Topic Editors

Dr. Wen Zhou
CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
Prof. Dr. Guihua Liu
CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China

Litter Decompositions: From Individuals to Ecosystems

Abstract submission deadline
closed (29 February 2024)
Manuscript submission deadline
30 April 2024
Viewed by
4716

Topic Information

Dear Colleagues,

Litter decomposition is a fundamental process influencing not only energy resources and nutrient cycling in ecosystems but also the extraordinarily diverse communities connected by highly complex interactions. Plant litter decomposition has major control over nutrient availability, element cycling, and, consequently, plant growth and community structure. The litter compositions and traits, in turn, significantly affect ecological functions through food webs, interactions, and micro-environmental changes. Despite the overwhelming importance of litter decompositions for plants, soil fauna, microorganism communities, biogeochemical cycles, and ecosystem functions, information about their ecology is lacking.

For this topic, we welcome manuscripts that provide novel insights on a broad range of topics in the scope of litter decompositions, including:

  1. Ecological stoichiometry and nutrient cycling in the process of litter decompositions, with a particular focus on elements dynamics and seasonal patterns;
  2. The abiotic and biotic factors affecting litter decomposition, as well as the ecological interaction and the co-evolution between plant litters and their interaction partners;
  3. How diversity in litter mixtures can alter community structures and ecological functions in variable ecosystems, especially under the stress of climate change and human activities.

Original works, reviews, and short communications are all very welcome.

Dr. Wen Zhou
Prof. Dr. Guihua Liu
Topic Editors

Keywords

  • decomposition
  • fine roots
  • leaf litters
  • element cycling
  • ecological interaction
  • co-evolution
  • community structure
  • ecosystem function

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Biology
biology
4.2 4.0 2012 18.7 Days CHF 2700 Submit
Ecologies
ecologies
- - 2020 19.8 Days CHF 1000 Submit
Forests
forests
2.9 4.5 2010 16.9 Days CHF 2600 Submit
Microorganisms
microorganisms
4.5 6.4 2013 15.1 Days CHF 2700 Submit
Plants
plants
4.5 5.4 2012 15.3 Days CHF 2700 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (4 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
15 pages, 5658 KiB  
Article
Effects of Leaf Size and Defensive Traits on the Contribution of Soil Fauna to Litter Decomposition
by Dangjun Wang, Fang Yuan, Wuyang Xie, Juan Zuo and Huakun Zhou
Forests 2024, 15(3), 481; https://doi.org/10.3390/f15030481 - 05 Mar 2024
Viewed by 921
Abstract
Leaf litter quality has been acknowledged as a crucial determinant affecting litter decomposition on broad spatial scales. However, the extent of the contribution of soil fauna to litter decomposability remains largely uncertain. Nor are the effects of leaf size and defensive traits on [...] Read more.
Leaf litter quality has been acknowledged as a crucial determinant affecting litter decomposition on broad spatial scales. However, the extent of the contribution of soil fauna to litter decomposability remains largely uncertain. Nor are the effects of leaf size and defensive traits on soil fauna regulating litter decomposability clear when compared to economics traits. Here, we performed a meta-analysis of 81 published articles on litterbag experiments to quantitatively evaluate the response ratio of soil fauna to litter decomposition at the global level. Our results revealed that soil fauna significantly affected litter mass loss across diverse climates, ecosystems, soil types, litter species, and decomposition stages. We observed significantly positive correlations between the response ratio of soil fauna and leaf length, width, and area, whereas the concentrations of cellulose, hemicellulose, total phenols, and condensed tannins were negatively correlated. Regarding economic traits, the response ratio of soil fauna showed no relationship with carbon and nitrogen concentrations but exhibited positive associations with phosphorus concentration and specific leaf area. The mean annual temperature and precipitation, and their interactions were identified as significant moderators of the effects of soil fauna on litter decomposition. We evidenced that the contribution of soil fauna to litter decomposability is expected to be crucial under climate change, and that trait trade-off strategies should be considered in modulating litter decomposition by soil fauna. Full article
(This article belongs to the Topic Litter Decompositions: From Individuals to Ecosystems)
Show Figures

Figure 1

15 pages, 2497 KiB  
Article
Long-Term Nitrogen Addition Accelerates Litter Decomposition in a Larix gmelinii Forest
by Miao Wang, Guancheng Liu, Yajuan Xing, Guoyong Yan and Qinggui Wang
Forests 2024, 15(2), 372; https://doi.org/10.3390/f15020372 - 16 Feb 2024
Viewed by 618
Abstract
Elevated atmospheric N deposition has the potential to alter litter decomposition patterns, influencing nutrient cycling and soil fertility in boreal forest ecosystems. In order to study the response mechanism of litter decomposition in Larix gmelinii forest to N deposition, we established four N [...] Read more.
Elevated atmospheric N deposition has the potential to alter litter decomposition patterns, influencing nutrient cycling and soil fertility in boreal forest ecosystems. In order to study the response mechanism of litter decomposition in Larix gmelinii forest to N deposition, we established four N addition treatments (0, 25, 50, 75 kg N ha−1 yr−1) in the Greater Khingan Mountains region. The results showed that (1) both needle and mixed leaf litter (Betula platyphylla and Larix gmelinii) exhibited distinct decomposition stages, with N addition accelerating decomposition for both litter types. The decomposition of high-quality (low C/N ratio) mixed leaf litter was faster than that of low-quality needle litter. (2) Mixed leaf litter increased the decomposition coefficients of litter with lower nutrients. (3) All N addition treatments promoted the decomposition of needle litter, while the decomposition rate of mixed leaf litter decreased under high-N treatment. (4) N addition inhibited the release of N and P in needle litter and promoted the release of N in mixed leaf litter, while high-N treatment had no positive effect on the release of C and P in mixed leaf litter. Our research findings suggest that limited nutrients in litter may be a key driving factor in regulating litter decomposition and emphasize the promoting effect of litter mixing and nitrogen addition on litter decomposition. Full article
(This article belongs to the Topic Litter Decompositions: From Individuals to Ecosystems)
Show Figures

Figure 1

16 pages, 8577 KiB  
Article
Functional Diversity Accelerates the Decomposition of Litter Recalcitrant Carbon but Reduces the Decomposition of Labile Carbon in Subtropical Forests
by Guang Zhou, Jing Wan, Zhenjun Gu, Wei Ding, Shan Hu, Qiang Du, Shengwang Meng and Chunxia Yang
Forests 2023, 14(11), 2258; https://doi.org/10.3390/f14112258 - 16 Nov 2023
Viewed by 911
Abstract
The biodiversity of litter can regulate carbon and nutrient cycling during mixed decomposition. It is common knowledge that the decomposition rates of mixed litters frequently deviate from those predicted for these component litter species. However, the direction and magnitude of the nonadditive effects [...] Read more.
The biodiversity of litter can regulate carbon and nutrient cycling during mixed decomposition. It is common knowledge that the decomposition rates of mixed litters frequently deviate from those predicted for these component litter species. However, the direction and magnitude of the nonadditive effects on the degradation of mixed litters remain difficult to predict. Previous studies have reported that the different carbon fractions of leaf litters responded to litter mixture differently, which may help to explain the ambiguous nonadditive effect of diversity on bulk litter decomposition. Therefore, we conducted decomposition experiments on 32 litter mixtures from seven common tree species to test the responses of different carbon fractions to litter diversity in subtropical forests. We found that the overall mass loss of the mixed litter was faster than that estimated from single species. The relative mixing effects (RMEs) of different carbon fractions exhibited different patterns to litter diversity and were driven by different aspects of litter functional dissimilarity. Soluble carbon fractions decomposed more slowly than expected from single species, while lignin fractions decayed more quickly. Moreover, we found that the RMEs of bulk litter decomposition may be determined by the lignin fraction decomposition. Our findings further support that distinguishing the response of different carbon fractions to litter diversity is important for elucidating the nonadditive effects of total litter decomposition. Full article
(This article belongs to the Topic Litter Decompositions: From Individuals to Ecosystems)
Show Figures

Figure 1

18 pages, 10432 KiB  
Article
Long Term Seasonal Variability on Litterfall in Tropical Dry Forests, Western Thailand
by Dokrak Marod, Tohru Nakashizuka, Tomoyuki Saitoh, Keizo Hirai, Sathid Thinkampheang, Lamthai Asanok, Wongsatorn Phumphuang, Noppakun Danrad and Sura Pattanakiat
Forests 2023, 14(10), 2107; https://doi.org/10.3390/f14102107 - 20 Oct 2023
Viewed by 1438
Abstract
Nutrient recycling is one of the most important services that supports other processes in ecosystems. Changing litterfall patterns induced by climate change can cause imbalances in nutrient availability. In this study, we reported the long-term (28-year) interplay between environmental factors and variability among [...] Read more.
Nutrient recycling is one of the most important services that supports other processes in ecosystems. Changing litterfall patterns induced by climate change can cause imbalances in nutrient availability. In this study, we reported the long-term (28-year) interplay between environmental factors and variability among litterfall fractions (leaves, flowers, and fruit) in a tropical dry forest located in Kanchanaburi, Thailand. A long-term litter trap dataset was collected and analyzed by lagged generalized additive models. Strong seasonality was observed among the litter fractions. The greatest leaf and flower litterfall accumulated mostly during the cool, dry season, while fruit litterfall occurred mostly during the rainy season. For leaf litter, significant deviations in maximum temperature (Tmax), volumetric soil moisture content (SM), and evapotranspiration (ET) during the months prior to the current litterfall month were the most plausible factors affecting leaf litter production. Vapor pressure deficit (VPD) and ET were isolated as the most significant factors affecting flower litterfall. Interestingly, light, mean temperature (Tmean), and the southern oscillation index (SOI) were the most significant factors affecting fruit litterfall, and wetter years proved to be highly correlated with elevated fruit litterfall. Such environmental variability affects both the triggering of litterfall and its quantity. Shifting environmental conditions can therefore alter nutrient recycling rates through the changing characteristics and quantity of litter. Full article
(This article belongs to the Topic Litter Decompositions: From Individuals to Ecosystems)
Show Figures

Figure 1

Back to TopTop