Endometrial Physiology and Pregnancy Success

A special issue of Reproductive Medicine (ISSN 2673-3897).

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 10358

Special Issue Editors


E-Mail Website
Guest Editor
Laboratory of Molecular Physiology, Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India
Interests: endometrial physiology; implantation biology; endometriosis; early placental biology; reproductive biomedicine; molecular endocrinology; translational medical discovery; evolutionary biology; history and philosophy of bio-medical sciences

E-Mail Website
Guest Editor
Laboratory of Molecular Physiology, Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India
Interests: preimplantation embryogenesis; embryo implantation; post-coital contraception; placental biology; endometriosis; reproductive health management

Special Issue Information

Dear Colleagues, 

Endometrium is the driver of preimplantation embryo development and ovo-implantation. Endometrial functions reflect lasting consequences on implantation process, placentation, foetal development, and pregnancy outcome. Understanding endometrial physiology bears significant clinical value to assess reproductive capacity of the mother, developmental potential of the embryo, and pregnancy outcome. Despite many advances in assisted reproductive technologies (ART), the rate of successful pregnancy outcome is still quite low. The renewed knowledge of endometrial physiology indeed will be of great support towards better application of ART. The proposed Special Issue on “Endometrial Physiology and Pregnancy Success” aims to deliberate novel visions of different aspects of the physiological basis of mover functions of endometrium to successful pregnancy.

Prof. Dr. Debabrata Ghosh
Prof. Dr. Jayasree Sengupta
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Reproductive Medicine is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ART
  • embryo implantation
  • endometrium
  • placentation
  • pregnancy

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 5219 KiB  
Article
The Human Early Maternal–Embryonic Interactome
by Adam Stevens, Taqua Khashkhusha, Megan Sharps, Terence Garner, Peter T. Ruane and John D. Aplin
Reprod. Med. 2023, 4(1), 40-56; https://doi.org/10.3390/reprodmed4010006 - 16 Feb 2023
Cited by 2 | Viewed by 1966
Abstract
Background: Single cell transcriptomics offers an avenue for predicting, with improved accuracy, the gene networks that are involved in the establishment of the first direct cell–cell interactions between the blastocyst and the maternal luminal epithelium. We hypothesised that in silico modelling of the [...] Read more.
Background: Single cell transcriptomics offers an avenue for predicting, with improved accuracy, the gene networks that are involved in the establishment of the first direct cell–cell interactions between the blastocyst and the maternal luminal epithelium. We hypothesised that in silico modelling of the maternal–embryonic interface may provide a causal model of these interactions, leading to the identification of genes associated with a successful initiation of implantation. Methods: Bulk and single cell RNA-sequencing of endometrial epithelium and scRNAseq of day 6 and 7 trophectoderm (TE) were used to model the initial encounter between the blastocyst and the maternal uterine lining epithelium in silico. In silico modelling of the maternal–embryonic interface was performed using hypernetwork (HN) analysis of genes mediating endometrial–TE interactions and the wider endometrial epithelial transcriptome. A hypernetwork analysis identifies genes that co-ordinate the expression of many other genes to derive a higher order interaction likely to be causally linked to the function. Potential interactions of TE with non-ciliated luminal cells, ciliated cells, and glandular cells were examined. Results: Prominent epithelial activities include secretion, endocytosis, ion transport, adhesion, and immune modulation. Three highly correlated clusters of 25, 22 and 26 TE-interacting epithelial surface genes were identified, each with distinct properties. Genes in both ciliated and non-ciliated luminal epithelial cells and glandular cells exhibit significant functional associations. Ciliated cells are predicted to bind to TE via galectin–glycan interaction. Day 6 and day 7 embryonic–epithelial interactomes are largely similar. The removal of aneuploid TE-derived mRNA invoked only subtle differences. No direct interaction with the maternal gland epithelial cell surface is predicted. These functional differences validate the in silico segregation of phenotypes. Single cell analysis of the epithelium revealed significant change with the cycle phase, but differences in the cell phenotype between individual donors were also present. Conclusions: A hypernetwork analysis can identify epithelial gene clusters that show correlated change during the menstrual cycle and can be interfaced with TE genes to predict pathways and processes occurring during the initiation of embryo–epithelial interaction in the mid-secretory phase. The data are on a scale that is realistic for functional dissection using current ex vivo human implantation models. A focus on luminal epithelial cells may allow a resolution to the current bottleneck of endometrial receptivity testing based on tissue lysates, which is confounded by noise from multiple diverse cell populations. Full article
(This article belongs to the Special Issue Endometrial Physiology and Pregnancy Success)
Show Figures

Figure 1

17 pages, 2622 KiB  
Article
Overexpression of ErbB-1 (EGFR) Protein in Eutopic Endometrium of Infertile Women with Severe Ovarian Endometriosis during the ‘Implantation Window’ of Menstrual Cycle
by Jeevitha Poorasamy, Deepali Garg, Juhi Bharti, Aruna Nambirajan, Asmita Patil, Jayasree Sengupta and Debabrata Ghosh
Reprod. Med. 2022, 3(4), 280-296; https://doi.org/10.3390/reprodmed3040022 - 26 Oct 2022
Viewed by 1577
Abstract
The strong association between endometriosis and infertility is of high clinical significance. High proliferative bias in eutopic endometrium during the secretory phase is a hallmark of endometriosis, which may result in high occurrence of implantation failure and resultant infertility in endometriosis. The ErbB [...] Read more.
The strong association between endometriosis and infertility is of high clinical significance. High proliferative bias in eutopic endometrium during the secretory phase is a hallmark of endometriosis, which may result in high occurrence of implantation failure and resultant infertility in endometriosis. The ErbB family of proteins regulates the proliferation capacity in the endometrium, potentially causing endometrial hostility to the implantation process in endometriosis. However, our knowledge regarding the involvement of the ErbB family in human endometrium during the window of implantation (WOI) in endometriosis-associated infertility is scant. In the present study, the cellular profiles of immunopositive ErbBs-1 to -4 in the endometrium of endometriosis-free, infertile women (Group 1; n = 11) and in eutopic endometrium of infertile women diagnosed with stage IV ovarian endometriosis (Group 2; n = 13) during the mid-secretory phase were compared using standardized guidelines. Computer-aided standardized combinative analysis of immunoprecipitation in different compartments revealed an overexpression of ErbB-1 in the epithelial, stromal and vascular compartments, along with marginally higher ErbB-3 expression (p < 0.06) in the vascular compartment and ErbB-4 expression (p < 0.05) in the glandular epithelium and stroma in the endometrium during the WOI in women with primary infertility associated with stage IV ovarian endometriosis compared with disease-free endometrium of control infertile women. It appears that changes in ErbBs in the eutopic endometrium during WOI induce anomalous proliferative, inflammatory and angiogenic activities in it, which can antagonize endometrial preparation for embryo implantation in endometriosis. This knowledge appears usable in strategizing methods for the treatment of endometriosis-associated infertility, as well as preempting the oncogenic potential of endometriosis. Full article
(This article belongs to the Special Issue Endometrial Physiology and Pregnancy Success)
Show Figures

Figure 1

17 pages, 3149 KiB  
Article
Kisspeptin Is Upregulated at the Maternal-Fetal Interface of the Preeclamptic-like BPH/5 Mouse and Normalized after Synchronization of Sex Steroid Hormones
by Viviane C. L. Gomes, Ashley K. Woods, Kassandra R. Crissman, Camille A. Landry, Kalie F. Beckers, Bryce M. Gilbert, Lucas R. Ferro, Chin-Chi Liu, Erin L. Oberhaus and Jenny L. Sones
Reprod. Med. 2022, 3(4), 263-279; https://doi.org/10.3390/reprodmed3040021 - 14 Oct 2022
Cited by 2 | Viewed by 1959
Abstract
Insufficient invasion of conceptus-derived trophoblast cells in the maternal decidua is a key event in the development of early-onset preeclampsia (PE), a subtype of PE associated with high maternal and fetal morbidity and mortality. Kisspeptins, a family of peptides previously shown to inhibit [...] Read more.
Insufficient invasion of conceptus-derived trophoblast cells in the maternal decidua is a key event in the development of early-onset preeclampsia (PE), a subtype of PE associated with high maternal and fetal morbidity and mortality. Kisspeptins, a family of peptides previously shown to inhibit trophoblast cell invasion, have been implicated in the pathogenesis of early-onset PE. However, a role of kisspeptin signaling during the genesis of this syndrome has not been elucidated. Herein, we used the preeclamptic-like BPH/5 mouse model to investigate kisspeptin expression and potential upstream regulatory mechanisms in a PE-like syndrome. Expression of the kisspeptin encoding gene, Kiss1, and the 10-amino-acid kisspeptide (Kp-10), are upregulated in the non-pregnant uterus of BPH/5 females during diestrus and in the maternal-fetal interface during embryonic implantation and decidualization. Correspondingly, the dysregulation of molecular pathways downstream to kisspeptins also occurs in this mouse model. BPH/5 females have abnormal sex steroid hormone profiles during early gestation. In this study, the normalization of circulating concentrations of 17β-estradiol (E2) and progesterone (P4) in pregnant BPH/5 females not only mitigated Kiss1 upregulation, but also rescued the expression of multiple molecules downstream to kisspeptin and ameliorated adverse fetoplacental outcomes. Those findings suggest that uterine Kiss1 upregulation occurs pre-pregnancy and persists during early gestation in a PE-like mouse model. Moreover, this study highlights the role of sex steroid hormones in uteroplacental Kiss1 dysregulation and the improvement of placentation by normalization of E2, P4 and Kiss1. Full article
(This article belongs to the Special Issue Endometrial Physiology and Pregnancy Success)
Show Figures

Figure 1

12 pages, 2819 KiB  
Article
Possible Involvement of miR-98 in the Regulation of PGRMC1 During Decidualization
by Atsuya Tsuru, Mikihiro Yoshie, Ryo Yonekawa, Junya Kojima, Mana Azumi, Kazuya Kusama, Hirotaka Nishi and Kazuhiro Tamura
Reprod. Med. 2022, 3(2), 189-200; https://doi.org/10.3390/reprodmed3020015 - 15 Jun 2022
Cited by 2 | Viewed by 1893
Abstract
Human endometrial stromal cells (ESCs) differentiate into decidual cells for embryo implantation during the mid-secretory phase of the menstrual cycle. Decidualization is characterized by enhanced production of insulin-like growth factor-binding protein 1 (IGFBP1) and prolactin (PRL) by ESCs and their morphological transformation into [...] Read more.
Human endometrial stromal cells (ESCs) differentiate into decidual cells for embryo implantation during the mid-secretory phase of the menstrual cycle. Decidualization is characterized by enhanced production of insulin-like growth factor-binding protein 1 (IGFBP1) and prolactin (PRL) by ESCs and their morphological transformation into polygonal cells. Progesterone (P4) receptor membrane component 1 (PGRMC1) is a member of a P4-binding complex implicated in function in female reproduction. In this study, we explored the mechanisms that regulate PGRMC1 during decidualization of human ESCs. Immunohistochemical analysis of endometrial samples showed that PGRMC1 was expressed in endometrial glandular and luminal epithelial cells and stromal cells throughout the menstrual cycle; however, the protein level in stroma was reduced in the secretory phase. Incubation of ESCs with dibutyryl (db)-cAMP and P4 in vitro, which induces decidualization, decreased the PGRMC1 protein abundance. Further, treatment with a PGRMC1-targeting siRNA or PGRMC1 inhibitor (AG-205) promoted mRNA expression of the db-cAMP/P4- and db-cAMP-induced decidual markers IGFBP1 and PRL. Moreover, the microRNA miR-98, a potential repressor of PGRMC1, was upregulated during decidualization, and transfection of ESCs with a miR-98 mimic decreased the PGRMC1 protein level. These findings suggest that miR-98-mediated downregulation of endometrial PGRMC1 may promote decidualization for the establishment of pregnancy. Full article
(This article belongs to the Special Issue Endometrial Physiology and Pregnancy Success)
Show Figures

Graphical abstract

Review

Jump to: Research

15 pages, 899 KiB  
Review
Genomic Insults and their Redressal in the Eutopic Endometrium of Women with Endometriosis
by Itti Munshi and Geetanjali Sachdeva
Reprod. Med. 2023, 4(2), 74-88; https://doi.org/10.3390/reprodmed4020009 - 15 Apr 2023
Cited by 1 | Viewed by 2047
Abstract
Endometrium, a highly dynamic tissue, is known for its remarkable ability to regenerate, differentiate, and degenerate in a non-conception cycle and transform into a specialized tissue to nurture and protect the embryo in a conception cycle. This plasticity of the endometrium endows the [...] Read more.
Endometrium, a highly dynamic tissue, is known for its remarkable ability to regenerate, differentiate, and degenerate in a non-conception cycle and transform into a specialized tissue to nurture and protect the embryo in a conception cycle. This plasticity of the endometrium endows the uterus to execute its major function, i.e., embryo implantation. However, this boon becomes a bane, when endometrium- or endometrium-like cells adhere, grow, and invade extrauterine sites, leading to endometriosis. Endometrial deposits at the extrauterine site lead to severe pelvic pain, painful menstruation, and infertility in endometriosis. Although benign, endometriotic lesions share several traits with cancerous cells, excessive proliferation, adhesion, invasion, and angiogenesis make endometriotic lesions analogous to cancer cells in certain aspects. There exists evidence to support that, akin to the cancer cell, endometriotic lesions harbor somatic mutations. These lesions are known to experience higher proliferative stress, oxidative stress, and inflammation, which may contribute to somatic mutations. However, it would be of more interest to establish whether in the eutopic endometriosis also, the mutational burden is higher or whether the DNA Damage Response (DDR) is compromised in the eutopic endometrium, in endometriosis. Such investigations may provide more insights into the pathobiology of endometriosis and may also unravel cellular events associated with the origin of the disease. This review compiles inferences from the studies conducted to assess DNA damage and DDR in endometriosis. Full article
(This article belongs to the Special Issue Endometrial Physiology and Pregnancy Success)
Show Figures

Figure 1

Back to TopTop