allowing independent accumulator pressure compressibility from the chamber pressure which enhances isolation performances due its lower F-V hysteresis effect at moderate velocities. The system utilizes the generic hydraulic damper with two hydro-pneumatic accumulators and four check valves in its design. To evaluate the active suspension capability of proposed damper effectiveness, a 22-degrees-of-freedom (DOF), four-axle truck model is integrated with a hydraulic control valve, which is built in an LMS-AME sim environment. Then, the model is exported as an S-function into Matlab/Simulink co-simulation platform for the hydraulic servo-valve control input of a model predictive control (MPC) and proportional-integral-derivative (PID) output signal. Simulation results show that the MPC and an additional supply of fluid to the proposed damper provide better performances and an adaptive damping capability is established. This work also showcases the development and results of a roll interconnected suspension study to assess the proposed damper characteristics when it is interconnected. The various advantages of the proposed-HPIS system over the well-known hydraulic interconnected system (HIS) and hydro-pneumatic interconnected suspension (HPIS) system are studied. Full article
Show Figures

Figure 1

16 pages, 2953 KiB  
Article
Finite-Time Control for Dual Three-Phase Hybrid Excitation Synchronous Machine Based on Torque Sensorless Current Coordinative Strategy
by Bin Dai and Zixing Wu
Actuators 2023, 12(9), 346; https://doi.org/10.3390/act12090346 - 28 Aug 2023
Viewed by 834
Abstract
In this paper, the finite time speed regulation problem is investigated for a dual three-phase hybrid excitation synchronous machine (DTP-HESM) without a torque meter. The electromagnetic torque estimation required in the current coordinative strategy is obtained through the disturbance estimation technology. This method [...] Read more.
In this paper, the finite time speed regulation problem is investigated for a dual three-phase hybrid excitation synchronous machine (DTP-HESM) without a torque meter. The electromagnetic torque estimation required in the current coordinative strategy is obtained through the disturbance estimation technology. This method increases fault tolerance and reduces the cost as well as complexity of the DTP-HESM system. In contrast to the existing controllers in the speed loop, the non-singular terminal sliding mode control method is adopted to ensure the finite-time convergence of speed tracking in the whole speed region. To achieve better dynamic performance in the presence of lumped disturbances, including unknown load torque and unmodeled dynamics, the disturbance estimations are introduced into the sliding mode variable to establish a composite speed regulating controller. Simulations and experiments are carried out to validate the feasibility and effectiveness of the proposed control scheme. Full article
(This article belongs to the Special Issue Applications of Finite-Time Disturbance Rejection Control Method)
Show Figures

Figure 1

11 pages, 7848 KiB  
Article
A 3-to-5 V Input, 80 Peak-to-Peak Voltage (Vpp) Output, 2.75% Total Harmonic Distortion Plus Noise (THD+N), 2.9 μF Load Piezoelectric Actuator Driver with Four-Switch Buck–Boost
by Rui Ye, Junbiao Chen, Shuxiang Dong and Bing Li
Actuators 2023, 12(9), 345; https://doi.org/10.3390/act12090345 - 28 Aug 2023
Viewed by 1306
Abstract
As human–computer interaction has become increasingly popular, haptic technology has become a research topic of great interest, since vibration perception, as a type of haptic feedback, can enhance user experience during an interaction. However, the high power consumption of existing drivers makes them [...] Read more.
As human–computer interaction has become increasingly popular, haptic technology has become a research topic of great interest, since vibration perception, as a type of haptic feedback, can enhance user experience during an interaction. However, the high power consumption of existing drivers makes them unsuitable for use in portable devices. In this paper, a bidirectional four-switch buck–boost converter (FSBBC) and Proportional–Integral (PI)–Proportional (P) feedback control are proposed to implement a driver in a high-capacitance piezoelectric actuator which is capable of recovering the energy stored in the high-capacitance load and increasing efficiency. The FSBBC offers an extended input voltage range, rendering significant technological advantages in diverse applications such as automobiles, laptops, and smartphones. By implementing specific control strategies, the FSBBC not only outperforms conventional buck–boost converters in boosting performance, but also ensures that the output and input voltages retain the same polarity. This effectively addresses the polarity inversion challenge inherent to traditional buck–boost circuits. Within the FSBBC, the significant reduction in voltage stress endured by the MOSFET effectively minimizes system costs and size and enhances reliability. The proposed system was simulated in Simulink, which was combined with testing on a field-programmable gate array (FPGA). The driver is capable of driving capacitors of up to 2.9 μF, with 80 Vpp output and 2.75% total harmonic distortion (THD) observed in the test. Full article
(This article belongs to the Special Issue Piezoelectric Ultrasonic Actuators and Motors)
Show Figures

Figure 1

23 pages, 11396 KiB  
Article
Estimation of Full Dynamic Parameters of Large Space Debris Based on Rope Net Flexible Collision and Vision
by Chao Tang, Jinming Yao, Lei Liang, Huibo Zhang, Cheng Wei and Yang Zhao
Actuators 2023, 12(9), 344; https://doi.org/10.3390/act12090344 - 26 Aug 2023
Viewed by 1107
Abstract
The identification of space debris’s dynamic parameters is a prerequisite for detumbling and capture operations. In this paper, a novel method for identifying dynamic parameters based on the rope net flexible collision and vision data is proposed, which combines the advantages of full [...] Read more.
The identification of space debris’s dynamic parameters is a prerequisite for detumbling and capture operations. In this paper, a novel method for identifying dynamic parameters based on the rope net flexible collision and vision data is proposed, which combines the advantages of full dynamic parameter estimation (contact method) and safety (non-contact method). The point cloud data before and after collision is obtained by LiDAR, and the transformation matrix of point clouds and debris motion data are calculated by point cloud registration. Before the collision, using the motion model-based optimization, the real-time position of the debris center of mass is estimated. And the transformation matrix between visual and debris-fixed coordinates are calculated by the mass center position and transformation matrix of the point cloud. Then, using the debris dynamic model and parameters’ characteristics, the normalized dynamic parameters are estimated. An identification method of net node position changes based on the flexible collision characteristics of rope nets is proposed, which is used to obtain the momentum of the rope net after the collision. Based on the conservation of linear momentum and angular momentum of the satellite-net system, the true values of the mass and the principal moment of inertia of the debris are estimated. The true values of the kinetic energy and momentum can be obtained by substituting the true values of the principal moment of inertia into the normalized parameters, and the full dynamic parameters of large space debris is estimated. Simulations of identifying full dynamic parameters have been performed; the results indicate that this method can provide accurate and real-time true values of dynamic parameters for the detumbling and capture mission. Full article
(This article belongs to the Section Aircraft Actuators)
Show Figures

Figure 1

19 pages, 2156 KiB  
Article
Tracking Control of Unforced and Forced Equilibrium Positions of the Pendubot System: A Nonlinear MHE and MPC Approach
by Martin Gulan, Michal Salaj and Boris Rohaľ-Ilkiv
Actuators 2023, 12(9), 343; https://doi.org/10.3390/act12090343 - 26 Aug 2023
Viewed by 950
Abstract
This paper presents a unified control scheme of the Pendubot based on nonlinear model predictive control (NMPC) and nonlinear moving horizon estimation (NMHE) with the objective of point-to-point tracking its unstable unforced and ultimately forced equilibrium positions. In order to implement it on [...] Read more.
This paper presents a unified control scheme of the Pendubot based on nonlinear model predictive control (NMPC) and nonlinear moving horizon estimation (NMHE) with the objective of point-to-point tracking its unstable unforced and ultimately forced equilibrium positions. In order to implement it on this fast, underactuated mechatronic system, we employ the Gauss–Newton real-time iteration scheme tailored to obtain the efficient solution of the underlying nonlinear optimization problems via sequential quadratic programming. The control performance is experimentally assessed on a real-world laboratory setup featuring an execution timing analysis and hints how to further improve the computational efficiency of the proposed nonlinear estimation control scheme. Even nowadays, the number of practical NMPC applications in the millisecond range is still rather limited, and the presented NMHE-based NMPC of the Pendubot thus also represents a unique case study for control practitioners. Full article
(This article belongs to the Special Issue Advance Control Research for Underactuated Robot Systems)
Show Figures

Figure 1

17 pages, 13851 KiB  
Article
Decoupling Control for Module Suspension System of Maglev Train Based on Feedback Linearization and Extended State Observer
by Qicai Li, Peng Leng, Peichang Yu, Danfeng Zhou, Jie Li and Minghe Qu
Actuators 2023, 12(9), 342; https://doi.org/10.3390/act12090342 - 25 Aug 2023
Cited by 2 | Viewed by 1151
Abstract
The suspension gap of the electromagnetic suspension maglev train is around 8 mm. In practice, it is found that the system gap fluctuations are amplified due to the inner coupling of the suspension module system in the maglev train. In addition, maglev trains [...] Read more.
The suspension gap of the electromagnetic suspension maglev train is around 8 mm. In practice, it is found that the system gap fluctuations are amplified due to the inner coupling of the suspension module system in the maglev train. In addition, maglev trains are affected by load disturbances and parameter perturbations during operation. These uncertainties reduce the ride comfort. Therefore, it is necessary to propose a novel control strategy to suppress inner coupling while reducing the influence of uncertainties on the system. In this paper, a control strategy based on feedback linearization and extended state observer (ESO) is proposed to address this challenge. Firstly, the suspension module system model is established with parameter uncertainties and external disturbances. Additionally, the inner coupling of the suspension module is represented in this model. Subsequently, the feedback linearization method based on differential geometry theory is applied to reduce the effect of inner coupling. Meanwhile, the system uncertainties are transformed into equivalent disturbances by this method. Afterward, a linear ESO is designed to estimate the equivalent disturbances. Finally, a state feedback controller is used to achieve stable suspension and compensate for the disturbances. Simulation and experimental results show that the proposed decoupled control strategy significantly suppresses the influence of inner coupling and uncertainties on the system compared with the traditional PID control strategy. Full article
(This article belongs to the Special Issue Advances in High-Precision Magnetic Levitation Actuators)
Show Figures

Figure 1

17 pages, 3277 KiB  
Article
Tracking Control of Uncertain Neural Network Systems with Preisach Hysteresis Inputs: A New Iteration-Based Adaptive Inversion Approach
by Guanyu Lai, Gongqing Deng, Weijun Yang, Xiaodong Wang and Xiaohang Su
Actuators 2023, 12(9), 341; https://doi.org/10.3390/act12090341 - 25 Aug 2023
Viewed by 931
Abstract
To describe the hysteresis nonlinearities in smart actuators, numerous models have been presented in the literature, among which the Preisach operator is the most effective due to its capability to capture multi-loop or sophisticated hysteresis curves. When such an operator is coupled with [...] Read more.
To describe the hysteresis nonlinearities in smart actuators, numerous models have been presented in the literature, among which the Preisach operator is the most effective due to its capability to capture multi-loop or sophisticated hysteresis curves. When such an operator is coupled with uncertain nonlinear dynamics, especially in noncanonical form, it is a challenging problem to develop techniques to cancel out the hysteresis effects and, at the same time, achieve asymptotic tracking performance. To address this problem, in this paper, we investigate the problem of iterative inverse-based adaptive control for uncertain noncanonical nonlinear systems with unknown input Preisach hysteresis, and a new adaptive version of the closest-match algorithm is proposed to compensate for the Preisach hysteresis. With our scheme, the stability and convergence of the closed-loop system can be established. The effectiveness of the proposed control scheme is illustrated through simulation and experimental results. Full article
Show Figures

Figure 1

18 pages, 5411 KiB  
Article
Implementing a Precision Pneumatic Plug Tray Seeder with High Seeding Rates for Brassicaceae Seeds via Real-Time Trajectory Tracking Control
by Hao-Ting Lin and Yu-Hsien Lee
Actuators 2023, 12(9), 340; https://doi.org/10.3390/act12090340 - 24 Aug 2023
Cited by 2 | Viewed by 1101
Abstract
In recent years, the aging of the rural population worldwide has become a major concern, necessitating the development of agricultural automation. Pneumatic energy has emerged as a reliable and environmentally friendly option, aiding in the global effort to reduce carbon emissions. The purpose [...] Read more.
In recent years, the aging of the rural population worldwide has become a major concern, necessitating the development of agricultural automation. Pneumatic energy has emerged as a reliable and environmentally friendly option, aiding in the global effort to reduce carbon emissions. The purpose of this study is to reduce the amount of labor required for plug tray seeding by developing an automated seeder that employs a precision pneumatic servo system via the rod-less actuator with real-time trajectory tracking capabilities. The proposed seeder has a simple structure, is easy to maintain, and saves energy. It mainly consists of a rod-less pneumatic cylinder, a needle seeding mechanism, a soil drilling mechanism and a PC-based real-time controller. Mathematical models of the developed precision pneumatic plug tray seeder are analyzed and established, and an adaptive sliding mode controller is proposed. A PC-based real-time control system is developed using MATLAB/SIMULINK via an optical encoder with a sampling frequency of 1 kHz to enable the development of precise pneumatic plug tray seeder. An optical encoder is used to measure the displacement of the rod-less cylinder which represents real-time positions of the plug tray loading platform. Experiments are conducted using Brassicaceae seeds, and the rates of single seeding, multiple seeding, missed seeding and germination are carried out through manual measurement. The results indicate that the seeder exhibits satisfactory performance, with a root mean square error of less than 0.5 mm and a single-seeding rate of more than 97%. Overall, our findings provide new insights for nurseries and could contribute to the reduction in agricultural carbon emissions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

27 pages, 1558 KiB  
Article
Dynamic Modeling and Passivity-Based Control of an RV-3SB Robot
by Manuel Cardona, Fernando E. Serrano and Cecilia E. García Cena
Actuators 2023, 12(9), 339; https://doi.org/10.3390/act12090339 - 23 Aug 2023
Cited by 1 | Viewed by 1543
Abstract
This paper shows the dynamic modeling and design of a passivity-based controller for the RV-3SB robot. Firstly, the dynamic modeling of a Mitsubishi RV-3SB robot is conducted using Euler–Lagrange formulation in order to obtain a decoupled dynamic model, considering the actuator orientation besides [...] Read more.
This paper shows the dynamic modeling and design of a passivity-based controller for the RV-3SB robot. Firstly, the dynamic modeling of a Mitsubishi RV-3SB robot is conducted using Euler–Lagrange formulation in order to obtain a decoupled dynamic model, considering the actuator orientation besides the position of the analyzed robot. It is important to remark that the dynamic model of the RV-3SB robot is conducted based on kinematic model obtention, which is developed by the implementation of screw theory. Then, the passivity-based controller is obtained by separating the end effector variables and the actuator variables by making an appropriate coordinate transformation. The passivity-based controller is obtained by selecting an appropriate storage function, and by using Lyapunov theory, the passivity-based control law is obtained in order to drive the error variable, which is the difference between the measured end effector position variable and the desired end effector position variable. The passivity-based controller makes the error variable reach the origin in finite time, taking into consideration the dissipation properties of the proposed controller in order to stabilize the desired end effector position. A numerical simulation experiment is performed in order to validate the theoretical results obtained in this research. Using numerical experimentation, it is verified that the proposed control strategy is efficient and effective in driving the error variable to the origin in comparison with other modified techniques found in the literature. Finally, an appropriate discussion and conclusion of this research study are provided. Full article
(This article belongs to the Special Issue Motion Planning and Control of Robot Systems)
Show Figures

Figure 1

25 pages, 11099 KiB  
Article
Motion Modelling of the Floating Bushing in an External Gear Pump Using Dimensional Analysis
by Miquel Torrent, Pedro Javier Gamez-Montero and Esteban Codina
Actuators 2023, 12(9), 338; https://doi.org/10.3390/act12090338 - 22 Aug 2023
Cited by 3 | Viewed by 968
Abstract
A new approach to model the motion of floating bushings in external gear pumps is presented in this article, where lubrication conditions have been introduced using dimensional analysis. This model is based on Bond Graph diagrams and has been experimentally validated in lab [...] Read more.
A new approach to model the motion of floating bushings in external gear pumps is presented in this article, where lubrication conditions have been introduced using dimensional analysis. This model is based on Bond Graph diagrams and has been experimentally validated in lab tests measuring the movement of the floating bushing inside the gear pump by means of laser micrometers. The novelty of this research is the creation of a simple and experimentally validated tool for the behaviour study of these types of pumps, which allows the simulation of a dynamic rigid solid in a fluid boundary with clearances of the order of microns, without using powerful CFD tools, with very short execution times, and using conventional computational tools. The qualitative behaviour of the model with respect to the experimental results is very similar, adjusting the numerical values with very acceptable accuracies by taking into account the precision of the experimental measurements, and allows us to use the model to interpret the volumetric and mechanical efficiency variations according the operating conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop