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Abstract: The suspension gap of the electromagnetic suspension maglev train is around 8 mm. In
practice, it is found that the system gap fluctuations are amplified due to the inner coupling of
the suspension module system in the maglev train. In addition, maglev trains are affected by load
disturbances and parameter perturbations during operation. These uncertainties reduce the ride
comfort. Therefore, it is necessary to propose a novel control strategy to suppress inner coupling
while reducing the influence of uncertainties on the system. In this paper, a control strategy based
on feedback linearization and extended state observer (ESO) is proposed to address this challenge.
Firstly, the suspension module system model is established with parameter uncertainties and external
disturbances. Additionally, the inner coupling of the suspension module is represented in this
model. Subsequently, the feedback linearization method based on differential geometry theory is
applied to reduce the effect of inner coupling. Meanwhile, the system uncertainties are transformed
into equivalent disturbances by this method. Afterward, a linear ESO is designed to estimate the
equivalent disturbances. Finally, a state feedback controller is used to achieve stable suspension
and compensate for the disturbances. Simulation and experimental results show that the proposed
decoupled control strategy significantly suppresses the influence of inner coupling and uncertainties
on the system compared with the traditional PID control strategy.

Keywords: maglev train; suspension module control; feedback linearization; decoupling control;
extended state observer

1. Introduction

Maglev trains has gradually attracted extensive attention for advantages, which in-
clude low noise, low energy consumption, high climbing capacity, and environmental
friendliness [1,2]. Over the past 50 years, maglev train technology has undergone signifi-
cant development and has been commercially implemented in several countries. Notewor-
thy examples include the Transrapid in Germany, High Speed Surface Transport (HSST) in
Japan, Urban Transit Maglev (UTM) in Korea, and Beijing S1 line in China [3–7].

Figure 1a shows the lateral view of an electromagnetic suspension (EMS) maglev
train. The EMS maglev train maintains the suspension gap at 7–10 mm, relying on the
electromagnetic attraction generated by the suspension module. In recent years, many
studies have been conducted to improve the system performance [8–10]. However, most of
them center around single-suspension-point models and neglect the holistic nature of the
suspension module. Figure 1b shows the structure of a suspension module. A suspension
module consists of two sets of electromagnets, two sets of sensors, and brackets. The
electromagnets are rigidly connected by brackets, and each set of electromagnet coils is
connected in series to form a suspension point. The track of the maglev train is segmented.
Each section of the track is connected by a track joint. Due to factors such as foundation
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settlement, temperature changes, and track installation errors, there may be a height
difference at the track joint, which is called track step [11]. The suspension points undergo
significant fluctuation while passing through the track steps.

Figure 1. Lateral view of the medium-low-speed maglev train. (a) A maglev train running on the
track; (b) structure of the suspension module.

Figure 2 shows the effect of track steps on the suspension module. It can be observed
that fluctuations in one suspension point affect the suspension gap of another suspension
point. If the difference of the track steps is too high, the suspended module may vibrate
or even hit the track, which will reduce the safety of the train. Scholars have applied
active suspension systems to magnetic levitation systems to reduce the influence of track
irregularities on ride comfort [12,13]. On the other hand, several scholars have tackled this
challenge by designing appropriate suspension control algorithms.

Figure 2. The gap curves of the suspension module through the track joint.

The suspension control system for the suspension module is a two-input and two-
output (TITO) system [14]. Various methods have been explored for decoupling multiple-
input multiple-output (MIMO) systems, including inverse Nyquist array [15], differential
geometric approach [16], sliding mode control [17], and neural networks [18]. Some of
these methods have been applied to decouple the suspension module system. Liu et al. [19]
proposed a decoupling control algorithm based on feedback linearization to decouple
the suspension module system and achieve the desired performance of decoupling and
suspension. Afterwards, some scholars conducted further research based on this study.
Leng et al. [20] proposed a new equivalent gap calculation method based on the geometrical
relationship between the suspension module and the track when passing through the joints
and verified the performance of the method in experiments. He et al. [21] proposed a
decoupling controller based on linear quadratic regulator (LQR) theory and designed
disturbance nonlinear observers to improve the system robustness. The experimental
results illustrate that the method has the desired decoupling performance. However,
the control performance of the system when perturbed is not experimentally verified. In
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addition, decoupling can also be achieved by treating the coupling effects of the suspension
module as perturbations and compensating for them. Sun et al. [22] proposed a control
method that combines a backstepping controller and an ESO. The external perturbations
at the suspension point are estimated by the ESO and compensated in the backstepping
controller. Numerical simulations have demonstrated the effectiveness of this method.

To further improve the performance of the maglev train, it is crucial to consider the im-
pact of load variations and parameter perturbations in the system. When the train operates
on curved tracks, the balance between the centrifugal force and electromagnetic force must
be maintained. On the other hand, the increase or decrease in passengers directly affects the
load of the train. Excessive variations in external loads may degrade control performance,
and even affect driving safety of the train. In addition, there are un-modeled dynam-
ics and parameter perturbations in the suspension system so that it is difficult to model
precisely [23]. In order to tackle these challenges, several research studies have been
conducted. Chen et al. [24] constructed a T-S fuzzy model that considered parameter
uncertainties and external disturbances. The fuzzy adaptive control method was used to
perform suspension control. In addition, a particle swarm optimization (PSO) algorithm is
applied to further suppress the effect of parameter uncertainties. Sun et al. [25] designed a
robust control law based on the nonlinear model. This method avoids approximation errors
caused by linearization. A modified backstepping sliding mode controller is proposed
to suppress the effect of disturbances on the system. Ni et al. [26] constructed a distur-
bance observer-based controller based on an improved nonlinear mathematical model
of electromagnetic force. The effectiveness of the proposed method has been tested by
simulations and experiments. Refs. [27,28] proposed disturbance observer-based control
methods to effectively increase the system stability. Sun et al. [29] proposed an adaptive
robust controller. The influence of time delays and disturbances on the system is effectively
suppressed. In addition, several scholars have applied artificial intelligence algorithms
to tackle the challenge, such as neural networks [30–32], optimization techniques [33,34],
genetic algorithms [35], and so on.

In this paper, the suspension module system model considering both parameter uncer-
tainties and external disturbances is constructed. A state feedback decoupling controller
based on feedback linearization is used to reduce the effect of inner coupling between
suspension points. Furthermore, to eliminate the dependence of the feedback linearization
control method on the exact parameters of the system and enhance system robustness,
the model errors and external uncertainties are equivalent to the external inputs of the
subsystems. Then, a mature state feedback controller is designed to achieve stable suspen-
sion. Afterward, an ESO is employed to estimate the equivalent uncertainties of the system.
Finally, the equivalent uncertainties are compensated in the controller based on the ESO
observations. Simulations and experimental results demonstrate that the proposed strategy
can effectively suppress the effect of inner coupling and uncertainties on the system.

The rest of the paper is organized as follows. Section 2 provides the mathematical
modeling process of the suspension module system. Section 3 presents the decoupling
control strategy based on ESO. Section 4 shows the results and analysis of the simulations
and experiments. Section 5 gives the conclusions of this paper.

2. Modeling of the Module Suspension System

To construct the mathematical model of the suspension module, certain assumptions
are made about the structure diagram shown in Figure 1, as follows:

1. Magnetic flux leakage of the winding and the magnetoresistance of the iron core and
guide are ignored.

2. There is no misalignment between the pole surface and the orbit of the electromagnet.
3. The mass distribution of the suspension module is uniform.

According to the above assumptions, the force diagram of the suspension module is
shown in Figure 3.
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Figure 3. The force diagram of the suspension module.

F1 and F2 are the electromagnetic forces on the two suspension points; δ1 and δ2 are
the gaps between the two suspension points and the track; d1 and d2 are the gaps measured
by the sensors; d is the gap between the center of the suspension module and the track; l
is the length of an electromagnet; FN1 and FN2 are the forces of air springs acting on both
sides of the suspension module; mg is the gravity of the suspension module.

The pitch angle θ is less than 0.5◦ during normal operation. It can be assumed that
θ ≈ sin θ ≈ tan θ. According to the geometric relationship, the following equation is
satisfied between d1, d2 and δ1, δ2, θ: 

δ1 =
3d1 + d2

4

δ2 =
d1 + 3d2

4

θ =
d1 − d2

4l

(1)

The motion of the suspension module consists of translational motion along the center
of mass and rotation around the center of mass. Forces in the downward direction and
counterclockwise direction are defined as positive. According to Newton’s law, the dynamic
equations of the suspension system are as follows:{

md̈=mg− F1 − F2 + FN1 + FN2 + ∆FN1 + ∆FN2

Jθ̈=−F1cosθ · l + 2FN1cosθ · l + F2cosθ · l − 2FN2cosθ · l
(2)

where ∆FN1 and ∆FN2 are load disturbances of two suspension points; J is the rotational iner-
tia of the suspension module around the center of mass. Equation (2) can be approximated
as Equation (3) since cosθ ≈ 1.{

md̈=mg− F1 − F2 + FN1 + FN2 + ∆FN1 + ∆FN2

Jθ̈=−F1 · l + 2FN1 · l + F2 · l − 2FN2 · l + ∆Fe
(3)

where ∆Fe is the approximation error.
The formula for calculating the electromagnetic force is as follows:

Fj =
µ0N2 A

4

i2j
δ2

j
+ ∆Fj = K

i2j
δ2

j
+ ∆Fj, j = 1, 2 (4)

where i1, i2 are the coil current of the two suspension points; N is number of coil turns of
each electromagnet; A is the effective area of each magnet pole; g is the acceleration of
gravity; µ0 is the permeability of a vacuum; and ∆F1, ∆F2 denote the model error.

The relationship between the current i and the voltage u of the electromagnets is
as follows:

i̇j =
δj

2K
(
uj − Rij

)
+

ij

δj
δ̇j + upj, j = 1, 2 (5)

where up1, up2 denote the perturbations in the current loop; R is the resistance of a set
of electromagnets.



Actuators 2023, 12, 342 5 of 17

In summary, selecting X = [x1, x2, x3, x4, x5, x6]
T =

[
d1, ḋ1, i1, d2, ḋ2, i2

]T as the state
vector, the state-space equations of the suspension module can be obtained as follows:

ẋ1 = x2

ẋ2 =−
40
m

Kx2
3

(3x1+x4)
2 +

8
m

Kx2
6

(x1+3x4)
2 +

2
m
(2FN1−FN2 )+g+ fp1

ẋ3 =
3x1+x4

8K
u1−R

3x1+x4
8K

x3+
3x2+x5
3x1+x4

x3+up1

ẋ4 = x5

ẋ5 =
8
m

Kx2
3

(3x1+x4)
2−

40
m

Kx2
6

(x1+3x4)
2 +

2
m
(2FN2−FN1 )+g+ fp2

ẋ6 =
x1+3x4

8K
u2−R

x1+3x4
8K

x6+
x2+3x5
x1+3x4

x6+up2

(6)

where fp1 and fp2 are the uncertainties, which are as follows:
fp1 = − 5

2m
∆F1 +

1
2m

∆F2 +
4
m

∆FN1 −
2
m

∆FN2 +
1

6ml
∆Fe

fp2 =
1

2m
∆F1 −

5
2m

∆F2 −
2
m

∆FN1 +
4
m

∆FN2 −
1

6ml
∆Fe

3. Decoupling Controller Design
3.1. Feedback Decoupling

According to Equation (6), the standard state-space equation of the suspension
module is as follows: {

ẋ = f (x) + g(x)u + p

y = h(x)
(7)

where x is the state vector; u is the input vector; p is the uncertainties of the system; y is
the output vector; f , g, and h are the functions about state vector x. The expressions are
as follows:

f (x) =



x2

−
40Kx2

3

m(3x1+x4)
2 +

8Kx2
6

m(x1+3x4)
2 +

2
m
(2FN1−FN2 )+g

−R
3x1+x4

8K
x3+

3x2+x5
3x1+x4

x3

x5

8Kx2
3

m(3x1+x4)
2−

40Kx2
6

m(x1+3x4)
2 +

2
m
(2FN2−FN1 )+g

−R
x1+3x4

8K
x6+

x2+3x5
x1+3x4

x6



g(x) =



0 0
0 0

3x1 + x4

8K
0

0 0
0 0

0
x1 + 3x4

8K


, p =



0
fp1
up1
0

fp2
up2



u =

[
u1
u2

]
, h(x) =

[
h1(x)
h2(x)

]
=

[
x1
x4

]
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According to the differential geometry theory, it can be calculated as follows:

L0
f h(x) =

[
x1
x4

]
, L1

f h(x) =
[

x2
x5

]
, L2

f h(x) =
[

f2(x)
f5(x)

]
,

LgL0
f h(x) = LgL1

f h(x) = 0, LpL0
f h(x) = 0,

LpL1
f h(x) =

[
fp1
fp2

]
, d
(

LpL1
f h(x)

)
/dt =

[
ḟp1
ḟp2

]
,

L3
f h(x) =


10Rx2

3

m(3x1 + x4)
2 −

2Rx2
6

m(x1 + 3x4)
2

−
2Rx2

3

m(3x1 + x4)
2 +

10Rx2
6

m(x1 + 3x4)
2

,

LgL2
f h(x) =

−
10x3

m(3x1 + x4)

2x3

m(3x1 + x4)
2x6

m(x1 + 3x4)
− 10x6

m(x1 + 3x4)

,

LpL2
f h(x) =

 −
80Kx3up1

m(3x1 + x4)
2 +

16Kx6up2

m(x1 + 3x4)
2

16Kx3up1

m(3x1 + x4)
2 −

80Kx6up2

m(x1 + 3x4)
2

.

where L0
f h(x) is denoted as the Lie derivative of the function h(x) along the vector

field f (x).
The following equation can be derived from the above calculation results:

LgL0
f h(x) = 0

LgL1
f h(x) = 0

LgL2
f h(x) 6= 0

, (j = 1, 2) (8)

According to the discriminant condition of relative order, the relative order vector of the
module suspension system is

[
r1(x0) r2(x0)

]
=
[
3 3

]
, which satisfies r1(x0) + r2(x0) = 6.

Therefore, the model of the suspension system satisfies the linearization condition.
Defining d3y/dt3 = v, we can obtain the following:

v = v0 + vp

v0 = L3
f h(x) + LgL2

f h(x) · u

vp = LpL2
f h(x) + d

(
LpL f h(x)

)
/dt

(9)

where v0 is output of the controller; vp denotes the equivalent uncertainty.
Therefore, the feedback control law of the suspension module is as follows:

u =
(

LgL2
f h(x)

)−1(
v0 − L3

f h(x)
)

=

 Rx3 −m
5v10 + v20

48
3x1 + x4

x3

Rx6 −m
v10 + 5v20

48
x1 + 3x4

x6

 (10)

The original system is transformed into two third-order pseudo-linear systems under
the action of the feedback control law. The coordinate transformation of the suspension
module is shown in Figure 4.
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Figure 4. Coordinate transformation of the suspension module.

3.2. State Feedback Control

It can be seen from Figure 4 that the system has been decoupled into two independent
subsystems. Therefore, controllers v10, v20 can be designed. Firstly, neglecting the system
uncertainty, controller v10 is designed as an example. The state space of the first third-order
pseudo-linear system is represented as follows:{

ż = Az + Bv10

y1 = Cz
(11)

where

z=

 x1
x2
ẋ2

, A=

0 1 0
0 0 1
0 0 0

, B=

 0
0
1

, C=

 1
0
0

T

The system controllability matrix can be derived as follows:

M =
[
B AB A2B

]
=

0 0 1
0 1 0
1 0 0

 (12)

The rank of the controllability matrix of Equation (12) is as follows:

rank(M) = 3 (13)

According to the rank criterion of system controllability, the system (11) is completely
controllable. Therefore, the controller can be designed by the pole placement method.

Let the feedback control law be as follows:

v10 = −k1(z1 − d10)− k2z2 − k3z3 = k1d10 − K1z (14)

where K1 =
[
k1 k2 k3

]
are the coefficients of the feedback control law; d10 is the expected

gap value at point A.
According to the linear system theory, the characteristic polynomial of the closed-loop

system is obtained by substituting (14) into (11).

T(s) = det[sI − (A− BK1)]

= s3 + k3s2 + k2s + k1
(15)

The characteristic equation of (11) is described as follows:

s3 + k3s2 + k2s + k1 = 0 (16)

According to the actual requirements of the suspension system, the dynamic perfor-
mance indicators of the system are set as follows:

• System overshoot: σ ≤ 5%;
• System peak time: tp ≤ 0.1s.
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The formulas for overshoot and peak time are shown as follows: σ = e−ξπ/
√

1−ξ2 ≤ 5%

tp = π/
(

ωn
√

1− ξ2
)
≤ 0.1s

(17)

The solution of Equation (17) is ωn ≥ 43.4 rad/s and ξ ≥ 0.69. Let ξ = 0.707,
ωn = 57 rad/s, so the system’s dominant poles can be taken as follows:

λ1,2 = −ξωn ±ωn

√
ξ2 − 1

= −40± 40j
(18)

In general, the distance between the non-dominant poles and the imaginary axis is
5 to 10 times that of the dominant poles. Therefore, the third pole can be set as λ3 = −400.

According to the system poles, the characteristic equation can be obtained as follows:

s3 + 480s2 + 64, 000s + 1, 280, 000 = 0 (19)

Comparing Equations (16) and (19), the coefficients of the feedback control law are
calculated as follows:

K1 =
[
k1 k2 k3

]
=
[
1, 280, 000 64, 000 480

]
(20)

The same pole configuration is performed for point B. The feedback linearization (FL)
control law is as follows:{

v10 = −1, 280, 000(z1 − d10)− 64, 000z2 − 480z3

v20 = −1, 280, 000(z4 − d20)− 64, 000z5 − 480z6
(21)

where
[
z4 z5 z6

]
=
[
x4 x5 ẋ5

]
; d20 is the epected gap value at point B.

3.3. Linear Extended State Observer

Considering the system uncertainties, the state space of the first subsystem can also be
written as follows: 

ż1 = z2

ż2 = z3

ż3 = p(z, t) + v0

y = z1

(22)

where p(z, t) represents the equivalent disturbance (v1p or v2p), and v0 denotes the output
of the controller (v10 or v20).

Based on the concept of linear ESO, the original system Equation (22) can be extended
as Equation (23) by expanding p(z, t) into a new state variable z4.

ż1 = z2

ż2 = z3

ż3 = z4 + v0

ż4 = ṗ(t)
y = z1

(23)
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The linear ESO can be designed as Equation (24):
˙̂z1 = ẑ2 − β1e1
˙̂z2 = ẑ3 − β2e1
˙̂z3 = ẑ4 − β3e1 + v0

˙̂z4 = −β4e1

(24)

where ẑ =
[
ẑ1 ẑ2 ẑ3 ẑ4

]T is the estimated state of z =
[
z1 z2 z3 z4

]T ; β1, β2, β3,
and β4 are the gain of ESO; e1 = ẑ1 − y is the observation error of z1.

We define estimation errors e2 = ẑ2 − z2, e3 = ẑ3 − z3, e4 = ẑ4 − z4. The dynamics of
the errors can be represented as follows:

ė1 = e2 − β1e1

ė2 = e3 − β2e1

ė3 = e4 − β3e1

ė4 = − ṗ(t)− β4e1

(25)

Equation (25) can be described as follows:

ė =


−β1 1 0 0
−β2 0 1 0
−β3 0 0 1
−β4 0 0 0

e +


0
0
0
−1

 ṗ(t) (26)

where

e =


e1
e2
e3
e4

, Ae =


−β1 1 0 0
−β2 0 1 0
−β3 0 0 1
−β4 0 0 0


According to the linear system theory, it is known that the system characteristic

polynomial of Equation (23) is as follows:

T(s) = det[sI − Ae]

= s4 + β1s3 + β2s2 + β3s + β4
(27)

The characteristic equation is described as follows:

s4 + β1s3 + β2s2 + β3s + β4 = 0 (28)

In order to facilitate parameter tuning, the polynomial of ESO can be given as (s + ωc)
4.

ωc denotes the bandwidth of ESO, which is the only parameter that needs to be tuned.
Comparing Equation (28) and (s + ωc)

4 = 0, the gain of ESO can be designed as follows:
β1 = 4ωc

β2 = 6ω2
c

β3 = 4ω3
c

β4 = ω4
c

(29)

Compensation is performed in the controller based on the observed disturbances. The
feedback linearization with ESO (FLESO) control law is as follows:{

v10 = −1, 280, 000(z1−d10)−64, 000z2−480z3− p̂1

v20 = −1, 280, 000(z4−d20)−64, 000z5−480z6− p̂2
(30)
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The block diagram of FLESO control for the suspension module system is shown
in Figure 5.

Figure 5. The block diagram of FLESO control.

4. Simulation and Experimental Results

The effectiveness of the designed FLESO control strategy is evaluated through com-
parative simulation and experimental comparisons with the conventional PID controller
on the full-size bogie experimental platform, as shown in Figure 6. The simulation and
experimental parameters [21] of the suspension module control system are shown in Table 1.
The controller parameters are shown in Table 2.

Figure 6. The full-size bogie experimental platform.

Table 1. Parameters of the suspension module control system.

Symbol Description Value Unit

m Mass of a suspension module 900 kg

FN1 , FN2 Forces from air springs 12,000 N

A The effective area of each magnet pole 0.0186 m2

l Length of an electromagnet 0.65 m

µ0 Permeability of vacuum 4π × 10−7 H/m

R Coil resistance of a set of electromagnets 1 Ω

g Acceleration of gravity 9.8 m/s2

δ0 Nominal air gap at the operation point 8 mm

N Number of coil turns of each electromagnet 320 –
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Table 2. Parameters of PID controller and ESO.

Symbol Description Value Unit

kp The proportional parameter of PID controller 4500 –

ki The integral parameter of PID controller 4 –

kd The differential parameter of PID controller 950 –

ωc The bandwidth of ESO 5000 –

4.1. Numerical Simulations

The suspension module is initially suspended at 8 mm. Subsequently, the following
three disturbances are applied to the system under different controllers.

Case 1: Trajectory tracking;
Case 2: Suspension with periodic perturbation;
Case 3: Suspension with load disturbance.
The simulation parameters are shown in Tables 1 and 2.

4.1.1. Case 1: Trajectory Tracking

Point A is subjected to a 1 mm square wave disturbance lasting 1 s. The simulation
results of the PID controller and the FLESO controller are shown in Figures 7 and 8.

Figure 7. Simulation results: gap response of point A.

Figure 8. Simulation results: gap response of point B.

From the above simulation results in Figures 7 and 8, it can be learned that when using
the PID controller, the changes in the gap at point A affect the gap at point B. However, the
FLESO controller effectively maintains the stability of point B when point A experiences gap
fluctuations under the same conditions. It shows the satisfying decoupling performance
achieved by the designed FLESO controller.
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4.1.2. Case 2: Suspension with Periodic Perturbation

Assume that the system is disturbed by the following periodic perturbations consisting
of model error and external disturbances:{

fp1(t) = fp2(t) = 5(sin 80πt + 2 cos 70πt)

up1(t) = up2(t) = 60 cos(100πt)
(31)

The system is transformed into two identical pseudo-linear systems after decoupling,
as can be seen in Figure 4, since only the curves of point A are presented. Figure 9 shows
the observed performance of ESO for equivalent disturbances. According to Equation (9),
the equivalent disturbance at point A can be obtained as follows:

vp1 = LpL2
f h(x) + d

(
LpL f h(x)

)
/dt

= − 80Kx3

m(3x1 + x4)
2 up1(t) +

16Kx6

m(x1 + 3x4)
2 up2(t) + ḟp1(t)

(32)

It can be observed from Figure 9 that the ESO takes approximately 0.05 s to converge,
and the estimation error remains below 5% of the actual value.

Figure 9. Estimated performance of the ESO.

The response performance of three kinds of controllers (PID, FL, and FLESO) under
periodic disturbances is shown in Figure 10. The perturbation compensation of FLSEO
is added to the system at 0.01 s to keep the system stable. From Figure 10, it can be seen
that the PID controller is weak, and the disturbance’s influence on system stability is very
high. However, the FL controller effectively reduces the influence of the disturbance on the
system. Furthermore, with the implementation of the FLESO controller, the suspension
system achieves even greater stability. The fluctuation amplitude of the FLESO controller is
reduced to approximately 5% of that observed with the PID controller.

Figure 10. Response curves of the suspension system under periodic perturbations.

4.1.3. Case 3: Suspension with Load Disturbance

At the time of 0.1 s, a downward force of 2400 N is applied to the suspension system.
Figure 11 illustrates the control performance of the PID, FL, and FLESO controllers under
load disturbance.
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As shown in Figure 11, the PID controller exhibits a maximum deviation of nearly
0.5 mm from the operation point. The FL controller effectively suppress the disturbances.
reducing the fluctuation amplitude by approximately 88% compared to the PID controller.
Furthermore, the FLESO controller further reduces the fluctuation amplitude to within 1%
of the PID controller. This demonstrates that the FLESO controller possesses a stronger
ability to resist disturbances compared to the PID and FL controllers.

Figure 11. Response curves of the suspension system under load disturbance.

4.2. Experimental Results

In order to further verify the performance of the FLESO controller in real systems,
three sets of experiments are conducted on the experimental platform shown in Figure 6:

Scenario 1: Trajectory tracking;
Scenario 2: Suspension with load disturbance;
Scenario 3: Suspension with track step disturbance.

4.2.1. Scenario 1: Trajectory Tracking

Experiment scheme: After the ESO converges, disturbance compensation is intro-
duced to the system which is suspended at 8 mm. Subsequently, a ±2 mm square wave
disturbance with a period of 3 s is applied at point A. The same experiments were con-
ducted using the conventional PID controller as well as the proposed FLESO controller.
The response curves of the suspension gap are shown in Figures 12 and 13.

Figure 12. Experimental results: gap response of point A.

Figure 13. Experimental results: gap response of point B.

As shown in Figures 12 and 13, the conventional PID controller fails to suppress the
fluctuation of point B when point A is disturbed. The maximum gap fluctuation of point



Actuators 2023, 12, 342 14 of 17

B reaches approximately 0.3 mm. In contrast, the proposed FLESO controller effectively
controls the gap fluctuation at point B within 0.1 mm. The results show that the FLESO
controller has satisfying decoupling performance.

4.2.2. Scenario 2: Suspension with Load Disturbance

Experiment scheme: A 240 kg load is applied to the loading platform, as shown in
Figure 6, when the system is suspended steadily. The load is subsequently removed after
the system stabilizes again. The gap response curves of the PID controller and FLESO
controller are shown in Figures 14 and 15.

(a) (b)

Figure 14. Experimental results: gap response of point A. (a) Loading; (b) unloading.

(a) (b)

Figure 15. Experimental results: gap response of point B. (a) Loading; (b) unloading.

As observed in Figures 14 and 15, when a load disturbance is introduced, the system
controlled by the PID controller exhibited significant fluctuations. The amplitude of fluc-
tuations at point A and point B reach 0.533 mm and 0.386 mm, respectively. Moreover,
the system required approximately 8 s to recover stability. However, the system controlled
by the FLESO controller demonstrated stronger robustness against the same disturbance.
The amplitude of fluctuations of point A is reduced to 0.084 mm. Furthermore, the system
only requires about 3 s to regain stability again. When the load is removed, the system
using the PID controller experiences some fluctuations due to perturbations. In contrast,
the system controlled by the FLESO controller remains stable near the operating point,
with the suspension gap being hardly affected. This demonstrates that the proposed FLESO
control strategy can effectively handle the load uncertainties in the system.

4.2.3. Scenario 3: Suspension with Track Step Disturbance

The tracks of the maglev train are interconnected by joints, as shown in Figure 16. And
the schematic diagram of the track joint is shown in Figure 17. The gap width of the joint is
23 mm, and the difference of the joint step is 4 mm.

In order to verify the performance of the FLESO controller when the suspension system
passes through the joints, the following experiments are conducted. First the experimental
platform is suspended around 8 mm. Then, the experimental platform is pushed and
moved at a certain speed. The suspension module decelerates until it comes to a stop after
point A passes completely through the track joint. Two identical sets of experiments were
performed using the PID controller and FLESO controller. The experimental results are
shown in Figures 18 and 19.
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Figure 16. The position of the track joint.

(a) (b)

Figure 17. The diagram of the track joint. (a) Vertical view; (b) side view.

Figure 18. Experimental results: gap response of point A.

Figure 19. Experimental results: gap response of point B.

Based on the results shown in Figures 18 and 19, the gap sensor of point A starts to
pass the joint at about 2.7 s and completes the passage one second later. The suspension
system takes about 4 s to converge to the expected suspension gap under the PID controller.
And the range of fluctuation of the gap at point B is [−0.233 mm, 0.152 mm]. It takes
approximately 5 s for the suspension system to regain stability. When using the FLESO
controller, the fluctuation range of the gap at point B is reduced to [−0.038 mm, 0.102 mm].
Moreover, the suspension system regains stability in just 1.5 s. Therefore, the proposed
FLESO controller can effectively suppress the influence caused by the track steps on the
maglev system.
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5. Conclusions

In this paper, a decoupling control strategy based on feedback linearization and
ESO is designed to suppress the effect of inner coupling, load variations, and parameter
perturbations in a magnetic suspension module. The uncertainties present in the system
are estimated by ESO and compensated in the state feedback controller to improve the
system’s robustness.

The performance of this proposed strategy is tested for several experiments, including
trajectory tracking, load disturbances, and track step disturbances. The results illustrate
that the proposed method can reduce the effect of coupling between suspension points by
72.6% compared to the traditional PID controller. In addition, when the load changes, the
method can not only effectively suppress the gap fluctuation of the system, but also reduce
the adjustment time to approximately 37% of the traditional PID controller. The decoupling
control strategy presented in this paper effectively improves the stability of the magnetic
suspension system.
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