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Abstract: This paper presents a unified control scheme of the Pendubot based on nonlinear model
predictive control (NMPC) and nonlinear moving horizon estimation (NMHE) with the objective of
point-to-point tracking its unstable unforced and ultimately forced equilibrium positions. In order to
implement it on this fast, underactuated mechatronic system, we employ the Gauss–Newton real-time
iteration scheme tailored to obtain the efficient solution of the underlying nonlinear optimization
problems via sequential quadratic programming. The control performance is experimentally assessed
on a real-world laboratory setup featuring an execution timing analysis and hints how to further
improve the computational efficiency of the proposed nonlinear estimation control scheme. Even
nowadays, the number of practical NMPC applications in the millisecond range is still rather limited,
and the presented NMHE-based NMPC of the Pendubot thus also represents a unique case study for
control practitioners.
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1. Introduction

During recent decades, a variety of scientific, industrial, and military applications have
motivated the analysis and the rigorous derivation of control algorithms for mechanical
systems. Naturally, this research field has also attracted the attention of mathematicians
since the majority of the systems possess a global nonlinear characteristic, and their linear
approximation seems to be deficient. Putting their efforts together, both researchers and
industry practitioners have developed several control design methodologies that include
linear control; optimal control; adaptive control; nonlinear control; and, more recently,
robust control in order to account for uncertainties in a practical context. In fact, inter-
est in mechanical systems especially grew when researchers realized that they can be
underactuated [1].

The design of their functionality, in the case of both fully actuated and underactuated
systems, is similar in concept. The usual problem is planning the motion for the task
to be performed and designing the control system to execute it. However, unlike in the
case of fully actuated robots, where there exist well-established results to solve both tasks,
the trajectory planning and control of underactuated robots is theoretically more complex
and less general. Despite this difficulty, the design of such mechanisms that can perform
complex tasks with less actuators allows the reduction of the cost and weight by using
fewer actuators and allows the optimization of energy consumption and increase in maneu-
verability as well as tolerance to actuator failure. However, their control is challenging due
to the nonlinear dynamics, nonholonomic behavior, and lack of linearizability exhibited by
these systems, and therefore, they are also of great importance in both control theory and
applications. The convenient use of such systems in both academia and industry, supported
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by intensive research activities aiming at the exploitation of the underactuation properties,
formed the main motivation behind this study.

In this article, our focus is to employ advanced model-based control designs for
nonlinear systems that arise from the control of an important and broad class of mechanical
systems known as underactuated systems. A mechanical system is said to be underactuated
when the number of control inputs is less than the number of degrees of freedom to be
controlled. The underactuation property of underactuated mechanical systems (UMSs) can
be due to one of the following reasons [2]:

• It can be naturally due to the dynamics of the system, such as those of aircrafts,
spacecrafts, helicopters, or underwater vehicles;

• It can be imposed by design, aiming at cost or weight reduction, particularly in the
case when actuators are expensive and/or heavy and therefore sometimes avoided in
a system design, e.g., satellites with two thrusters or flexible-link robots;

• It can be due to actuator failure; for example, if a fully actuated system becomes
faulty in a critical situation, the underactuation property can be properly exploited to
increase its reliability or even to avoid the complete failure of the system instead of
the uneconomical addition of redundant actuators;

• It can be imposed artificially to create complex low-order nonlinear systems in order
to gain insight into the control of high-order UMSs.

This class of systems has varied and rich applications, at both practical and theoretical
levels, in various fields such as robotics, aeronautical and spatial systems, marine and
underwater systems, and flexible and mobile systems. In contrast to systems that have
direct practical applications, pendulum-type systems have applications more in terms of
academic benchmarks for nonlinear control where classical procedures cannot be applied.
Systems like the inverted pendulum (cart–pole system), the rotational inverted (Furuta)
pendulum, the Pendubot, or the ball and beam tend to be part of a standard control
laboratory. Other examples of UMSs include the TORA (translational oscillator with a
rotational actuator) system, the VTOL (vertical take off and landing) aircraft, a convey-crane
system, and hovercraft or helicopter models. Despite their relatively simple mechanical
structure, they represent a challenge to the nonlinear control community. This has given
rise to a number of studies devoted to control design and stability analyses for particular
classes of nonlinear UMSs, such as the essential overview in [3]; the relevant books [1,4];
and several recent distinct publications, e.g., [5–7].

The Pendubot, introduced in [8], is a well-known academic benchmark from the class
of underactuated robotic systems. During the past few decades, these systems have been
studied in many application areas and utilized to demonstrate various concepts in linear
and nonlinear control [4]. They are typically characterized by strongly nonlinear and fast
dynamics and dynamic couplings between the unactuated and actuated state variables;
therefore, they may clearly benefit from a complex control strategy capable of addressing
these phenomena, such as the optimization-based model predictive control (MPC).

The typical control objectives of the Pendubot and pendulum-like underactuated
systems are to swing up and stabilize the unstable unforced equilibrium positions, as well
as possible reference tracking. We refer the interested reader to [9] for an overview of
the various control techniques used to approach them. The usual approach is to use a
strategy of switching between the swing-up and balancing controller; see, e.g., our earlier
work [10] using energy-based control and a linear MPC or the more sophisticated robust
switching strategies of [11,12]. As first shown in [13], it is, however, much more challenging
to propose a unified control strategy that would continuously stabilize the Pendubot in
one of its unforced equilibrium configurations. This problem was addressed in our early
study [14] by using nonlinear MPC (NMPC) to exploit the full nonlinear dynamic model
of the system, and more recently in [15] by using NMPC combined with reinforcement
learning and in [16] by using a motion control approach based on the integrated trajectory.

Nevertheless, the ultimate challenge is to perform rest-to-rest maneuvers of the Pen-
dubot considering not only its three unstable unforced equilibria, but also its forced equi-
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librium configurations, which is not common in traditional control approaches of the linear
and nonlinear class. This problem was addressed in [17], which is so far one of very few
studies providing experimental results. The authors, however, focused on a specific swing-
up strategy to a desired forced equilibrium setpoint—assuming the control to be taken over
by a stabilizing linear-quadratic (LQ) controller once the system enters its region of attrac-
tion. Only very recently, the authors of [18] proposed an observer-based active disturbance
rejection control to perform rest-to-rest maneuvers taking the system far from the unforced
equilibrium position, and also verified it experimentally in a laboratory setting.

In this paper, we propose to accomplish this task by nonlinear model predictive control.
NMPC is currently one of the most powerful tools that can be used to address nonlinear
control problems, which in fact arise in nearly all engineering applications, often due to
nonlinear dynamics. Many predictive control applications are, however, still based on the
use of linear or linearized models, which facilitates the identification and optimization tasks
and leads to a reasonably good behavior in the neighborhood of the respective operating
point. After decades of research, linear MPC is nowadays considered to be a mature
technique for linear but rather slow systems, such as those usually encountered in the
process industry. However, more complex systems such as nonlinear or very fast processes
still call for research in the field of nonlinear MPC. Solving a nonlinear optimal control
problem usually comes with a rapidly increased computational complexity, which, due
to the enormous progress achieved recently in nonlinear optimization, is now possible to
be addressed even in the case of processes with very short sampling times. Nevertheless,
the number of NMPC applications is still limited, in particular for systems with fast
dynamics, which makes this topic very actual and relevant.

To implement NMPC under hard real-time constraints, we use the real-time iteration
(RTI) scheme of [19] implemented in the ACADO toolkit [20], namely its Code Genera-
tion tool [21]. The efficacy of the RTI scheme stems primarily from performing only one
Newton-type sequential quadratic programming (SQP) iteration per sampling instant.
The NMHE-based NMPC scheme exploits the nonlinear dynamics and hence allows the
perforance of the above tasks within a unified control strategy. We remark that a similar
NMHE–NMPC approach has been used lately in [22] for trajectory tracking of a quadro-
copter. In order to demonstrate the performance of the proposed estimator-control scheme,
we revisit our earlier study [23] to account for the above control objective and present
experimental results with a detailed timing analysis and ways to make the implementation
more efficient by employing different solvers and parallelization of particular algorithmic
steps. The control scheme is moreover augmented by a nonlinear estimation scheme,
in particular nonlinear moving horizon estimation (NMHE), to obtain the unmeasured
states, a nonlinear friction model, and a parallelization of particular algorithmic routines to
speed up the online execution.

2. System Model

The Pendubot, schematically illustrated in Figure 1, is a two-link planar robot be-
longing to the class of underactuated systems, as it has less control inputs than degrees of
freedom. The actuator is located in the joint of the first (active) link while the unactuated
joint between the two links allows the free movement of the second (passive) link. Its
mathematical model can be derived by means of the Lagrange formalism:

d
dt

B

B 9qk
Lpq, 9qq ´

B

Bqk
Lpq, 9qq “ τ k “ 1, 2, (1)

with the Lagrange function Lpq, 9qq “ Tpq, 9qq ´ Vpqq defined as the difference between
kinetic energy and potential energy. The generalized coordinates in q“rq1, q2s

T stand for
angular positions of the two links, and τ“rτ1, 0sT denotes the external control force vector.
By applying (1), the resulting equation of motion can be obtained in the following form:

Dpqq:q` Cpq, 9qq 9q` gpqq “ τ, (2)
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where Dpqq is the symmetric positive definite inertia matrix, Cpq, 9qq contains the Coriolis
and centrifugal terms, and gpqq denotes the vector of gravitational terms. For the Pendubot
in Figure 1, the following quantities are obtained:

Dpqq “
„

θ1 ` θ2 ` 2θ3 cos q2 θ2 ` θ3 cos q2
θ2 ` θ3 cos q2 θ2



,

Cpq, 9qq “
„

´θ3 sinpq2q 9q2 ´θ3 sinpq2q 9q2 ´ θ3 sinpq2q 9q1
θ3 sinpq2q 9q1 0



,

gpqq “
„

θ4g cos q1 ` θ5g cospq1 ` q2q

θ5g cospq1 ` q2q



,

with parameters θ1“m1l2
c1 `m2l2

1 ` I1, θ2“m2l2
c2 ` I2, θ3“m2l1lc2, θ4“m1lc1 `m2l1, and

θ5“m2lc2.

x

y

0

gl1

lc1

l 2

l c
2

q1

q2

τ1

m1,I1

m2,I2

active joint

passive joint

center of mass

Figure 1. Schematic diagram of the Pendubot.

Although the friction in the passive joint of a laboratory Pendubot system is typically
negligible, as observed in the experiments presented later in Section 4.2, there is a more
significant friction present in the actuating element. Considering friction only in the active
joint, the friction vector is given by frp 9qq “ r frp 9q1q, 0sT. Based on extensive experimental
testing, we used the following nonlinear dynamic friction model proposed in [24]:

frp 9q1q “ γ1ptanh γ2 9q1 ´ tanh γ3 9q1q ` γ4 tanh γ5 9q1 ` γ6 9q1, (3)

where γi P R, i “ 1, . . . , 6 denote positive constant coefficients. This model is continuously
differentiable and symmetric about the origin. The static friction coefficient is approximated
by the term γ1 ` γ2, whereas the viscous friction is modelled by the term γ6 9q1. The friction
model also includes the Coulomb friction via the term γ4 tanh γ5 9q1 and the Stribeck effect
via the term tanh γ2 9q1 ´ tanh γ3 9q1.

When plugging the friction model (3) into (2), we obtain

:q1 “
1

θ1θ2 ´ θ2
3cos2q2

”

θ2θ3sinq2p 9q1 ` 9q2q
2 ` θ2

3cosq2sinpq2q 9q2
1

´ θ2θ4gcosq1 ` θ3θ5gcosq2cospq1 ` q2q ` θ2τ1 ´ θ2 frp 9q1q
ı

, (4a)

:q2 “
1

θ1θ2´θ2
3cos2q2

”

´θ3pθ2 ` θ3cosq2qsinq2p 9q1` 9q2q
2

´ pθ1 ` θ3cosq2qθ3sinpq2q 9q2
1 ` pθ2 ` θ3cosq2qpθ4gcosq1 ´ τ1q

´ pθ1 ` θ3cosq2qθ5gcospq1 ` q2q ` pθ2 ` θ3cosq2q frp 9q1q
ı

, (4b)
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representing Pendubot’s two nonlinear equations of motion which are used as the starting
point for the design of a nonlinear predictive controller in the following sections. One may
also notice the dynamic coupling between the actuated and unactuated variables.

The Pendubot system is said to have an equilibrium configuration when a control
input and state variables satisfy particular conditions for which the Pendubot is at rest,
i.e., 9q “ 0. Solving the nominal system dynamics in (2) under this condition, the equilibrium
points are given as

θ4 cos q1 ` θ5 cos pq1 ` q2q “ τ1

θ5 cos pq1 ` q2q “ 0.
(5)

It can be shown that as long as input τ1 is constrained to satisfy τ1 ď θ4, the solution of (5)
for the equilibrium states can be obtained as

q1 “ arccos
ˆ

τ1

θ4

˙

and q2 “ k
π

2
´ q1, k “ 1, 3, 5, . . . (6)

For an arbitrary value of q1, there are thus two equilibrium configurations; see Figure 2.

q2

q1

τ1

q1

τ1

q2

Figure 2. Illustration of Pendubot’s equilibrium configurations for an arbitrary value of q1 and
corresponding input τ1.

While (6) holds, there are infinitely many equilibrium configurations pq1, 0, q2, 0q,
in which the Pendubot balances if a constant torque τ1 ‰ 0 is applied. We refer to them as
forced unstable equilibrium configurations. In addition, there are four well-known unforced
equilibrium configurations which are obtained by solving (6) for τ1 “ 0:

1. pq1, 9q1, q2, 9q2q “ p´π
2 , 0, 0, 0q: both actuated and unactuated links are in their low

positions, further denoted as Ó or ‘bottom’ configuration.
2. pq1, 9q1, q2, 9q2q “ p´

π
2 , 0, π, 0q: actuated link is in its low position, and unactuated link

is in its high position, further denoted as Œ or ‘mid’ configuration.
3. pq1, 9q1, q2, 9q2q “ p

π
2 , 0, π, 0q: actuated link is in its high position, and unactuated link is

in its low position, further denoted as Ö.
4. pq1, 9q1, q2, 9q2q “ p

π
2 , 0, 0, 0q: both actuated and unactuated links are in their high posi-

tions, further denoted as Ò or ‘top’ configuration.

Note that the first one represents a stable and the remaining three unstable unforced
equilibrium configurations of the Pendubot. The interest of researchers is usually aimed at
steering the system to and/or balancing it in the mid or top unforced equilibrium position.

In this paper, we are, however, interested in controlling the Pendubot also to its forced
equilibrium configurations and transitioning between them, representing an even more
challenging task.



Actuators 2023, 12, 343 6 of 19

3. Control Design and Implementation

This section introduces the formulation and efficient implementation of the nonlinear
MPC scheme, proposed in view of a unified Pendubot control strategy. Due to several
practical reasons stated further, the NMPC controller is moreover advantageously aug-
mented by a nonlinear moving horizon estimation (NMHE) scheme. This gives rise to a
complementary NMHE-based NMPC framework, jointly exploiting nonlinear optimization
techniques that were outlined in the introduction. For clarity of presentation, we start the
formulation with a brief description of the estimation scheme.

In order to achieve this, let us introduce the state vector xptq “ rx1, x2, x3, x4s
T “

rq1, 9q1, q2, 9q2s
T, lumping together the angular positions and velocities of both links, and the

control input u “ τ1. The equations of motion of System (4) may be then reformulated in
the following state-space form:

9x “ f px, uq, (7a)

y “ hpxq, (7b)

where (7a) and (7b) represent the system’s nonlinear state and output equation, respectively.

3.1. NMHE Problem Formulation

In most practical control applications, the number of available measurements is typi-
cally smaller than the number of states. This is also the case for the Pendubot system, where
the dedicated sensors provide information about the angular positions of both links, leaving
the respective angular velocities to be estimated. Unlike most other nonlinear estimation
approaches, the NMHE allows for the incorporation of constraints into its underlying
least-squares (LSQ) dynamic optimization problem:

min
xp¨q,up¨q

1
2

t0
ż

t0´TE

p}hpxq ´ ȳ}2QE
` }u´ ū}2RE

qdt, (8a)

s.t. 9x “ f px, uq, (8b)

gpx, uq ď 0. (8c)

This nonlinear optimization problem is solved repeatedly at every time instant tk“

kTs (k “ 0, 1, . . . ), where Ts is the sampling time and TE denotes the NMHE estimation
horizon. The moving horizon objective (8a) weighs the deviation between the measurement
model hp¨q and the set of measurement data ȳ. The inclusion of control variables in the
objective accounts for any noise collected during signal transfer, actuator inaccuracies
and unmodeled dynamics. The appropriately chosen matrices QE ľ 0 and RE ą 0 weigh
the LSQ terms. Propagation of the system states is described by equality constraint (8b),
whereas the upper and lower bounds for both states and input can be imposed via (8c).
The output of the estimator is the initial state estimate x̂, which is subsequently fed to the
NMPC controller.

3.2. NMPC Problem Formulation

Now, our NMPC controller is based on repeatedly solving the following optimization
problem in an effort to find an optimal control input function:

u‹p¨q “arg min
up¨q,xp¨q

1
2
p}x´ xref}

2
PC
q

t“t0`TC
`

1
2

t0`TC
ż

t0

p}x´ xref}
2
QC
` }u´ uref}

2
RC
qdt, (9a)

s.t. xpt0q “ x̂pt0q, (9b)
9x “ f px, uq, (9c)

gpx, uq ď 0. (9d)
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Within the LSQ objective (9a), the deviation of the control inputs u and states x from
their reference trajectories, uref

R and xref, respectively, is penalized. The first term evaluates
the final costs raised by the controlled variables at the given end time tk`TC

, with TC
denoting the NMPC control horizon. This so-called cost-to-go or terminal penalty function
is included to guarantee stability. As usual in tracking MPC applications, the norms in
the objective function are weighed with penalty matrices QC, PC ľ 0 and RC ą 0. System
dynamics is embedded into the problem by equality constraint (9c). To obtain the current
state xk, we employ the NMHE scheme implied by initial state constraint (9b). In this light,
the NMPC problem (9) can be viewed as a parametric nonlinear optimal control problem.
Similar to NMHE, state and input constraints are imposed by means of inequality (9d).

Apart from the aforementioned and clearly useful estimation properties, the nonlinear
MHE and MPC problems are in this work treated together since they are almost identical in
the approach and implementation, even though they solve two different yet complementary
problems. Therefore, they are referred to as nearly dual problems of each other. By compari-
son, one may notice the apparent similarity between the two formulations. In the first place,
the weighted deviation between reference and predicted system states in (9a) resembles
the one between the measurements and the measurement function in the objective of (8).
Moreover, the arrival cost approximation of the MHE has its theoretical counterpart in the
terminal penalty term of the MPC, and both represent additional least-squares terms in the
respective optimization problems. At the same time, they are two of the most powerful
state-of-the-art tools that can be used to address nonlinear control and estimation problems.
As evidenced by experimental results in Section 4, the state estimates provided by the
nonlinear moving horizon estimator are robust and reliable, hence further improving the
overall performance of the NMPC controller.

3.3. Real-Time Implementation Approach

Due to the unstable Pendubot dynamics, the NMPC problem (9) should be treated
using a simultaneous transcription method, such as direct multiple shooting or direct collo-
cation [25]. Since we are interested in a small-scale system, multiple shooting discretization
was employed to transform the infinite dimensional optimal control problem (9) into a finite
dimensional optimization problem. The discrete-time formulation on a uniform time grid
t0, . . . , tN is thus obtained by numerical integration of the system dynamics over the time
intervals rtk, tk`1s. The same time grid is used for discretizing the inequality constraints
and the control input which assumes piecewise constant parametrization. The resulting
discretized optimal control problem in fact renders a structured nonlinear programming
(NLP) problem that can be efficiently solved with a sequential quadratic programming
(SQP) method. As its objective consists of a least-squares tracking term, a Gauss–Newton
approximation of the Hessian is utilized, which leads to linearization of the NLP yielding a
quadratic programming (QP) subproblem. Once it is solved, the NLP variables are updated
using the full Newton step.

The ultimate objective of the real-time (RTI) iteration scheme, originally developed
in [19], is to reduce the feedback delay and hence to allow for short control periods. It is
widely known that the computational effort needed to solve the NLP exactly may easily
become intractable, in particular for mechatronic systems with fast-evolving dynamics.
To overcome this issue, the RTI scheme performs only one SQP step with Gauss–Newton
Hessian per sampling time. As a consequence, it produces locally suboptimal solutions.
In order to solve a whole sequence of neighboring NLPs, the so-called shift initialization [25]
is used to initialize the consecutive problems based on previous information. The efficacy
is supported by employing the aforementioned simultaneous NLP parametrization, direct
multiple shooting method with condensing, and a so-called initial value embedding which
constraints the initial value in the NLP to coincide with the estimated state of the system.
In this way, most of the computations can be performed before the current state estimate
becomes available. The computational burden within each iteration can be thus divided
into a computationally more demanding preparation phase and a shorter feedback phase
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solving only a single QP problem. Even though the optimal control problem (9) is solved
only approximately, these bounded approximations of the exact optimal feedback control
are, in fact, iteratively refined during runtime and even contract towards the optimal
feedback control, which moreover allows for a fast reaction to external disturbances [19].

It needs to be emphasized that the efficiency of the RTI scheme is largely due to its
algorithmic division into the two consecutive phases. Let us therefore briefly mention their
key ingredients for the case of NMPC RTI. The preparation phase starts with an optional
shifting of the old solution, and proceeds with the solution of an initial value problem
within the direct multiple shooting procedure, after which model sensitivities are generated.
Next, the objective is evaluated, followed by optional QP condensing. Lastly, a new state
feedback (estimate) is awaited. The considerably shorter feedback phase uses the initial
value embedding for solving the sparse/condensed QP. Once solved, the first element
of the optimal control sequence is immediately sent to the system. The optimized state
trajectory may also be optionally recovered from the condensed QP.

The RTI scheme can also be adapted for solving the NMHE problems, building on
the same ideas as outlined above. The essential difference lies indeed in the embedding of
the current measurement into the underlying QP, which returns the current state estimate
immediately sent to the controller.

In summary, in each control period, a single iteration of the RTI scheme for both
the nonlinear MPC and MHE is performed. Within each of them, the respective NLP is
linearized with direct multiple shooting and Gauss–Newton approximation, resulting in a
block structured QP. This is solved either in its sparse form with a structure-exploiting QP
solver, or in a condensed form using a dense QP solver. The main and most demanding
numerical procedures involve the evaluation of nonlinear functions (objective function,
model, constraints) and algorithmic differentiation, numerical integration, and the solution
of the underlying QPs. Note that particularly the milli- and micro-second applications are
highly dependent on the choice of the most efficient methods for the aforementioned tasks.

4. Experimental Results and Discussion

This section demonstrates the main contribution of this article—the application of
nonlinear MPC and MHE algorithms to an underactuated Pendubot system. To this end,
we use the efficient solution approach, implementing the real-time iteration scheme for
both the controller and the estimator to control a real-world Pendubot system.

4.1. Experimental Setup

The experimental testing was performed using a laboratory Pendubot setup designed
at the authors' workplace, depicted in Figure 3.

As the driving element allowing for rotation of the active Pendubot link, an AC motor
with a Mitsubishi HC-KFS43 servo drive is used. It is actuated by a Mitsubishi MR-J2S-40A
control unit, capable of operation in three basic modes—positioning, speed, and torque
mode, where the latter is effectively used for the Pendubot control. The control unit also
enables to obtain the information about the angular displacement of the motor shaft by
means of an emulated encoder with adjustable resolution, while the velocities of both
links are estimated. The output shaft of the motor also houses a Wittenstein alpha CP060
planetary gearbox used for reduction in revolutions and increase in torque. As stated above,
the angular position of the actuated link is measured via the motor shaft position, which
is obtained by means of the drive’s control unit. However, for the sake of the Pendubot
model, it is also necessary to read the angular position of the unactuated link. To this end,
an incremental rotary encoder OMRON E6B2-C is utilized. The input–output interface is
carried out by means of a Humusoft MF624 data acquisition board.

The proposed NMHE–NMPC scheme is implemented in the form of a custom C code
executed on the embedded industrial computer with CPU clocked at 1.6 GHz, with 12 GB
of RAM, running Ubuntu with a real-time kernel as the operating system.
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servo drive

Pendubot

mini PC

controls

Figure 3. Photograph of the experimental Pendubot setup employing designed by the authors.

In order to numerically treat the two nonlinear optimization problems, we employ the
ACADO Code Generation tool [21] exploiting direct multiple shooting, the aforementioned
real-time iteration scheme and sequential quadratic programming. To solve the underlying
QP subproblems of the SQP-based RTI scheme, we use efficient quadratic programming
solvers, specifically the condensing-based qpOASES parametric solver implementing the
online active set strategy proposed in [26], as well as the qpDUNES solver implementing
a dual Newton strategy [27], which combines the warm-starting capabilities of active-
set methods and the structure-exploiting features of interior-point methods. Both are
used in real-time implementation to assess the timing. In addition to employing a more
efficient QP strategy, the concept of parallelization is exploited as well. In particular, as it
is demonstrated, in case a processor with more cores is available, certain algorithmic
components of particular NMPC and NMHE RTI schemes may be executed in parallel.

By applying the multiple shooting technique, the system dynamics given by the
continuous ODE model (4a) and (4b) are parameterized assuming uniform intervals
of Ts“10 ms. For discretization over the shooting intervals, we use an implicit Gauss–
Legendre Runge–Kutta integrator of the order of two. The estimation horizon is chosen
as TE“0.5 s, i.e., 50 steps, while the prediction horizon is chosen as TC“1 s, i.e., 100 steps.
At each sampling time, the respective nonlinear optimization problems are solved with the
following bounds on states: ´2 Nm ď u ď 2 Nm, ´3π rad ď x1 ď 0π rad. Within these box
constraints, those imposed on the control input stem from internal limitations of the actua-
tor, while constraints on the angular position of the actuated link are given by preventing
the sensor cable from twisting onto the rotor shaft.

The sample time of 10 ms is identified as sufficient to achieve adequate Pendubot
control performance. It is justified based on previous work carried out on the laboratory
system. While a sampling interval as short as possible is preferable for any real-time control
scheme, a lower bound on the sampling time is imposed by the computational complexity
of solving the underlying optimization problems. Regarding horizon TE, it is carefully
selected such that there is no need for the arrival cost term in the NMHE cost function.
Through laboratory experiments, we observe that the estimator performs just as well with
a 50-sample-long window as with an arrival cost.

The proposed NMHE–NMPC scheme implicitly assumes both state and control ref-
erences. For equilibria tracking, these are kept zero except of the references for angular

positions of both links which are changed online, i.e., rcos xref
1 , sin xref

1 , 0, cos xref
2 , sin xref

2 , 0s
T

.
This form of both state and associated reference vector is utilized within the NMPC objective
to ease the reference angle tracking since each of the two links may exhibit in fact infinitely
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many possible angular values (with a 2π period) corresponding to a particular equilibrium
configuration, and uref “ 0. If changing, references are adequately made available to the
NMPC controller’s buffer in order to fully exploit its prediction capabilities. The diagonals
of respective state weighting matrices QC are therefore set appropriately so as to match the
structure of the above state reference vector. The angular velocity weights are, moreover,
always adequately scaled. The specific values of the weights are given separately for each
control scenario in the following sections. Their units are consistent with the variables in
order to yield a dimensionless cost, and are henceforth omitted for brevity.

The terminal weighting matrix PC is set equal to the penalization of the state vector,
while any feasibility issues are avoided by using a sufficiently long horizon TC, rendering
the weighting matrix obtained from the solution of the discrete-time Riccati equation
unnecessary to reliably solve the problem. This choice is justified by practical experience
and by other practical real-time-iteration-based NMPC works.

As it is experimentally demonstrated, the proposed NMPC strategy manages to suc-
cessfully merge the techniques of swing-up, balancing, and tracking within a single unified
and continuous approach. However, there is one tuning parameter that seems useful to be
changed at runtime—the NMPC weights—as they directly affect the controller’s behavior.
Herein, this one-time change of controller weights is used merely at the time of reference
change—namely at the transition between different set-points. We implement this strategy
within the real-time control loop by means of a set of if–then rules switching the state/input
weights according to the position of the Pendubot’s links. For example, we use one set of
weights while the system is “swinging up” (in one swing), and replace these with another
set once the linkage is brought to the vicinity of a desired position, where the controller
likely needs to perform differently due to the nature of the balancing phase. This allows
us direct tuning of the controller’s performance by adapting the penalization of particular
system states within the NMPC objective (9a) according to the current configuration of Pen-
dubot links and required control aggressiveness. This strategy has proven itself essential in
achieving a smoother control performance and transitions between the desired setpoints. It
may resemble the switching strategy between the swing-up and the balancing controllers,
known from traditional Pendubot control approaches; however, apart from the switching
nature, there is no relation between them.

4.2. Tracking of Unstable Unforced Equilibrium Positions

The following presents the experimental results obtained for three investigated con-
trol scenarios aimed at steering the system to its selected unstable unforced equilibrium
configurations.

4.2.1. Assuming a Simple Viscous Friction Model

For a better demonstration of the practical control aspects, we first present our initial
experimental results where we employed the standard viscous friction model that later led
us to employing a more advanced, nonlinear friction model outlined in Section 2, as well as
other improvements in terms of both control and computational performance. Recall that
the viscous friction model alone essentially corresponds to the last term of (3). The value of
its coefficient (with respect to (3) equivalent to γ6) was identified as 0.08.

Starting from the initial, resting Ó stable position, the Pendubot was first commanded
to the mid Œ unforced equilibrium. The relevant NMPC weights were for this purpose
chosen as diagpQC1q “ r2 ¨ 102, 2 ¨ 102, 1, 102, 102, 1s and RC1 “ 1.5 ¨ 102. Once the linkage
was brought into the vicinity of the Œ setpoint, the controller’s performance was adjusted
by switching the weights to diagpQC2q “ r103, 103, 1, 102, 102, 1, 2 ¨ 102s and RC2 “ 2 ¨ 102.
Finally, the NMHE weights were tuned as diagpQEq “ r3, 3s and RE “ 10´3, without any
online changes necessary. The resulting behavior of the system is illustrated in Figure 4.
The acquired angular position measurements are denoted by gray markers (`), together
with their estimates depicted with the solid red lines. The remaining states, i.e., estimated
angular velocities, and the corresponding control input acting on the first link are shown
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as well. Notice that, during the 50 samples prior to the main part of experiment, only the
estimator’s buffer was filled while the NMHE–NMPC routine itself was triggered thereafter.
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Figure 4. Experimental results for the transition from Ó to Œ unforced equilibrium configuration:
red line—state and control input estimates, gray ‘`’ markers—measurements, black line—references.

As can be seen in Figure 5, expectedly, the most challenging setpoint to track was
the Ò position when both Pendubot links simultaneously achieved their upright unstable
equilibria. The controller weights were set as diagpQC1q “ r2 ¨ 102, 2 ¨ 102, 1, 2 ¨ 102, 2 ¨ 102, 1s
and RC1 “ 5. When approaching the setpoint, the swing-up nature of the controller turned
into a balancing one, with respective weights tuned as diagpQC2q “ r102, 102, 1, 102, 102, 1s
and RC2 “ 20. We remark that the previously used NMHE weights were kept identical in
this and all the control scenarios that follow, and thus are henceforth omitted for brevity.

Lastly, Figure 6 illustrates the performance of the NMPC–NMHE scheme in a point-
to-point motion scenario, where the desired setpoints correspond to particular unforced
equilibrium configurations of the system. Specifically, starting off from its slightly disturbed
Ó stable configuration, the Pendubot was shortly afterwards stepwise prompted to achieve
the unstable equilibria in the order of Œ–Ò. This unified swing-up–balancing–tracking task
was finally concluded by performing the so-called swing-down maneuver, i.e., returning
both links into the initial resting position in the shortest time possible. The sets of weights
were adopted from the previous tasks, moreover augmented by similar weights valid for
the swing-down maneuver.
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Figure 5. Experimental results for the transition from Ó to Ò unforced equilibrium configuration.
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Figure 6. Experimental results for the Ó–Œ–Ò–Ó unforced equilibria tracking task.

Let us now review the control performance observed in Figures 4–6. First of all, and
most importantly, the control objective wasfulfilled in all the aforementioned scenarios
while respecting the upper and the lower bounds on both input and state variables. When
appropriately tuned, the controller was able to continuously drive the system towards the
desired position and maintain it unless prompted to change it, i.e., in the case of transition
between the unstable equilibria depicted in Figure 6. One may also notice the prediction
capabilities when a step change in the reference occurs. The reliable MHE estimates fairly
contributed to the robustness of the control scheme, which was observed mainly in the
otherwise critical transitions between setpoints. Similarly important are the smooth velocity
estimates, fed to the controller instead of the rather noisy ones, initially calculated by means
of finite differences. The accurate estimates of all the states are due to the low level of noise
collected during signal transfer. The effects of unmodelled dynamics are reflected in the
slightly inaccurate estimates of the control variable, which is,in fact, of no significance to
the overall performance of the controller.

There was, however, one clearly observable drawback appearing during the stabi-
lization phase, namely the oscillatory behavior of the Pendubot’s actuated link. This also
translated into the motion of the outer, passive link—specifically in the challenging Ò unsta-
ble equilibrium, where the system was clearly most sensitive to any external disturbances,
unmodelled dynamics, etc. This stick-slip behavior is due to the considerable friction
present in the actuated joint. It originates from the nature of the servo drive combined with
the use of a gearbox, and causes the limit-cycle phenomenon visible around the setpoints,
which was obviously not captured by the simple viscous friction model employed so far,
pointing to the requirement of a higher fidelity model of this real-world system.

4.2.2. Assuming the Nonlinear Friction Model and Input Rate Penalization

In the following, we therefore present experimental results obtained when assuming
the nonlinear friction model (3). In (4a) and (4b), one may notice that the inclusion of
the dynamic friction model introduced additional nonlinearities into the already fairly
complex nominal system dynamics. This challenging mathematical model is henceforth
central to both the nonlinear MPC and MHE scheme. It should be noted that since the
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friction coefficients γi are not a priori known, they are chosen to be identified from the
experimentally obtained data and subsequently verified, leading to the following values:
γ1 “ 0.476, γ2 “ 2.098, γ3 “ 0.649, γ4 “ 0.006, γ5 “ 0.727, γ6 “ 0.076. The corresponding
nonlinear friction characteristics are depicted in Figure 7. One may notice that its viscous
dissipation term is very similar to the formerly employed simple viscous friction model,
illustrated by gray color.
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Figure 7. Identified nonlinear friction characteristics compared to the initially employed viscous
friction model shown in gray color.

Practical experience also shows that the controller often used to run into two major
kinds of problems. Firstly, the transitions between setpoints or even the start of a swing-
up used to fail occasionally, as the controller weights, in particular the input ones, were
changed stepwise following the proposed weights' switching strategy. This caused an
unexpected increase or decrease in the aggressiveness of the controller causing it to react
excessively or vice versa. Secondly, a common consequence was an eventual failure of
the solver due to infeasibility or other numerical problems. This was the motivation to
incorporate the control rate variable (given by torque slew-rate), uR, into the model and
problem formulation. The nonlinear ODE model (7) is hence augmented by 9u “ uR to
define a new state vector x “ rq1, 9q1, q2, 9q2, usT and a new input uR, with the corresponding
nonlinear state-space model given as

9x “ f px, uRq, (10a)

y “ hpxq. (10b)

This indeed implies that the decision variable in the NMPC formulation henceforth is
uR. This definition of the system input however stays merely formal as the control action
is further determined by the current fifth state x5 “ u. This fact has to be properly taken
into account within the real-time software implementation, where everything is executed
in the same fashion except for the state u, which is at each time instant selected, adequately
utilized within the NMPC–NMHE scheme, and—once converted to voltage—sent to the
actuator. Nevertheless, for ease and clarity of further presentation, we continue to refer
to u as control input and to uR as control rate. Note also that the NMPC reference vector

has to be changed accordingly, i.e., rcos xref
1 , sin xref

1 , 0, cos xref
2 , sin xref

2 , 0, 0s
T

and uref
R “ 0

(valid for the unforced equilibria tracking). The augmented controller weights read as
diagpQC1q “ r2 ¨ 102, 2 ¨ 102, 1, 2 ¨ 102, 2 ¨ 102, 1, 1.5s and RC1 “ 0.75, for the swing-up part
of the experiment, and diagpQC2q “ r2 ¨ 103, 2 ¨ 103, 1, 102, 102, 1, 8 ¨ 102s and RC2 “ 0 for
stabilization in the unstable unforced Œ equilibrium.
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The following experimental results were obtained after incorporating the nonlinear
dynamic friction model (3) and the control rate uR into the system description and thus
the NMPC–NMHE problem formulation, while assuming the identical control scenarios
as investigated in Figures 4–6. In particular, Figures 8–10 present the experimental re-
sults obtained for the task of controlling the system to the Œ, Ò, and multiple unforced
equilibria, respectively.
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[N
m

]

u
R

[N
m

s−1
]

−π
6

−π
2

− 5
6 π −2π

0

2π

−π

−π
2

0

π
2

−5π

0

5π

−2

0

2

−50

0

50

Figure 8. Experimental results for the transition from Ó to Œ unforced equilibrium configuration:
red line—state and control input estimates, gray ‘`’ markers—measurements, black line—references.
The thick light gray curves in the background stand for the same control scenario assuming the
simple viscous friction model cf. Figure 4). The same holds for Figures 9 and 10.

The last graph in each figure corresponds to the control (torque) rate calculated by the
NMPC controller. In addition, note that each graph, except the last one, is always appended
in the background by the evolution of the respective variable taken from the same control
experiment, yet assuming the simple viscous friction model, allowing visual inspection of
the effect of the nonlinear friction model. Clearly, its incorporation into the system dynamics
greatly contributes to the control performance in all shown control scenarios, while the
limit-cycle oscillation is largely suppressed, leading to a fairly improved performance of
the controlled system. This is naturally of the utmost importance in precise positioning
applications, as demonstrated here by Pendubot control.
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Figure 9. Experimental results for the transition from Ó to Ò unforced equilibrium configuration.
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Figure 10. Experimental results for the Ó–Œ–Ò–Ó unforced equilibria tracking task.

Ultimately, the proposed real-time NMHE-based NMPC strategy building upon the
full nonlinear friction-exploiting model allows the Pendubot the achievement of any of its
unforced equilibrium configurations, and moreover smooth transfer between them while
respecting the imposed input and state constraints. At this point, it should be noted that
the concept of control rate penalization accomplishes its objective as well. This may be
observed in Figures 4 and 6, namely in terms of the control action, which is adequately
tuned to allow for the smooth transitions between setpoints. In particular, one may observe
that it makes the input less aggressive and thereby avoids hitting its limits. The estimator
plays an important role as well. Its moving horizon concept helps it to deliver reliable and
accurate estimates, further used by the controller to determine adequate control action.
In summary, the present estimation-control scheme demonstrates its excellent control
performance in all investigated scenarios, including the ones not shown here. This makes it
a powerful strategy that proves its potential for use in fast mechatronic applications.

4.3. Tracking of Forced Equilibrium Positions

Based on the excellent controller performance presented in Section 4.2.2, we can
proceed to the task of point-to-point transition between multiple reference equilibrium
configurations including the forced ones. Starting and finishing in the downward resting
position, the control scenario was to sequentially achieve and transfer between selected
setpoints in 5 s intervals. Reference vectors had to be set and switched accordingly, includ-
ing one stable (Ó) and two main unstable (Œ,Ò) unforced equilibrium positions, and, in
addition, four different forced equilibrium configuration positions (ÖÒ,ÔÒ,ÕÒ,ŒÒ) with
the angular deflection of the active link from the vertical axis chosen as ˘π{4 in all four of
them. Note that in the latter case, the nonzero reference values of the control input had to
be set as well in order to effectively compensate for the gravity phenomena. Following the
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mathematical description of the system, it was found that uref,i“˘0.52 Nm with polarity
depending on the respective forced equilibrium configuration of the Pendubot.

As evidenced by the system’s behavior illustrated in Figure 11, when tuned properly,
the controller is able to perform the swinging maneuvers and balancing in the reference
positions smoothly and precisely. Notice that the depicted 5 s time windows are shifted
1 s backwards due to the predictive capability of the controller (TC“1 s), which allows it
anticipation of the changes in reference and thus reaction in advance. Note also that any
other controllable forced equilibrium setpoints may be assumed in a similar fashion.
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Figure 11. Experimental-data-based snapshots for the real-time control task of point-to-point tracking
the forced and unforced equilibrium configurations of the Pendubot, depicted in eight consecutive
sequences corresponding to particular setpoints in the order of Ó–Œ–ÖÒ–ÔÒ–Ò–ÕÒ–ŒÒ–Œ–Ó.
The light gray and black colored snapshots depict configurations of the laboratory system at the
beginning and at the end of given time frame, respectively. Video of one such experiment can be
viewed at [28].

4.4. Evaluation of Computational Complexity

To assess the computational complexity of this implementation, Table 1 reports exe-
cution times of its main algorithmic ingredients, relating to the experiment in Figure 11.
In particular, it treats the iterations of the RTI scheme for both NMHE and NMPC problem
separately and splits the computational effort of each into preparation phase (PP) and
a feedback/estimation phase (FP/EP). As outlined earlier, for solving these nonlinear
optimization problems with SQP, we used the condensing-based qpOASES solver as well
as the sparsity-exploiting qpDUNES solver. Both approaches clearly evidence that the RTI
execution time is dominated by the PP, where most of the effort is spent on linearization
of the NLP. The FP and EP are devoted to the solution of a single dense or sparse QP
subproblem. The timing results indicate lower per-iteration complexity of the sparse QP
strategy that scales better with the problem size and is therefore better suited for control
problems requiring longer horizons, which is also the case here.

As further evidenced in Table 1, the computational performance can be also improved
by exploiting the parallelization of particular routines. While the EP and FP steps need to
be executed sequentially, given the multicore processor, the NMHE PP can be triggered
simultaneously with the NMPC FP. This idea is also illustrated in Figure 12. After a new
measurement ȳpkq is ready at time t “ 4.53 s, the NMHE EP is triggered. Once the state
estimate x̂0 becomes available, it is processed in the NMPC FP to determine the control
action u‹0 , without waiting for the NMHE PP to finish.
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Table 1. Real-time performance in terms of execution times (ms) of the NMHE–NMPC iterations †.

Execution Mode Sequential Parallelized

(See Figure 12) NMHE NMPC

T
ET

NMHE NMPC

T
ET

Solver EP PP RTI FP PP RTI EP PP RTI FP PP RTI

qpOASES tavg 0.148 1.259 1.407 0.923 4.418 5.339 6.750 0.163 1.301 1.464 0.908 4.446 5.354 5.591
tmax 0.339 1.902 2.071 3.010 6.519 7.540 9.017 0.455 1.763 2.111 2.758 5.110 7.257 7.462

qpDUNES tavg 0.205 1.029 1.254 0.446 2.119 2.567 3.751 0.202 0.983 1.180 0.501 2.144 2.643 2.877
tmax 1.109 1.345 2.048 0.833 2.711 3.200 4.968 0.345 1.582 1.904 0.739 3.557 4.338 4.630

† tavg / tmax—average / maximum computation time over the entire experimental run depicted in Figure 11,
TET—total execution time of the NMHE-NMPC iterations, EP—estimation phase, FP—feedback phase,
PP—preparation phase, RTI—full real-time iteration.
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Figure 12. Illustration of timing performance for the NMHE-NMPC real-time iteration scheme when
executed in the standard—sequential (upper graph) and the parallelized (lower graph) configuration,
taken during theÖÒ–ÔÒ transition of the Pendubot.

Note that the achieved computation times still leave enough headroom for other
potential procedures and auxiliary tasks, eventually allowing the increase in the NMPC
and NMHE horizon lengths or the number of iterations of the QP solver. This also suggests
that by employing more efficient state-of-the-art software tools, such as acados [29], the
very recent successor of ACADO Toolkit, the proposed NMHE–NMPC scheme may be
deployed even on much less powerful hardware, such as embedded microcontrollers.
In terms of real-time software implementation for the Pendubot control, the above concept
of closed-loop parallelization was carried out by means of the openMP API.

The presented experimental results obtained within various Pendubot control sce-
narios clearly validate the theoretical assumptions and objectives, and demonstrate the
applicability of real-time nonlinear model predictive control not only for underactuated
mechanical systems, but for fast mechatronic systems in general. Fast sampling is not
only necessary to capture the system dynamics, but it also allows for a fast reaction to
external disturbances. The control scheme is moreover augmented by a nonlinear moving
horizon observer, exploiting essentially the same concepts from the field of numerical
optimization. In fact, the entire NMHE-based NMPC framework is shown to perform very
well, with feasible execution times well below the 10 ms sampling time. With regards to
the main objective, the proposed scheme enables the Pendubot to promptly achieve the
desired unstable equilibria, and to smoothly transition between them upon request.

5. Conclusions

The paper presented a practical implementation of the NMHE–NMPC framework for
the real-time control of the Pendubot system. Within a unified, nonlinear optimization-
based control strategy, it enables to swing up, balance, and transition this underactuated
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robot between multiple unstable configurations, including not only the typically assumed
unforced equilibria, but also, and mainly, the most challenging—forced equilibrium config-
urations.

In addition, in order to improve the model fidelity and hence control performance,
an advanced nonlinear dynamic friction model was considered. The control course was
also smoothened by incorporating the input rate into the control scheme and its appropriate
penalization. Apart from control performance, an effort was also put into the improvement
of computational efficiency by replacing the dense QP solver with a sparse one, as well as
by introducing parallelization into the proposed NMHE–NMPC real-time-iteration-based
framework. Its performance and computational efficiency were experimentally tested.

Although the intended objectives of this paper were accomplished, there are still
promising directions for further research, namely in terms of computational complex-
ity. This issue becomes particularly challenging when targeting low-cost embedded
microcontroller-based computing platforms, which is undeniably a massive trend in mod-
ern control applications, and therefore also subject to ongoing research of the authors.
For appropriately cast NMPC problems, their computational requirements may be reduced
even more than shown herein, e.g., by employing structure-exploiting interior-point QP
solvers. Another most recent way towards very fast NMPC implementations suggests
combining the real-time iteration scheme with first-order methods, which have already
attracted much attention for MPC applications on embedded hardware. In addition,
the widely known field programmable gate arrays (FPGAs) also offer a lot of room for
very efficient and customized implementations, largely exploiting parallelization. It would
also be interesting to devise a stabilizing extension for the fast auto-generated NMPC
schemes presented in this work. Despite the fact that such attempts have not been proven
to be useful in other related works, such an extension would surely find its theoretical
justification or use in control scenarios with shorter horizon lengths. Despite the nominal
stability under realistic assumptions shown in [30], in general. it constitutes a difficult
problem as the RTI scheme does not solve the underlying problems exactly, but rather
approximately, hence the classical NMPC stability theory is not trivial to be extended to
this scheme, but it may be also tackled as a part of our future work.
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