Topic Editors

Department of Electronic Engineering, National Formosa University, Yunlin City 632, Taiwan
Graduate Institute of Science Education and Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan
Director of the Cognitions Humaine et Artificielle Laboratory, University Paris 8, 93526 Saint-Denis, France
Department of Electrical Engineering, National Central University, Taoyuan 32001, Taiwan
Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan

Application of IoT on Manufacturing, Communication and Engineering

Abstract submission deadline
31 March 2024
Manuscript submission deadline
31 May 2024
Viewed by
5658

Topic Information

Dear Colleagues,

The 2023 IEEE 5th Eurasia Conference on IoT, Communication and Engineering (IEEE ECICE 2023) will be held in Yunlin, Taiwan, on 27–29 October 2023, and it will provide a unified communication platform for researchers in the fields of IoT and advanced manufacturing. The booming economic development in Asia, particularly of the leading manufacturing industries, including automobile, machinery, computer, communication, consumer product, flat panel display to semiconductor and micro/nano areas, has attracted increasing attention among universities, research institutions and many industrial corporations. This conference aims to provide a broad international forum for researchers, engineers, and professionals from all over the world working in the areas of IoT and manufacturing to discuss and exchange various scientific, technical and management aspects across the wide spectrum of the society. The theme of the conference is set as smart manufacturing, focusing on new and emerging technologies. This Topic “Application of IoT on Manufacturing, Communication and Engineering”, includes five journals, Symmetry, Applied Sciences, Sensors, Coatings and Energies, which will publish excellent papers about relative fields. It enables interdisciplinary collaboration of science and engineering technologists in the academic and industrial fields, as well as international networking. Researchers with innovative ideas or research results in all aspects of advanced manufacture are encouraged to submit their contributions.

Topics of interest include, but are not limited to, the following:

  • Internet and IoT technology;
  • Communication science and engineering;
  • Computer science and information technology;
  • Computational science and engineering;
  • Electrical and electronic engineering;
  • Mechanical and automation engineering;
  • Advanced machining and forming processes;
  • Micro- and nano-fabrication;
  • Surface manufacturing processes;
  • Gears manufacturing;
  • Bio-medical manufacturing;
  • Precision engineering measurement;
  • Robotics and automation;
  • Additive manufacturing technology;
  • Smart manufacturing technology for Industry 4.0;
  • Environmental sustainability.

Prof. Dr. Teen-­Hang Meen
Prof. Dr. Chun-Yen Chang
Prof. Dr. Charles Tijus
Prof. Dr. Po-Lei Lee
Prof. Dr. Cheng-Fu Yang
Topic Editors

Keywords

  • Internet of Thing
  • smart manufacturing
  • communication
  • micro and nano fabrication
  • engineering

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.7 4.5 2011 15.8 Days CHF 2300 Submit
Coatings
coatings
3.4 4.7 2011 12.4 Days CHF 2600 Submit
Energies
energies
3.2 5.5 2008 15.7 Days CHF 2600 Submit
Sensors
sensors
3.9 6.8 2001 16.4 Days CHF 2600 Submit
Symmetry
symmetry
2.7 4.9 2009 14.7 Days CHF 2400 Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (9 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
23 pages, 7499 KiB  
Article
Research on Optimum Charging Current Profile with Multi-Stage Constant Current Based on Bio-Inspired Optimization Algorithms for Lithium-Ion Batteries
Energies 2023, 16(22), 7641; https://doi.org/10.3390/en16227641 - 17 Nov 2023
Viewed by 304
Abstract
Compared with the conventional constant-current constant-voltage (CC-CV) charging method, the multi-stage constant-current (MSCC) charging method offers advantages such as rapid charging speed and high charging efficiency. However, MSCC must find the optimal charging current profile (OCCP) in order to achieve the aforementioned benefits. [...] Read more.
Compared with the conventional constant-current constant-voltage (CC-CV) charging method, the multi-stage constant-current (MSCC) charging method offers advantages such as rapid charging speed and high charging efficiency. However, MSCC must find the optimal charging current profile (OCCP) in order to achieve the aforementioned benefits. Hence, in this paper, five bio-inspired optimization algorithms (BIOAs), including particle swarm optimization (PSO), modified PSO (MPSO), grey wolf optimization (GWO), modified GWO (MGWO), and the jellyfish search algorithm (JSA), are applied to solve the problem of searching for the OCCP of the MSCC. The best solution-finding procedure is run on the MATLAB platform developed based on minimizing the objective function of combining charging time (CT) and energy loss (EL) with a proportional weight. Without requiring numerous and time-consuming actual charge-and-discharge experiments, a wide range of searches can be quickly achieved only through the battery equivalent circuit model (ECM) established. The theoretical derivation and correctness are confirmed via the simulation and experimental results, which demonstrate that the OCCPs obtained by using the devised charging strategies possess the shortest CT and the best charging efficiency (CE), and among them, MPSO has the best fitness value (FV). Compared with the traditional CC-CV method, the experimental results show that the maximum improvement rates (IRs) of the studied approaches in terms of six charging performance evaluation indicators (CPEIs), including CT, charging capacity (CHC), CE, charging energy (CWh), average temperature rise (ATR), and FV, are 21.10%, 0.40%, 0.24%, 2.85%, 18.86%, and 68.99%, respectively. Furthermore, according to the comprehensive evaluation with CPEIs, the top three with the best overall performance are the JSA, MPSO, and GWO methods, respectively. Full article
Show Figures

Figure 1

16 pages, 9569 KiB  
Article
Enhancing UAV Visual Landing Recognition with YOLO’s Object Detection by Onboard Edge Computing
Sensors 2023, 23(21), 8999; https://doi.org/10.3390/s23218999 - 06 Nov 2023
Viewed by 562
Abstract
A visual camera system combined with the unmanned aerial vehicle (UAV) onboard edge computer should deploy an efficient object detection ability, increase the frame per second rate of the object of interest, and the wide searching ability of the gimbal camera for finding [...] Read more.
A visual camera system combined with the unmanned aerial vehicle (UAV) onboard edge computer should deploy an efficient object detection ability, increase the frame per second rate of the object of interest, and the wide searching ability of the gimbal camera for finding the emergent landing platform and for future reconnaissance area missions. This paper proposes an approach to enhance the visual capabilities of this system by using the You Only Look Once (YOLO)-based object detection (OD) with Tensor RTTM acceleration technique, an automated visual tracking gimbal camera control system, and multithread programing for image transmission to the ground station. With lightweight edge computing (EC), the mean average precision (mAP) was satisfied and we achieved a higher frame per second (FPS) rate via YOLO accelerated with TensorRT for an onboard UAV. The OD compares four YOLO models to recognize objects of interest for landing spots at the home university first. Then, the trained dataset with YOLOv4-tiny was successfully applied to another field with a distance of more than 100 km. The system’s capability to accurately recognize a different landing point in new and unknown environments is demonstrated successfully. The proposed approach substantially reduces the data transmission and processing time to ground stations with automated visual tracking gimbal control, and results in rapid OD and the feasibility of using NVIDIA JetsonTM Xavier NX by deploying YOLOs with more than 35 FPS for the UAV. The enhanced visual landing and future reconnaissance mission capabilities of real-time UAVs were demonstrated. Full article
Show Figures

Figure 1

14 pages, 4034 KiB  
Article
Seamless Industry 4.0 Integration: A Multilayered Cyber-Security Framework for Resilient SCADA Deployments in CPPS
Appl. Sci. 2023, 13(21), 12008; https://doi.org/10.3390/app132112008 - 03 Nov 2023
Viewed by 304
Abstract
The increased connectivity and automation capabilities of Industry 4.0 cyber-physical production systems (CPPS) create significant cyber-security vulnerabilities in supervisory control and data acquisition (SCADA) environments if robust protections are not properly implemented. Legacy industrial control systems and new IP-enabled sensors, instruments, controllers, and [...] Read more.
The increased connectivity and automation capabilities of Industry 4.0 cyber-physical production systems (CPPS) create significant cyber-security vulnerabilities in supervisory control and data acquisition (SCADA) environments if robust protections are not properly implemented. Legacy industrial control systems and new IP-enabled sensors, instruments, controllers, and appliances often lack basic safeguards like encryption, rigorous access controls, and endpoint security. This exposes manufacturers to substantial risks of cyberattacks that could manipulate, disrupt, or disable critical physical assets and processes related to their production lines and facilities. This study presents a multilayered cybersecurity framework to address these challenges and harden SCADA environments by implementing granular access controls, network micro-segmentation, anomaly detection, encrypted communications, and legacy system upgrades. The multilayered defense-in-depth (DID) approach combines policies, processes, and technologies to counter emerging vulnerabilities. The methodology was implemented in an electronics manufacturing facility across access control, zoning, monitoring, and encryption scenarios. Results show security improvements, including 57.4% fewer unauthorized access events, 41.2% faster threat containment, and 79.2% fewer hacking attempts. The quantified metrics highlight the CPPS resilience and threat mitigation capabilities enabled by the securely designed SCADA architecture, which allows manufacturers to confidently pursue Industry 4.0 integration and digital transformation with minimized disruption. Full article
Show Figures

Figure 1

29 pages, 2761 KiB  
Review
A Systematic Mapping: Exploring Internet of Everything Technologies and Innovations
Symmetry 2023, 15(11), 1964; https://doi.org/10.3390/sym15111964 - 24 Oct 2023
Viewed by 779
Abstract
The Internet of Everything (IoE) represents a paradigm shift in the world of connectivity. While the Internet of Things (IoT) initiated the era of interconnected devices, the IoE takes this concept to new heights by interlinking objects, individuals, data, and processes. Symmetry in [...] Read more.
The Internet of Everything (IoE) represents a paradigm shift in the world of connectivity. While the Internet of Things (IoT) initiated the era of interconnected devices, the IoE takes this concept to new heights by interlinking objects, individuals, data, and processes. Symmetry in IoE innovation and technology is essential for creating a harmonious and efficient ecosystem to ensure that the benefits are accessible to a broad spectrum of society while minimizing potential drawbacks. This comprehensive review paper explores the multifaceted landscape of the IoE, delving into its core concepts, enabling technologies, real-world applications, and the intricate web of challenges it presents. A focal point of this review is the diverse array of real-world applications spanning healthcare, smart cities, industry 4.0, agriculture, and sustainability. Previous works and examples illustrate how the IoE reshapes these domains, leading to greater efficiency, sustainability, and improved decision making. However, the transformative power of the IoE is accompanied by a host of challenges, including security and privacy concerns, interoperability issues, and the ethical implications of ubiquitous connectivity. These challenges are dissected in order to comprehensively understand the obstacles and potential solutions in the IoE landscape. As we stand on the cusp of an IoE-driven future, this review paper serves as a valuable resource for researchers, policy makers, and industry professionals seeking to navigate the complexities of this emerging paradigm. By illuminating the intricacies of the IoE, this review fosters a deeper appreciation for the transformative potential and the multifaceted challenges that lie ahead in the Internet of Everything era. Full article
Show Figures

Figure 1

13 pages, 833 KiB  
Article
Development of an Industrial Safety System Based on Voice Assistant
Appl. Sci. 2023, 13(21), 11624; https://doi.org/10.3390/app132111624 - 24 Oct 2023
Viewed by 422
Abstract
Currently, there are limitations in the human–machine interfaces (HMIs) used in industry, either due to the characteristics of users’ cognitive abilities or interfaces, which hinder communication and interaction between humans and equipment. For this reason, this work presents an alternative interaction model based [...] Read more.
Currently, there are limitations in the human–machine interfaces (HMIs) used in industry, either due to the characteristics of users’ cognitive abilities or interfaces, which hinder communication and interaction between humans and equipment. For this reason, this work presents an alternative interaction model based on a voice assistant, Alexa, which promotes more natural, intuitive, direct, and understandable communication. The purpose of this work is the development of an industrial safety system for a controlled electric motor based on Alexa voice assistant, which allows the monitoring of its operating parameters, such as phase current, housing temperature, and rotor vibration, as well as making it possible to control ignition and shut down and change the rotation of the motor with a prior password, as a safety measure. Commercial smart devices and Arduino-compatible modules were used to achieve this, providing them with the Internet of Things (IoT) feature. In addition, several software platforms, such as Blynk, Tuya Smart, Node Red, and Voiceflow, are used to perform data transmission, device management, and programming of the Alexa skill, oriented to the execution of the security and run system. This shows the potential capacity of voice assistants in the industry to deliver information more naturally to humans and obtain optimal notifications. However, problems were evidenced, such as the influence of noise in the environment when communicating with the assistant, the vocalization of words, low voice tones, and accents typical of the language, that will increase the security level of the system and prevent potential identity theft. Full article
Show Figures

Figure 1

15 pages, 7893 KiB  
Article
Technical Solution for Monitoring Climatically Active Gases Using the Turbulent Pulsation Method
Sensors 2023, 23(20), 8645; https://doi.org/10.3390/s23208645 - 23 Oct 2023
Viewed by 584
Abstract
This article introduces a technical solution for investigating the movement of gases in the atmosphere through the turbulent pulsation method. A comprehensive control system was developed to measure and record the concentrations of carbon dioxide and methane, temperature, humidity, atmospheric air pressure, wind [...] Read more.
This article introduces a technical solution for investigating the movement of gases in the atmosphere through the turbulent pulsation method. A comprehensive control system was developed to measure and record the concentrations of carbon dioxide and methane, temperature, humidity, atmospheric air pressure, wind direction, and speed in the vertical plane. The selection and validation of sensor types and brands for each parameter, along with the system for data collection, registration, and device monitoring, were meticulously executed. The AHT21 + ENS160 sensor was chosen for temperature measurement, the BME680 was identified as the optimal sensor for humidity and atmospheric pressure control, Eu-M-CH4-OD was designated for methane gas analysis, and CM1107N for carbon dioxide measurements. Wind direction and speed are best measured with the SM5386V anemometer. The control system utilizes the Arduino controller, and software was developed for the multicomponent gas analyzer. Full article
Show Figures

Figure 1

22 pages, 2186 KiB  
Article
Autonomous Scheduling for Reliable Transmissions in Industrial Wireless Sensor Networks
Energies 2023, 16(20), 7039; https://doi.org/10.3390/en16207039 - 11 Oct 2023
Viewed by 373
Abstract
Deploying Internet of Things (IoT) on low-power lossy wireless sensor/actuator networks (LLN) in harsh industrial environments presents challenges such as dynamic link qualities due to noise, signal attenuations and spurious interferences. However, the critical demand for industrial applications is reliability of data delivery [...] Read more.
Deploying Internet of Things (IoT) on low-power lossy wireless sensor/actuator networks (LLN) in harsh industrial environments presents challenges such as dynamic link qualities due to noise, signal attenuations and spurious interferences. However, the critical demand for industrial applications is reliability of data delivery on low-cost low-power sensor/actuator devices. To address these issues, this paper proposes a fully autonomous scheduling approach, called Auto-Sched, which ensures reliability of data delivery for both downlink and uplink traffic scheduling and enhances network robustness against node/link failures. To ensure reliability, Auto-Sched assigns retransmission time slots based on the reliability constraints of the communication link. To avoid collision issues, Auto-Sched creates an upward pipeline-like communication schedule for uplink end-to-end data delivery, and a downward pipeline-like communication schedule for downlink scheduling. For enhancing network robustness, we propose a simple algorithm for real-time autonomous schedule reconstruction, when node or link failures occur, with minimal influence on communication overhead. Performance evaluations quantified the performance of our proposed approaches under a variety of scenarios comparing them with existing approaches. Full article
Show Figures

Figure 1

19 pages, 4108 KiB  
Article
Analytical Technique Leveraging Processing Gain for Evaluating the Anti-Jamming Potential of Underwater Acoustic Direct Sequence Spread Spectrum Communication Systems
Symmetry 2023, 15(9), 1710; https://doi.org/10.3390/sym15091710 - 06 Sep 2023
Cited by 1 | Viewed by 465
Abstract
This study proposes an analytical technique underpinned by processing gain to evaluate the anti-jamming potential of an underwater acoustic direct-sequence spread-spectrum (DSSS) communication system that employs a short-period pseudo-noise (PN) sequence. The processing gain comes from the symmetry of the coding, which provides [...] Read more.
This study proposes an analytical technique underpinned by processing gain to evaluate the anti-jamming potential of an underwater acoustic direct-sequence spread-spectrum (DSSS) communication system that employs a short-period pseudo-noise (PN) sequence. The processing gain comes from the symmetry of the coding, which provides a mechanism for separating desired signals from unwanted ones, and the apparent randomness of the coding, which suppresses interference and noise in the system. The robustness of such a system against wideband interference, partial-band jamming, and single-frequency interference is emulated. Outcomes suggest that, in comparison to a standard binary phase shift keying (BPSK) system, the DSSS system’s ability to resist wideband interference is limited, with only a marginal increase in immunity performance of approximately 0.5 dB. Contrarily, it suppresses partial-band jamming effectively, with the suppression level dependent on the interference bandwidth and its relative position concerning the signal carrier frequency. The influence of single-frequency interference on system performance depends similarly on its relative location relative to the signal carrier frequency. In all situations where the interference frequency offset is an integer multiple of the bit bandwidth, the system exhibits the worst performance when the frequency offset equals the bit bandwidth. Upon comparing resistance levels to identical power interferences targeted at the signal carrier frequency, our system demonstrates optimal resilience to single-frequency interference. In concordance with the empirical findings, the simulated results substantiate both the effectiveness and practicability of the proposed analytical method based on processing gain. Subsequently, this study contributes a novel perspective for evaluating the anti-jamming potential of DSSS systems. Full article
Show Figures

Figure 1

14 pages, 3883 KiB  
Article
Unveiling LoRa’s Oceanic Reach: Assessing the Coverage of the Azores LoRaWAN Network from an Island
Sensors 2023, 23(17), 7394; https://doi.org/10.3390/s23177394 - 24 Aug 2023
Viewed by 1383
Abstract
In maritime settings, effective communication between vessels and land infrastructure is crucial, but existing technologies often prove impractical for energy-sensitive IoT applications, like deploying sensors at sea. In this study, we explore the viability of a low-power, cost-effective wireless communication solution for maritime [...] Read more.
In maritime settings, effective communication between vessels and land infrastructure is crucial, but existing technologies often prove impractical for energy-sensitive IoT applications, like deploying sensors at sea. In this study, we explore the viability of a low-power, cost-effective wireless communication solution for maritime sensing data. Specifically, we conduct an experimental assessment of the Azorean Long Range Wide Area Network (LoRaWAN) coverage. Our tests involve positioning the gateway at the island’s highest point and installing end nodes on medium-sized fishing vessels. Through measurements of received signal strength indicator (RSSI), signal-to-noise ratio (SNR), and lines of sight (LOS), we showcase the potential of LoRaWAN transmissions to achieve communication distances exceeding 130 km in a LOS-free scenario over the ocean. These findings highlight the promising capabilities of LoRaWAN for reliable and long-range maritime communication of sensing data. Full article
Show Figures

Figure 1

Back to TopTop