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Abstract: The maglev planar motor is one of the most promising industrial applications. The planar
motor can increase flexibility in modern manufacturing with the multidirectional motion of the mover.
In levitation control, the decoupling matrix is used to decouple the strong cross-coupling effect. The
Lorentz force-based wrench matrices can be precomputed and stored in the lookup table. However,
the motion range is restricted by the data range. This paper presents a wrench–current decoupling
strategy to extend the use of small lookup data for long-range planar motion. The horizontal data
range is 40 mm by 40 mm, which is determined from the minimally repetitive area of the planar
coil array. The quadrant symmetry transformation is used to estimate the data for other areas. The
experiment results demonstrated the accomplishment of the developed technique for long-range
motion with a maximum motion stroke of 380 mm. The disc-magnet movers can levitate with a large
air gap of 30 mm and have a total roll and pitch rotation range of 20 degrees.

Keywords: magnetic levitation; planar motor; decoupling; quadrant symmetry transformation;
multiple degrees of freedom

1. Introduction

Throughout decades of research on magnetic levitation, maglev technology has been
applied to many fields. The interactions between magnetized objects result in repulsive or
attractive forces to control the levitation of the object without mechanical support. With
contactless motion and low mechanical friction between the stator and the mover, the
mover is able to move at high speed. This advantage allows the maglev to be used in
transportation systems, for example, maglev trains [1] and hyperloops [2].

Magnetics technology can be applied in various robotics applications, as reviewed
in [3]. It can be used for delicate operations such as micromanipulators [4], microrobots [5],
medical tools [6], and haptics [7]. Meanwhile, it is also applicable to the industry, for
instance, machine components such as a magnetic bearing [8] and a magnetorheological
clutch [9], metal melting [10], metal 3-D printing, or additive manufacturing [11].

In modern manufacturing systems, there are two promising applications of the maglev:
the precision stage and planar motor. The maglev systems in these applications are usually
a repulsive-type levitation which has the mover levitated above the system stator. With the
multiple degrees of freedom (DOF) and precise motion of the mover, these systems can
significantly increase the flexibility of the smart manufacturing system. These systems can
also work collaboratively with other automation systems and operators in the factory.

For the maglev precision stage, the system usually has multiple sets of electromagnetic
actuators. The system can provide precision motion within small or medium strokes. For
example, a high-precision stage for photolithography was developed in [12]. Triangular
stages with three separated actuators were designed in [13,14]. PiMag 6D [15] has three
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sets of a 1-D Halbach array and long-coil pair. A four-array stage was developed in [16]
with a dual-stage mover in [17]. The system can also be a rotary table [18,19].

Next, maglev planar motors intend to provide long-range planar motion. It can be
used for material handling. Unlike the precision stage, the system has a planar stator which
is repetitive and extendable for unlimited planar motion. The stator consists of coil arrays
or multiple-layer conductors [20,21]. The Halbach array mover is popular but has a small
levitation gap [22]. The disc magnet movers were deployed to achieve a high levitation
gap but had less accuracy. The system has 5-DOF motion with an uncontrollable yaw for a
single-disc magnet mover [23] and 6-DOF motion for a multiple-disc magnet mover [24,25].

The above systems are Lorentz force-based maglev or Lorentz levitation [26]. The
wrench (forces and torques) on the mover is computed from the current-carrying conductors
immersed in the magnetic field generated by the magnet on the mover. The magnet can
be modeled by the charge model, current model, or magnetic node [27]. Exclusively, the
Halbach array can be modeled using the harmonic model [28]. The volume integral on the
conductors can be numerically solved by segmentation [29] or Gaussian quadrature [30].

In levitation control, most maglev stages are over-actuated systems and have a strong
cross-coupling effect. The change of single-current input can cause multiple force and
torque outputs in electromechanical conversion. This problem can be solved by using a
wrench–current decoupling matrix. The Multiple-Input Multiple-Output (MIMO) system
can be decoupled into several Single-Input Single-Output (SISO) systems. As a result, the
controller can be designed to control each degree of freedom separately.

The decoupling matrix is an inverse of the wrench–current conversion or wrench
matrix for any mover pose. These matrices can be computed and stored in the lookup table.
However, the lookup table method has two problems: (1) discrete data and (2) limited data
range. The discrete data can cause data switching when the mover pose is at the middle of
two data states. One solution to this problem is using multivariate linear interpolation to
estimate the data [31]. The large oscillations caused by this problem can be eliminated.

For the limited data range problem, the motion ranges are defined by the data. A
larger motion range requires larger data. It is difficult to apply the system for a planar
motor. This paper presents a wrench–current decoupling strategy to extend the use of small
lookup data for long-range planar motion. The data range is a quarter area of the coil in the
coil array, which is the minimally repetitive planar area. The wrench matrix is estimated by
the quadrant symmetry transformation when the mover pose is out of the data range.

The paper is organized as follows: Section 2 presents the planar maglev system. The
Lorentz levitation model is presented in Section 3. The wrench–current decoupling for long-
range planar motion is explained in Section 4. The experiment results are demonstrated in
Section 5. The discussion is provided in Section 6 and concluded in Section 7.

2. Planar Maglev System Description

The maglev planar motors generally comprise a planar electromagnet stator and
permanent magnet movers. The section provides details of the modular planar maglev
system. Then, the details of two disc-magnet movers will be explained.

2.1. Modular Planar Electromagnet Stator

Figure 1 represents the planar electromagnet stator in this work. The stator has two
parts: a coil array and a support structure. The upper part is a planar coil array consisting
of eight coil modules. The coil module is a row of eight air-core square coils mounted on
an aluminum frame with a pitch of 76.2 mm (3 inches) center-to-center. The total number
of turns for each coil is 960 turns. The coil wires are routed to the bottom of the frame and
connected to the power receptacle. In total, there are 64 coils arranged in an eight-by-eight
square array. The planar translation area is 600 mm by 600 mm, approximately.

The lower part is a steel support structure. The structure has two layers: a level
adjustment mechanism and a rigid frame. The level adjustment frame is used to adjust the
position and level of the coil array mounting on the top. The rigid frame is welded. The



Actuators 2023, 12, 358 3 of 20

frame has a built-in current amplifier module. The module is an assembly of 32 industrial
drives installed on a copper plate for power return. The drive unit is a PWM current
amplifier. It has a custom firmware that can power two coils separately. The drive unit
requires two power inputs: 80 VDC 10 A maximum for the input supply and 24 VDC for
the logic supply. The output is 80 VDC and 9 A maximum for each coil.

Figure 1. Modular planar maglev system.

The system diagram is shown in Figure 2. Four five-megapixel cameras are placed
at each corner above the system. The field of view is set to cover the entire area with a
reference at the center of the coil array top surface. All cameras are connected to a switch
with Power over Ethernet + (PoE+). These cameras are used to capture the reflective
markers on the mover. The captured data are sent to the motion tracking software via
Ethernet for mover pose computation. The mover pose is transmitted to the main controller
to compute for control outputs. The current command outputs are assigned to the amplifiers
via EtherCAT. EtherCAT is a high-speed communication protocol via a single cable. This
protocol significantly simplifies the wiring from the controller to the amplifier units.

Figure 2. Modular planar maglev system: hardware diagram.

2.2. Disc Magnet Movers

There are two movers in this work: single-disc and multiple-disc magnet movers. The
mover design process is similar to that in [29]. For a single-disc magnet, disc magnets
with 2-inch, 3-inch, and 4-inch diameters and 1/2-inch thickness were evaluated. From
analysis, the condition number tends to be lower when the disc magnet has larger diameter
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compared to the coil width. Hence, a 4-inch Neodymium disc magnet grade N50 with
remanence Br = 1.45 T was selected, as shown in Figure 3a. However, the single-disc
magnet mover can only be controlled for 5-DOF motion without yaw rotation due to its
symmetry about the vertical axis.

(a)

(b)
Figure 3. Disc-magnet movers. (a) Single 4-inch disc magnet. (b) Four 2-inch disc magnets.

Next, the mover with multiple-disc magnets was designed to achieve 6-DOF motion.
As shown in Figure 3b, the mover comprises four 2-inch disc magnets. The magnet is a
Neodymium disc magnet grade N52 with remanence Br = 1.48 T. The magnet layout is
optimized by considering three parameters: condition number, maximum current, and
total power consumption. From the analysis, the layout with a diagonal distance of 40 mm
was selected.

Both mover frames are acrylic and have reflective markers for motion tracking. There
are three main markers at the same height for coordinate reference. Additional markers are
mounted at different heights to prevent pose redundancy in motion tracking software. The
mover coordinate is set at the center of the mover frame for both movers. The properties
of both movers, mass and moments of inertia (I) about the x, y, and z axes of the mover
coordinate, are shown in Table 1.

Table 1. Mass properties of the designed movers.

Disc-Magnet Movers Mass (kg) Ix (kg m2) Iy (kg m2) Iz (kg m2)

Single 4-inch magnet 0.90 0.0006 0.0006 0.0012

Four 2-inch magnets 0.99 0.0012 0.0012 0.0024
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3. Lorentz Levitation Modeling
3.1. Coordinate System Settings

In general, the planar magnetic levitation system consists of three main coordinate
systems, as shown in Figure 4, as follows:

{ o } System coordinate or origin: located at the center of the coil array top surface;
{ c } Coil coordinate: located at the center of the coil top surface (ci for coil number i);
{ m } Magnet coordinate: located at the center of the magnet.

Figure 4. Coordinate systems: system coordinate or origin {o}, coil coordinate {c}, and magnet
coordinate {m}.

The planar coil array has 16 square coils arranged in a four-by-four pattern with the
system origin o at the center of the coil array top surface. The disc magnet center m is
levitated above the array with displacement p = [ x, y, z ]

T
, and orientation q = [ψ, θ, φ ]

T

consists of rotation angles about the x (roll, ψ), y (pitch, θ), and z (yaw, φ) axes. The position
of the coil number i referred to the origin is denoted by oci. Point a represents an arbitrary
point of interest in the coil. Point a in coil number i coordinate is denoted by cia. This point
is denoted by oaci when referred to the origin. The vector r is the position of point a relative
to the center of the magnet.

3.2. Lorentz Wrench Model

For the 3-D forces and torques or wrench model for Lorentz levitation, this section
describes the wrench model between a single coil with current density J immersed in the
magnetic field B generated by a single magnet. The 3-D Lorentz wrench on the magnet can
be expressed by
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oF = −
∫∫∫
Vcoil

oJ× oB dV . (1)

oT = −
∫∫∫
Vcoil

or× (oJ× oB) dV . (2)

The computation has two challenges: the magnetic flux density and volume integral.
Similar to [29,31], the magnetic nodes method is used to model the disc magnet and
compute the magnetic flux density. The mover orientation is also considered since the
magnet is freely levitated in the air. Next, this paper adopts the Gaussian quadrature
technique, which was presented in [30], to approximate the triple integral as discrete
summations by defining Gaussian nodes and weights on the coil.

3.3. Magnetic Flux Density Computation

By using the magnetic nodes, as detailed in [29], the disc magnet is modeled with
nodes on the circumference of the top and bottom surfaces. The magnetic flux density B at

any points of interest in the mover coordinate is denoted by mB =
[ mBx, mBy, mBz

]T
. To

compute magnetic flux density at point a in the mover coordinate, the point a of coil i in
system coordinate oaci must be transformed into mover coordinate maci by

maci = (Rxyz)
−1 · (oaci − p) . (3)

The magnet orientation has three rotation angles q = [ψ, θ, φ ]
T

. The order of rotation
is considered in yaw (φ)–pitch (θ)–roll (ψ), as presented by

Rxyz = Rx(ψ) · Ry(θ) · Rz(φ)

=

1 0 0
0 cos ψ − sin ψ
0 sin ψ cos ψ

 ·
 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 ·
cos φ − sin φ 0

sin φ cos φ 0
0 0 1

 . (4)

The disc magnet bottom (g = 0) and top (g = 1) surfaces have M magnetic nodes with
remanence Br. The magnetic flux density in magnet coordinate mB from each magnetic
node k = [xk, yk, zk]

T
at the point a of coil i, maci = [xci, yci, zci]

T
, can be computed via

mBx =
1

∑
g=0

M

∑
k=1

(−1)(k+g) Br

4π
ln
(
− (yci − yk) +

√
(xci − xk)2 + (yci − yk)2 + (zci − zk)2

)
, (5a)

mBy =
1

∑
g=0

M

∑
k=1

(−1)(k+g) Br

4π
ln
(
− (xci − xk) +

√
(xci − xk)2 + (yci − yk)2 + (zci − zk)2

)
, (5b)

mBz =
1

∑
g=0

M

∑
k=1

(−1)(k+g) Br

4π
arctan

(
(xci − xk)(yci − yk)

(zci − zk)
√
(xci − xk)2 + (yci − yk)2 + (zci − zk)2

)
. (5c)

Finally, the magnetic field in the system coordinate oB can be obtained by transforming
the magnetic field in the magnet coordinate mB back to the system coordinate by

oB = Rxyz · mB . (6)

The magnetic flux density from the magnet mover to any points of interest can be
computed. This is further used to compute the Lorentz forces and torques on the magnet
from each coil immersed in the magnetic field.
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3.4. Numerical Integration for Wrench Model

To simplify the volume integral, the Gaussian quadrature technique is applied to
approximate the integral as the summation of the functions f(u) by∫ uup

ulow

f(u)du =
uup − ulow

2

N

∑
n=1

ωn · f
(

uup + ulow

2
+ ζn

uup − ulow

2

)
. (7)

In this work, the lower limit ulow and upper limit uup of the integral are dimen-
sions of a rounded-corner square coil which has height Hc, inner corner radius Rin,
outer corner radius Rout, and winding thickness Rc. Similarly to [30], the coil is divided
into eight sections s = 8: four rectangle and four rounded-corner sections. Each coil
section is modeled to have N = 4 Gaussian nodes n distributed at a specific location
cian = ζn = [−0.891136,−0.339981, 0.339981, 0.891136 ] in all directions, or N3 = 64 nodes
in total. Each node has specific weight ωn = [ 0.347855, 0.652145, 0.652145, 0.347855 ] and
current density J flowing in a counter-clockwise direction by default to provide +Z magnetization.

For the rectangle section, the wrench can be computed via

oFs(p, q) = −
∫ 0

−Hc

∫ yout

yin

∫ xout

xin

oJ× oB(p,q) dx dy dz

= −
N3

∑
n=1

ωn · oJ(cian)× oB(p,q,cian) , (8)

oTs(p, q) = −
∫ 0

−Hc

∫ yout

yin

∫ xout

xin

or(p)× (oJ× oB(p,q)) dx dy dz

= −
N3

∑
n=1

ωn · or(p,cian)× (oJ(cian)× oB(p,q,cian)) . (9)

For the rounded corner section, the wrench can be computed via

oFs(p, q) = −
∫ 0

−Hc

∫ s
4 π

s−2
4 π

∫ Rout

Rin

oJ× oB(p,q) · ρ dx dy dz

= −
N3

∑
n=1

ωn
Rc

2
(1 + ζn1) ·

oJ(cian)× oB(p,q,cian) , (10)

oTs(p, q) = −
∫ 0

−Hc

∫ s
4 π

s−2
4 π

∫ Rout

Rin

or(p)× (oJ× oB(p,q)) · ρ dx dy dz

= −
N3

∑
n=1

ωn
Rc

2
(1 + ζn1) ·

or(p,cian)× (oJ(cian)× oB(p,q,cian)) . (11)

By substituting magnetic flux density B from Equations (5) and (6) into force and
torque Equations (8) to (11), the wrench on the magnet can be computed via

oF = −
8

∑
s=1

N3

∑
n=1

1

∑
g=0

M

∑
k=1

ωn
oJ× (Rxyz · mB) , (12)

oT = −
8

∑
s=1

N3

∑
n=1

1

∑
g=0

M

∑
k=1

ωn
or× (oJ× (Rxyz · mB)) . (13)

where r is the moment arm from the magnet center p to the coil node n in system coordinate
oaci,n expressed by

or(p, oaci,n) =
oaci,n − p . (14)
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The Lorentz force-based wrench model obtained in this section is further used for
wrench–current decoupling in the next section.

4. Control System and Wrench–Current Decoupling for Long-Range Motion
4.1. Overall Control System

Figure 5 depicts an overall diagram of multi-DOF control for the planar maglev
system. As mentioned in the system description, the mover motion is captured by the
motion tracking system. The captured data are filtered and computed for the mover pose
in the motion tracking software. Then, the mover pose and pose commands are fed to the
multi-DOF controller to compute the controller commands.

The Proportional–Integral–Derivative or PID control parameters for the 5-DOF control
of a single-disc magnet mover and the 6-DOF control of a multiple-disc magnet mover
are shown in Table 2. Since the weight of both movers is comparable, most of the PID
parameters in both translations and rotations are similar. Only the D gains for roll and pitch
angle and PID control for yaw rotation of the multiple-disc magnet mover were tuned.

Figure 5. Multi-DOF control diagram.

Table 2. Multi-DOF PID controller gains.

5-DOF PID Controller 6-DOF PID Controller

DOF P Gain I Gain D Gain P Gain I Gain D Gain

N
m

N m
rad

N
m s

N m
rad s

N
m/s

N m
rad/s

N
m

N m
rad

N
m s

N m
rad s

N
m/s

N m
rad/s

x 1200 6000 55 1200 6000 60

y 1200 6000 55 1200 6000 60

z 1200 6000 55 1200 6000 60

ψ 1.5 8.0 0.055 1.5 8.0 0.07

θ 1.5 8.0 0.055 1.5 8.0 0.07

φ — — — 2.0 8.0 0.07

Next, the total desired wrench wtotal is a summation of the controller outputs and
the gravity compensation. The compensator provides force in the z direction to partially
support the vertical motion. This total wrench must be converted to currents for all active
coils. However, it is difficult to determine the currents because the system has a strong
cross-coupling effect in current-to-wrench transformation. The relationship between the
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wrench on the mover wactual and the currents from all active coils iactual can be represented
by the wrench matrix K:

wactual = K iactual . (15)

K =
[
kcoil 1 kcoil 2 . . . kcoil n

]
,

=



fx1 fx2 . . . fxn
fy1 fy2 . . . fyn
fz1 fz2 . . . fzn
τx1 τx2 . . . τxn
τy1 τy2 . . . τyn
τz1 τz2 . . . τzn

. (16)

The wrench matrix K consists of the wrench vectors kcoil for n active coils. The
components of the vector are the ratio of force f and torque τ to the current input of a single
coil. The number of rows is the number of degrees of freedom. The number of columns is
the number of coils. Since one coil current input can result in the 3-D wrench on the mover,
the cross-coupling problem must be addressed to determine the coil current commands.

4.2. Wrench–Current Decoupling

As reviewed in the literature, one solution for the cross-coupling effect is to use the
decoupling matrix. Generally, the decoupling matrix is an inverse of the wrench matrix.
By implementing this matrix in the control system, the Multiple-Input Multiple-Output
(MIMO) coupled system can be decoupled into multiple Single-Input Single-Output (SISO)
systems. As a result, the motion in each degree of freedom can be controlled individually.

In this work, a block of the decoupling matrix, denoted by K
+

, is placed after the
total desired wrench command wtotal , as shown in Figure 5. The matrix product is the coil
current commands icmd = K

+
wtotal . All coil current commands are assigned to all active

coils to attain the desired 3-D wrench on the mover. Suppose that the current amplifiers are
ideal. Then, the actual currents iactual can be produced as assigned from the controller or
iactual = icmd = K

+
wtotal . Hence, the actual current in Equation (15) can be substituted by

the decoupling matrix K
+

and total wrench commands wtotal as follows:

wactual = K icmd

= K (K
+

wtotal) . (17)

To realize wactual = wtotal , the decoupling matrix K
+

must be a right inverse of the
wrench matrix K to fulfill the condition K K

+
= I, where I is an identity matrix. Usually,

the number of active coils is more than the mover’s degrees of freedom. Hence, the wrench
matrix is a nonsquare matrix. By using the Moore–Penrose pseudoinverse, the decoupling
matrix K

+
or a right inverse of the wrench matrix can be obtained via

K
+
= K

T
(K K

T
)−1. (18)

In the control system, the decoupling matrix must be obtained within the control
sampling time of 1 ms. The lookup table method is used for real-time wrench–current
decoupling. The lookup data are the wrench matrices for specific ranges of motion, which
are computed in MATLAB with a parallel computing toolbox. The wrench matrix of the
current pose can be obtained from the data and computed for the decoupling matrix.

4.3. Lookup Table

The lookup data ranges for a single-disc magnet mover and a multiple-disc magnet
mover are detailed in Table 3. The total number of combinations for 5-DOF lookup data
is 23,814 combinations. The total number of combinations for 6-DOF lookup data is
222,264 combinations. The data are converted to binary format and stored in the controller.
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For translation, the XY data range for both movers is from 0 mm to 40 mm with an
increment of 2 mm. This data range covers the first quadrant Q1 area in Figure 6b, which
is the minimally repetitive planar area of this coil array pattern. For levitation height (Z),
the single-disc magnet mover has a maximum height of 36.35 mm or a 30 mm air gap. The
multiple-disc magnet mover has a lower maximum height at 30 mm or a 15 mm air gap.

For rotation, both roll and pitch rotation range for both movers are from −10 degrees
to 10 degrees with an increment of 10 degrees. For a multiple-disc magnet mover, the
mover can rotate with the yaw angle. The yaw rotation data range is from 0 degrees to
90 degrees with a 15-degree increment step. In the lookup process, the reading yaw angle
is calculated to find the equivalent yaw angle in the range of 0 to 90 degrees.

A multivariate linear interpolation was used to solve the discrete lookup data. For a
single-disc magnet mover, 5-DOF linear interpolation can be formulated by determining
the related indices from the mover pose: (x0, y0, z0, ψ0, θ0). The decoupling matrices are
looked up using five state pairs (x1, x2), (y1, y2), (z1, z2), (ψ1, ψ2), and (θ1, θ2). Therefore,
5-DOF interpolation requires 25 = 32 matrices. For 6-DOF linear interpolation, the yaw
angle φ0 is considered to determine a yaw state pair (φ1, φ2). As a result, the number of
lookup data becomes 26 = 64 matrices.

Table 3. Lookup table data range for disc-magnet movers.

DOF
Single 4-inch Disc Magnet Four 2-inch Disc Magnets

Min Value Increment Max Value Min Value Increment Max Value

Translation (mm)
x 0.0 2.0 40.0 0.0 2.0 40.0

y 0.0 2.0 40.0 0.0 2.0 40.0

z 26.35 2.0 36.35 16.0 2.0 30.0

Rotation (deg)

Roll ψ −10.0 10.0 10.0 −10.0 10.0 10.0

Pitch θ −10.0 10.0 10.0 −10.0 10.0 10.0

Yaw φ — — — 0.0 15.0 90.0

(a) (b) (c) (d)

Figure 6. Wrench–current decoupling strategy for long-range planar motion. (a) Find 4 × 4 active
coils. (b) Find relative mover quadrant. (c) Find relative mover pose. (d) Find equivalent mover pose
in Q1.

4.4. Extended Wrench–Current Decoupling Data Using Quadrant Symmetry Transformation for
Long-Range Planar Motion

The problem of the lookup table method with discrete lookup data was solved by
multivariate linear interpolation to estimate the wrench–current decoupling matrix in the
previous section. However, another remaining limitation of the lookup table method is a
limited range of data, which limits the levitation range.
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Since the memory used to store the lookup table data is directly proportional to the
number of pose combinations, a larger range of levitation requires a larger size of lookup
table. Therefore, a strategy to achieve long-range levitation with a small-range lookup table
is needed for the efficient use of data memory.

In this research, the wrench–current decoupling technique for long-range motion
using the minimum lookup data range is developed for the planar motor system. The
number of active coils for levitation is 16 coils arranged in a four-by-four array. The lookup
data are precomputed within the minimum planar range of the quarter coil area in the first
quadrant of the coil array. Overall, the proposed strategy has four steps as follows:

STEP 1: Active coil array selection

Figure 6a depicts the concept of active coil array selection. The cross marks (+)
represent the center of four-by-four active coils. The active coil array can be determined by
the mover location. The 16 coils highlighted in green are the selected active coils for this
mover pose since the center of this array is the nearest center to the mover.

For the planar maglev system in this work, the centers (xgrid, ygrid) of all possible
four-by-four active coil arrays in millimeter units are

xgrid = [ −152.4,−76.2, 0.0, 76.2, 152.4 ] , (19)

ygrid = [ 152.4, 76.2, 0.0,−76.2,−152.4 ] . (20)

The nearest active coil array center to the mover position (xm, ym) can be determined by
finding the coil center index (indexx, indexy), which provides the minimum distance from

indexx = min
{
‖xgrid − xm‖

}
, (21)

indexy = min
{
‖ygrid − ym‖

}
. (22)

Once the active coil array center coordinate is determined from (xgrid, ygrid) by the
center index, all 16 active coils of the four-by-four coil array can be determined.

STEP 2: Pose transformation to the first quadrant (Q1)

From step 1, the relative mover pose (p, q) to the relative quadrant (Qn) of the active
coil array can be computed. Figure 6b represents that the mover is in the third quadrant
(Q3) of the array. The relative mover pose to the coil array center is shown in Figure 6c.

Since the lookup data are only precomputed for Q1, the equivalent pose (pQ1, qQ1) of
the mover from other quadrants is transformed to Q1 via[

pQ1
qQ1

]
=

[
ΩQn→1 03×3

03×3 ΩQn→1

]
·
[

p
q

]
, (23)

ΩQ2→1 =

 0 1 0
−1 0 0
0 0 1

, ΩQ3→1 =

−1 0 0
0 −1 0
0 0 1

, ΩQ4→1 =

0 −1 0
1 0 0
0 0 1

, (24)

where ΩQn→1 is the relationship between the x, y, and z components of another quadrant
Qn to the first quadrant Q1. 03×3 is a three-by-three zero matrix.

STEP 3: Lookup and interpolation for the wrench matrix

The lookup index can be computed via the equivalent pose in Q1 (pQ1, qQ1) and looked
up for the wrench matrix from the data table KQ1. An implementation of multivariate
linear interpolation can be used to estimate the wrench matrix.
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If multivariate linear interpolation is used, this step first computes all lookup indices
and searches for all related states. Then, the estimated wrench matrix is computed as
described in the previous section.

STEP 4: Wrench matrix transformation to the original quadrant (Qn)

Finally, the wrench matrix in the first quadrant KQ1 is transformed back to the original
quadrant. The wrench matrix in the original quadrant KQn can be obtained by mapping
the coil number or column number of the wrench matrix in Q1 to Qn and transforming the
x, y, and z components of the wrench matrix by

KQn =

[
Ω

T

Qn→1 03×3

03×3 Ω
T

Qn→1

]
·KQ1(:, cQn) , (25)

The columns of KQ1 are swapped by the column order for each original quadrant
cQn. The column order cQn is obtained by rotating the coil number matrix Qn · 90 degrees
counter-clockwise and flattening the rotated matrix by row-major order as expressed by

cQn = flatten

rotate(−Qn·90◦)




1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16



 (26)

Once the estimated wrench matrix KQn is obtained, the estimated wrench–current
decoupling matrix K

+

Qn can be computed by using the Moore–Penrose pseudoinverse. An
implementation of the developed algorithms on the controller has a computation time of
less than 20 µs.

This section described the wrench–current decoupling strategy for long-range planar
motion in the planar maglev system using short-range lookup data. This method is further
evaluated on the planar maglev system in long-range levitation experiments.

5. System Setup and Experiment Results
5.1. System Setup

The system setup of the planar maglev system is shown in Figure 7a. Two power
supply units with 80 and 24 VDC are connected to the system. Four optical cameras are
set above the coil array to capture the mover pose. Each camera is 30 cm away from the
corners of the coil array with different heights. All cameras connect to the Ethernet switch
and motion tracking computer. The motion tracking system has a 1 kHz update rate with a
resolution of ±10 µm and ±0.2 mrad. The controller operates the control algorithm and
developed strategies with a 1 kHz sampling frequency. The current command is computed
and sent out to the current amplifiers over the EtherCAT protocol.

5.2. Experiment Results: Single 4-Inch Disc Magnet Mover

The experiment results on the planar maglev system with a single 4-inch disc magnet
mover are presented in this section. The experiments consist of long-range motion in
both translation and rotation. Figure 7b represents the mover levitating above the system.
To demonstrate long-range levitation, the proposed long-range decoupling strategy was
implemented. Two experiments were conducted. The first experiment is translation. The
second experiment is rotations in both roll and pitch.
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5.2.1. Long-Range Planar Motion

For translation, the planar motion stroke is ±190 mm with two levitation air gaps of
20 mm (26.35 mm) and 30 mm (36.35 mm). Figure 8a demonstrates the 3-D long-range
translation over the coil array. The motions of other axes are plotted in Figure 8b. The 3-D
translations are moved with ramp commands.

Figure 7. Overall system setup and levitation. (a) System setup. (b) Single 4-inch disc mover
levitation. (c) Four 2-inch disc mover levitation.

(a) (b)

Figure 8. Single 4-inch disc magnet mover: long-range translation. (a) 3-D. (b) All axis motion.
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Meanwhile, the cross-coupling effect during the experiment in roll and pitch rotations
can be observed with an error range of ±1 degree. For example, large oscillations in roll
(Rx) motion occur when the mover moves along the y axis and vice versa.

5.2.2. Full-Range Rotation: Roll and Pitch

For rotation, the mover must be levitated with its center at z = 30 mm to avoid collision
with the top surface of the coil array when the mover rotates at a large angle.

Then, the mover is rotated in place with roll and pitch angles of ±10 degrees, as
shown in Figure 9. The trajectory tracking results in rotation demonstrate good tracking
performance. However, the oscillations in the x, y, and z axes are ±0.07 mm. The cross-
coupling effect between x–pitch and y–roll can still be observed in this experiment.

This section demonstrates the levitation performance of a single-disc magnet mover
on a planar maglev system. With interpolation, large oscillations were suppressed when
the mover levitated in the middle of lookup states, especially in rotations. By implementing
a 5-DOF linear interpolation and decoupling strategy, the mover can move with smooth
responses and be able to hover over the entire area of the coil array.

However, the remaining downside is yaw rotation. Uncontrolled yaw rotation can
disturb the motion responses in other degrees of freedom. Levitation experiments using a
multiple-disc magnet mover with yaw rotation are examined in the next section.

Figure 9. Single 4-inch disc magnet mover: full-range roll and pitch 10-degree in-place rotation.

5.3. Experiment Results: Four 2-Inch Disc Magnet Mover

The experiment results on the planar maglev system with a four 2-inch disc magnet
mover are presented in this section. Similar to a single-disc magnet, the experiments consist
of long-range motion in both translation and rotation, including yaw rotation. Figure 7c
represents the mover levitating above the system with roll and pitch angles.

To demonstrate the performance of long-range levitation and the implementation
of the developed technique, two experiments were conducted. The first experiment is
long-range translation. The second experiment is full-range rotation.

5.3.1. Long-Range Planar Motion

For trajectory tracking in translation, two motion paths are defined for experiments.
The first long-range translation path is a planar motion of ±75 mm at z = 20 mm, as shown
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in Figure 10. The second long-range translation path is a planar motion of ±150 mm at
z = 20 mm, as shown in Figure 11.

For both long-range motions, the motion in the x and y axes can follow the ramp
command. However, large oscillations occur on other axes when the mover is moving
along the path. For z motion, the mover oscillates within the range of ±0.75 mm. The roll
and pitch motions have large oscillations of ±2 degrees, and the range of the yaw motion is
within ±0.5 degrees, except for the first part in the ±150 mm path. Most large oscillations
emerge in the first half of the motion when the mover moves from −75 mm to 75 mm and
from −150 mm to 150 mm along the x axis.

5.3.2. Full-Range Rotation: Roll and Pitch

To avoid the mover colliding with the top surface of the coil array when it rotates at
the maximum roll or pitch angle, the mover center is levitated to z = 30 mm before rotation.
For roll and pitch rotation, the experiment was conducted on in-place rotation.

The mover is rotated in place with ±10 degrees in both roll and pitch, as shown in
Figure 12. The command tracking results demonstrate good tracking performance. The
responses in other DOF are larger than those of the ramp command experiment. The errors
in the x and y axes are ±0.06 mm, ±0.125 mm for the z axis, and ±0.2 deg for yaw rotation.

Figure 10. Four 2-inch disc magnet mover: long-range translation, 150 mm.
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5.3.3. Full-Range Rotation: Yaw

For yaw rotation, the mover can become unstable when the mover rotates at the central
region of the coil array, which consumes a high current. In this experiment, the mover is
moved to (x, y) = (38.1, 0) at z = 16 mm before rotation. Then, the mover is controlled to
rotate about the vertical axis from 0 to 360 degrees with an angular speed of 180 deg/s.

The full-range yaw rotation experiment was conducted with an angular speed of
180 deg/s. Figure 13a represents the yaw rotation result and error. Even though the
mover was not rotated at the central region of the active coil array, large periodic errors of
±4 degrees in yaw motion can be observed at certain yaw angles.

Meanwhile, large errors in other DOF during full-range yaw rotation can be observed
in Figure 13b. In translation, several spikes occur in all axes periodically. For roll and pitch
rotation, the error range is within ±1.5 degrees.

This section presents implementation and levitation experiments on the planar maglev
system with a single 4-inch magnet mover and a four 2-inch magnet mover. By using the
lookup table method, we can study decoupling performance when the mover is levitated at
the middle of the lookup data, especially roll and pitch rotations. With an implementation of
multivariate linear interpolation, the decoupling performance was significantly enhanced.
The decoupling strategy using the quadrant symmetry transformation for long-range
levitation was successfully implemented for both movers.

Figure 11. Four 2-inch disc magnet mover: long-range translation, 300 mm.
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Figure 12. Four 2-inch disc magnet mover: full-range roll and pitch 10-degree in-place rotation.

(a)

Figure 13. Cont.
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(b)
Figure 13. Four 2-inch disc magnet mover: yaw rotation. (a) Yaw with error. (b) Other axes’ responses.

6. Discussion

The discussions of the proposed decoupling strategy and levitation experiment results
are provided in this section.

The proposed technique for wrench–current decoupling in long-range motion utilizes
minimally repetitive wrench data and quadrant symmetry transformation. The wrench
data in this work are computed on a 40 mm-by-40 mm or a quarter area of a single coil in
the first quadrant of a 16-coil array. By using the quadrant symmetry transformation, the
data can be extended for unlimited planar translation. Even though the height, roll, and
pitch angles are still limited, the maximum range can be determined from the levitation
specifications. However, the minimally repetitive area depends on the pattern of the coil
array. Therefore, the minimally repetitive area must be determined for different coil arrays.

The developed wrench–current decoupling technique was implemented on the planar
maglev system and demonstrated through the experiment results. In long-range levitation
experiments, the technique successfully enables the mover to hover over the coil array,
although the levitation performance still needs improvement. Since the wrench data were
computed from an ideal coil array arrangement, the real-time wrench–current decoupling
in levitation can deteriorate due to arrangement errors throughout the array.

The results demonstrated better levitation performance of a single-disc magnet mover
compared to that of a multiple-disc magnet mover. The single-disc magnet mover can
only have 5-DOF motion with uncontrollable yaw. This undesired yaw can disturb overall
performance. The multiple-disc magnet mover can have 6-DOF motion; however, the coil
current computation at some poses may result in a high current on some coils. This may
cause current saturation and disturb the levitation performance.

As discussed above, there are several research opportunities to improve the planar
maglev system in this work, for example, a real-time solution to improve wrench–current
decoupling in uncertain environments. The advanced control algorithm can be developed
to handle the over-current problem, maintain stability, and improve levitation perfor-
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mance [32]. For precision motion, the system also has the capability to perform high-
precision tasks. With the review in [33], the motion sensing system should be redesigned to
provide precise motion data. Magnetic sensors such as Hall effect sensors can be embedded
in the coil array for motion sensing [34].

7. Conclusions and Future Works

In this work, the wrench–current decoupling technique using the quadrant symmetry
transformation was developed to extend the use of the lookup data on the minimally
repetitive area for long-range planar motion. The lookup data have a horizontal range
of 40 mm by 40 mm or the quarter area of the coil in the first quadrant of the coil array.
The quadrant symmetry transformation was used to estimate the wrench matrix in other
areas. Multivariate linear interpolation was used to solve the discrete data problem. The
experiment results demonstrated the accomplishment of the developed technique for long-
range motion with a maximum motion stroke of 380 mm. The mover can levitate with
a large air gap of 30 mm for a single-disc magnet mover and 15 mm for a multiple-disc
magnet mover. The rotation range for roll and pitch was ±10 degrees for both movers and
360 degrees yaw for the multiple-disc magnet mover.

Future work with this research will continue to improve the levitation performance in
long-range motion for both translation and rotation. Analysis of multiple-magnet movers
could be conducted to achieve better 6-DOF motion. The implementation of advanced
control algorithms can be applied to the system to demonstrate real-world applications
such as precision stages or multidirectional conveyor systems.
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