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Abstract: Background: Single cell transcriptomics offers an avenue for predicting, with improved
accuracy, the gene networks that are involved in the establishment of the first direct cell–cell in-
teractions between the blastocyst and the maternal luminal epithelium. We hypothesised that in
silico modelling of the maternal–embryonic interface may provide a causal model of these interac-
tions, leading to the identification of genes associated with a successful initiation of implantation.
Methods: Bulk and single cell RNA-sequencing of endometrial epithelium and scRNAseq of day 6
and 7 trophectoderm (TE) were used to model the initial encounter between the blastocyst and the
maternal uterine lining epithelium in silico. In silico modelling of the maternal–embryonic interface
was performed using hypernetwork (HN) analysis of genes mediating endometrial–TE interactions
and the wider endometrial epithelial transcriptome. A hypernetwork analysis identifies genes that
co-ordinate the expression of many other genes to derive a higher order interaction likely to be
causally linked to the function. Potential interactions of TE with non-ciliated luminal cells, ciliated
cells, and glandular cells were examined. Results: Prominent epithelial activities include secretion,
endocytosis, ion transport, adhesion, and immune modulation. Three highly correlated clusters of
25, 22 and 26 TE-interacting epithelial surface genes were identified, each with distinct properties.
Genes in both ciliated and non-ciliated luminal epithelial cells and glandular cells exhibit significant
functional associations. Ciliated cells are predicted to bind to TE via galectin–glycan interaction.
Day 6 and day 7 embryonic–epithelial interactomes are largely similar. The removal of aneuploid
TE-derived mRNA invoked only subtle differences. No direct interaction with the maternal gland
epithelial cell surface is predicted. These functional differences validate the in silico segregation of
phenotypes. Single cell analysis of the epithelium revealed significant change with the cycle phase,
but differences in the cell phenotype between individual donors were also present. Conclusions: A
hypernetwork analysis can identify epithelial gene clusters that show correlated change during the
menstrual cycle and can be interfaced with TE genes to predict pathways and processes occurring
during the initiation of embryo–epithelial interaction in the mid-secretory phase. The data are on
a scale that is realistic for functional dissection using current ex vivo human implantation models.
A focus on luminal epithelial cells may allow a resolution to the current bottleneck of endometrial
receptivity testing based on tissue lysates, which is confounded by noise from multiple diverse
cell populations.

Keywords: implantation; human; scRNAseq; hypernetwork; interactome; trophectoderm; endometrium;
luminal epithelium; ciliated cell; glandular epithelium; aneuploidy; blastocyst

1. Introduction

The first direct intercellular interaction at implantation is between embryonic trophec-
toderm (TE) and endometrial luminal epithelium (LE) [1]. The acquisition of receptivity
may therefore be, at least initially, an epithelially-centred transition. There is evidence that
the apical glycocalyx of the epithelium forms a protective barrier to be overcome by the
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embryo for stable attachment to be achieved [2,3]. Further evidence suggests that changes
in TE trophoblast gene expression required for the acquisition of invasive characteristics
are dependent on direct contact with LE [4,5]. Not only do apposition and attachment
define the site of implantation, but they are also required to initiate the first phase of a gene
expression program in the embryo that will allow it to progress to invade the stroma and
develop a placenta. Some aneuploid embryos develop to become morphologically normal
blastocysts but cannot be traced in products of conception [6], and early morphological,
metabolic and hCG monitoring shows that failure to progress may be seen broadly at any
stage from fertilisation to blastocyst transfer and beyond [7–9]. Though the numbers remain
controversial [10,11], it seems clear that some IVF embryos with the potential to develop
into healthy offspring do not do so because of endometrial factors. Impaired attachment
could be a cause of implantation failure, and so there is good reason to investigate the
molecular mechanisms involved.

Transcriptomic evaluation of endometrial status has been posited as a way of charac-
terising the program of maternal gene expression that leads to receptivity and predicting
(and even personalising) the optimal time to replace embryos created with IVF [12]. So far,
however, the results have not been sufficiently convincing in terms of improved outcomes
to persuade regulatory bodies to support its widespread use, despite the availability and
active marketing of testing kits [13,14]. Amongst a number of issues, the use of tissue
biopsies containing multiple cell types stands out as a source of noise in the transcriptome,
arising from variation in proportions of both resident and colonial cell types, contamination
with blood cells as well as natural variation in timing within the ovarian-uterine endocrine
axis. Single cell RNAseq offers a potential avenue for characterizing changes in specific cell
subpopulations including the minorities.

We have previously used in silico approaches to model the maternal–embryo interface,
focusing on TE responses to interactions with endometrial epithelial cells (EEC) [5]. Here,
we aimed to identify gene networks that are activated at implantation by deriving an in
silico interactome between endometrial epithelium and day 6/7 human trophectoderm. We
then used hypernetwork (HN) analysis [15,16], an approach that enumerates the number
of genes with shared correlated expression (Figure 1) to delineate maternal downstream
gene networks that might become involved in the response to an embryo. Specifically, bulk
(aggregated) as well as scRNAseq data from primary endometrial epithelial cells (EEC)
were used to examine EEC gene networks coupled to the TE interactome. The data reveal
the distinct interaction characteristics of LE, ciliated (CE), and glandular epithelial (GE)
cells and show them all changing with the cycle stage. The relatively small scale of the
resultant data means that functional evaluation using current in vitro models [5,17] should
be achievable. We also detect inter-individual differences that might confound attempts to
define a conserved state of receptivity.
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Figure 1. Generating and summarising a hypernetwork model of co-correlated gene expression as 
a causal model. (A). A bipartite network model of correlated gene expression between differentially 
expressed genes (circles) and the rest of the expressed genes in the genome (triangles). Strong cor-
relations are defined as by the upper and lower standard deviations of the distribution of correlation 
r-values. (B). The number of shared strong correlations between each differentially expressed gene 
and genes in the genome is calculated and expressed in a square matrix form (symmetrical)—this is 
the adjacency matrix of the hypernetwork. (C). Genes with high numbers of shared correlations are 
identified by clustering using the Euclidean metric. 

2. Materials and Methods 
2.1. Bulk RNA-Seq Data 

Endometrial epithelial bulk RNA-seq data [18], represented as read counts, were fil-
tered and normalized using the edgeR R package with the filterByExpr function [19]. The 
resulting data matrix consisted of a total of 9352 genes and 9 samples (4 proliferative and 
5 mid-secretory samples). Differentially expressed genes were determined by comparing 
gene expression between the proliferative (n = 4) and mid-secretory (n = 5) samples. This 
was performed using the “DGELIST” function. The p values for differentially expressed 
genes were calculated using the “topTags” function. Differentially expressed genes were 
defined by a cut-off of an adjusted p < 0.01. The p values were adjusted with the Benjamini-
Hochberg method [20].Transcriptomic differences between samples were visualised with 
principal component analysis (PCA). 

2.2. ScRNA-Seq Data 
Endometrial epithelial scRNA-seq data [21] were represented as mapped read 

counts. Proliferative, early secretory, early mid-secretory, and mid-secretory samples 
were extracted from the data. Endometrial epithelial cells (EEC) defined as luminal, glan-
dular, or ciliated were further refined from the original data matrix. 

Genes expressed in fewer than 3 cells, and cells expressing fewer than 200 genes were 
removed, as were cells with more than 5% mitochondrial gene transcripts to minimise 
doublets and low-quality (broken or damaged) cells, respectively. The remaining total 
comprised 20,669 genes and 2493 cells. Data were normalised using the “LogNormalize” 
method in the Seurat R package [22]. The gene expression measurement is normalised for 
each cell by multiplying the total expression by a scale factor (10,000 by default) and log-

Figure 1. Generating and summarising a hypernetwork model of co-correlated gene expression as a
causal model. (A). A bipartite network model of correlated gene expression between differentially
expressed genes (circles) and the rest of the expressed genes in the genome (triangles). Strong correla-
tions are defined as by the upper and lower standard deviations of the distribution of correlation
r-values. (B). The number of shared strong correlations between each differentially expressed gene
and genes in the genome is calculated and expressed in a square matrix form (symmetrical)—this is
the adjacency matrix of the hypernetwork. (C). Genes with high numbers of shared correlations are
identified by clustering using the Euclidean metric.

2. Materials and Methods
2.1. Bulk RNA-Seq Data

Endometrial epithelial bulk RNA-seq data [18], represented as read counts, were
filtered and normalized using the edgeR R package with the filterByExpr function [19]. The
resulting data matrix consisted of a total of 9352 genes and 9 samples (4 proliferative and
5 mid-secretory samples). Differentially expressed genes were determined by comparing
gene expression between the proliferative (n = 4) and mid-secretory (n = 5) samples. This
was performed using the “DGELIST” function. The p values for differentially expressed
genes were calculated using the “topTags” function. Differentially expressed genes were
defined by a cut-off of an adjusted p < 0.01. The p values were adjusted with the Benjamini-
Hochberg method [20].Transcriptomic differences between samples were visualised with
principal component analysis (PCA).

2.2. ScRNA-Seq Data

Endometrial epithelial scRNA-seq data [21] were represented as mapped read counts.
Proliferative, early secretory, early mid-secretory, and mid-secretory samples were extracted
from the data. Endometrial epithelial cells (EEC) defined as luminal, glandular, or ciliated
were further refined from the original data matrix.

Genes expressed in fewer than 3 cells, and cells expressing fewer than 200 genes were
removed, as were cells with more than 5% mitochondrial gene transcripts to minimise
doublets and low-quality (broken or damaged) cells, respectively. The remaining total
comprised 20,669 genes and 2493 cells. Data were normalised using the “LogNormalize”
method in the Seurat R package [22]. The gene expression measurement is normalised
for each cell by multiplying the total expression by a scale factor (10,000 by default) and
log-transforms the resulting variable genes. Differential gene analysis was performed
via the “FindMarkers” function in Seurat R. Differentially expressed genes (DEGs) were
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determined by comparing gene expression between proliferative and secretory phases for
ciliated, luminal, and glandular epithelial subtypes separately.

DEGs were defined by the cut-off adjusted p < 0.01. The p values were adjusted
with the Benjamini-Hochberg method [20]. The single epithelial cell differential transcrip-
tomes were visualised using Uniform Manifold Approximation and Projection (UMAP) to
cluster subtypes.

We analysed single-cell RNA-seq of day 6 and day 7 TE [23]. To identify outliers’
data was visualised using violin plots. Genes expressed in fewer than 3 cells, and cells
expressing fewer than 7500 genes were removed. We identified aneuploid cells within the
TE dataset as described [24].

2.3. In Silico Modelling of the TE-EEC Interface

Maternal cell surface genes were refined from the list of DEGs from the scRNA-seq
endometrial data. Cell surface genes were identified by the Database for Annotation,
Visualisation, and Integrated Discovery (DAVID) [25]. Genes encode proteins localised to
any of ‘extracellular space’, ‘extracellular matrix’, ‘proteinaceous extracellular matrix’, or
‘cell surface’ were considered to be cell surface. Putative protein binding partners were
identified using the Biological General Repository for Interaction Datasets (BioGRID) [26].
Binding ligands were refined to those present in the TE single-cell RNA transcriptomes.

2.4. Hypernetworks

HN were utilised to identify clusters of highly correlated genes in endometrial epithe-
lium. This can be represented by a hypergraph, G′(V′, E′). The vertices, v ∈ V′′ represent
the genes present at the EEC surface and each edge e ∈ E′ represents a subset of V called
hyperedges. In our hypergraph, the set {e} represents correlations of paired genes, whereas
the set {v} represents genes within the EEC network.

To calculate the correlation of endometrial surface genes to the rest of the transcriptome,
EEC bulk transcriptomes were used. The trimmed mean of m-values (TMM) were extracted
from the count matrix. Hypernetworks are calculated by multiplying the incidence matrix
M of the hypergraph G′ = (V′, E′) against the incidence matrix MT of the dual hypergraph
to forma an adjacency matrix. To binarise the resulting matrix, values within one standard
deviation of the correlation r-value were given the value 0 and all other correlation values
become 1. 0 indicates no relationship between a gene pair whereas 1 indicates a relationship
between a gene pair. Hypernetwork calculations were repeated with scRNA-seq dataset
for each endometrial epithelial subtype: glandular, ciliated, and luminal.

Data are presented as a heatmap, and hierarchical clustering was applied to cluster
genes with shared connections within the transcriptome. Genes were clustered based
on a dendrogram representing the Euclidean distance between samples as a measure
of similarity. The Galois correspondence of highly co-ordinated genes was defined in
the original incidence matrix to identify the set of genes being influenced by higher order
interactions and, therefore, the networks of genes functioning at the maternal-fetal interface.

2.5. Gene Network Construction and Visualisation

The gene–gene interaction network from HN was constructed from the adjacency
matrix. Cytoscape was used for the visualisation of the clusters [27]. The adjacency matrix
was exported into Cytoscape via the aMatReader plugin [28]. The network was illustrated
in the form of nodes and edges, where each node represents a single gene, and each edge
represents the gene-gene interactions. The Perfuse force-directed layout of the Cytoscape
application was used to display the gene–gene network.

2.6. Enrichment Analysis

To identify functions associated with each indirect action set extracted from the hy-
pernetwork, we performed a Gene Ontology (GO) enrichment analysis on “WEB-based
Gene SeT AnaLysis Toolkit”(WebGestalt) [29]. GO annotates genes to molecular function,
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cellular component and biological processes (BP) terms, and Weighted Set Cover was used
to identify overarching BP terms.

2.7. Data Availability and Materials

All analysis was performed in R version 3.4.2 (R Foundation for Statistical Comput-
ing), and the code has been deposited at https://github.com/Aikibloke/Taqua-Project
(accessed on 15 July 2021). All the data used come from publicly available repositories and
data portals.

Raw sequencing data of individual cells from 88 human preimplantation embryos [23]
are available from Array Express under E-MTAB-392957. Day 6 and day 7 single TE cell
data were extracted.

Endometrial epithelial bulk RNA sequencing (RNAseq) transcriptomes from 9 endome-
trial samples were extracted through the Gene Expression Omnibus (GEO) under the
accession number GSE13271151. Endometrial epithelium scRNA-seq data were down-
loaded through the web portal www.reproductivecellatlas.org (accessed on 15 March 2021).

3. Results
3.1. Secretory Phase EEC Genes Used to Model the Maternal-TE Interface

Principal component analysis was carried out on EEC transcriptomes from 4 proliferative
phase and 9 mid secretory phase samples. As expected [30], they resolved into two distinct
clusters representing the cycle phases pre- and post-ovulation (Supplementary Figure S1)
with 440 differentially expressed genes (DEG) at p < 0.01, 115 of which were either associated
with the cell surface or secreted. Genes differentially expressed between proliferative and
secretory phases were considered as candidates for the regulation of implantation, including
either up- or down-regulation. Figure 2 demonstrates the molecular function GO terms
for EEC cycle-responsive cell surface and secreted genes. In agreement with the most
prominent terms, growth factor, chemokine, cytokine, and adhesion/ECM receptors are
candidates in current work on embryo interaction with receptive phase endometrium, as
summarised in a recent review [31].
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X axis reports gene enrichment in the GO term and the Y axis the statistical significance of over-
representation (negative log10 false discovery rate). The size of dot reflects the number of genes in
each GO term and the colour reflects the number of genes in the sample matching the term.

3.2. Networks Functioning at the EEC-TE Interface Examined Using Hypernetwork Analysis

Single-cell transcriptomic datasets from blastocyst day 7 TE were interfaced to the EEC
data to identify gene networks functioning at the TE-EEC interface. A hypernetwork (HN)
is a graphical model that, by mathematical capture of changes of expression correlated in
the response to a variable (Figure 1), identifies higher-order interactions, in this case the
multiple simultaneous ones that occur between cellular macromolecules. Hypernetworks
cluster genes based on co-expression within the transcriptome, which relates to connectivity
in functional gene networks. 63% of genes present at the EEC surface with cognate cell
surface genes in day 7 TE were highly correlated to gene networks functioning within
the EEC transcriptome. Three highly correlated clusters of 25, 22 and 26 TE interacting
EEC surface genes were identified (Figure 3, Table S1) as is most readily evident in the
dendrogram to the left of the figure.
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importance of the epithelial-immune cell dialogue at peri-implantation [32]. 

As cluster 3 was by far the most enriched for biological process terms, the gene net-
works in this cluster were visualised in the form of nodes (genes) and edges (gene-gene 
interactions) on Cytoscape (Figure 4C). A high-confidence network of 46 nodes and 442 
edges was identified, where a group of 5 “intracellular vesicle” genes downstream of the 
interface genes were found alongside “cytoplasm” genes. This reflects the secretory GO 
terms identified for this cluster, including 3/12 cytoplasmic genes involved in vesicular 
trafficking (DCTN5, BICDL1, and TMEM127). The results thus suggest the epithelial sur-
face is highly dynamic and capable of rapid change. 

Figure 3. Hypernetwork analysis of day 7 TE interacting endometrial epithelial genes (EEC). Heatmap
demonstrating the correlations between EEC genes identified as possessing cognate cell-surface genes
in day 7 TE, against the rest of the EEC transcriptome. The same set of genes (n = 115) is present on
the columns and rows, thus generating a symmetrical matrix in which the colour scale represents the
number of shared correlations between each gene pair. Hierarchical clustering via the dendrogram
identified three gene clusters that share highly connected correlations (1, 2 and 3 from bottom left to
top right). Red in the heatmap depicts fewer correlations whereas yellow depicts highly correlated
genes. The black boxes highlight the most connected clusters.

The TE-interacting EEC genes and those strongly correlated to them in the hyper-
network were extracted; cluster 1 n = 158, cluster 2 n = 206, and cluster 3 n = 240. The
ontology associated with each cluster was calculated using overrepresentation analysis
(Figure 4). No significantly enriched biological process terms were identified in the first
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cluster. Twenty-six biological process terms were significantly over-represented in the sec-
ond cluster (Figure 4A), and these could be consolidated to 9 overarching terms including
“immune response”, “regulation of response to stress”, and “regulation of programmed
cell death”, among others. The third cluster contained many more significantly enriched
biological process (Figure 4B), 64 in total that consolidated to 10 umbrella terms including
the related terms secretion, vesicle-mediated transport and regulation of transport, and
regulation of cell proliferation, cell migration, and cell adhesion. The data emphasise the
importance of the epithelial-immune cell dialogue at peri-implantation [32].
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(C) Cystoscope network visualisation of genes in cluster 3. Edges with weight above a threshold of
0.9 are displayed. Yellow nodes denote cell surface genes that interact with TE. Downstream genes
are depicted as orange nodes (integral component of plasma membrane), blue nodes (intracellular
vesicle) and green nodes (cytoplasm).

As cluster 3 was by far the most enriched for biological process terms, the gene
networks in this cluster were visualised in the form of nodes (genes) and edges (gene-
gene interactions) on Cytoscape (Figure 4C). A high-confidence network of 46 nodes and
442 edges was identified, where a group of 5 “intracellular vesicle” genes downstream of
the interface genes were found alongside “cytoplasm” genes. This reflects the secretory GO
terms identified for this cluster, including 3/12 cytoplasmic genes involved in vesicular
trafficking (DCTN5, BICDL1, and TMEM127). The results thus suggest the epithelial surface
is highly dynamic and capable of rapid change.

3.3. Epithelial Heterogeneity

A fundamental problem with bulk sequencing is the averaging of gene expression
over the cell types in a full tissue. To refine the in silico model and discern epithelial cell
type-specific interactions at the interface with TE, scRNA-seq data of 10,729 endometrial
cells from 15 individuals were extracted from a publicly accessible repository. In keeping
with our focus on interactions at embryo attachment, data were filtered to include only
epithelial (luminal, ciliated, and glandular) subtypes (Figure 5), based on markers identified
by Garcia-Alonso et al. [21] and previous literature.

As expected [33], the data indicate substantial changes in gene expression from prolif-
erative to early secretory phase (Figure 5C), and further changes are evident that continue
through the secretory phase. While cells from the same histologically characterised phases
of the cycle cluster nearby one another, indicating conserved phenotypic change with
cycle progression, samples are also notably subclustered by individual donor (Figure 5B).
Though there are insufficient mid secretory phase samples to draw any firm conclusion,
the significant differences between donors in other phases of the cycle would suggest that
gene expression at the implantation stage may also differ quite markedly between women.

Based on these findings, and the possibility that there may be discrete functions for
luminal, ciliated, and glandular cells at implantation, their secretory phase interactomes
were analysed separately.

3.4. Trophectoderm-Luminal Epithelial Gene Networks

Starting from LE cell DEGs (n = 341 at an adjusted p-value < 0.05), cell surface or
secreted proteins were identified (n = 127) which might be involved most directly in the
initial intercellular interaction with TE. ScRNA-seq profiles of TE at day 6 and day 7 of
development were utilised to predict possible interactomes between LE and the two embryo
stages. There was no significant difference between the number of LE surface genes that
matched cognate binding partners on the TE surface at day 6 (83%) or day 7 (82%). HN
analysis identified 23 surface genes in TE that were highly correlated to surface genes
expressed by LE at day 7 (Figure 6, Table S2).

LE cell functions suggested by this analysis include secretion and release of sol-
uble signals (IL6, midkine, CRISP3, SCGB2A1) and prostaglandin production (COX-
1/PTGS1/prostaglandin H2 synthase), both in keeping with the literature [34]. Other LE
functions—adjustment of membrane structure and composition (ACSL4; ANXA4), protection
from complement-mediated damage (CD55), and ion transport (ATP1A1, SLC26A2)—are
generally conserved in epithelial tissues. It would not be surprising if these were affected
by an implanting embryo that crosses the barrier. Several genes in the LE interactome
were also represented in the bulk sequencing data (ANXA4, CRYAB, GRN, SERPINA5,
and VIM).
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Figure 5. Uniform Manifold Approximation and Projection (UMAP) clustering of the scRNA-seq
dataset (n = 10,729 cells with unadjusted sampling, so showing different cell numbers per donor)
representing endometrial epithelial subsets (A), donor individuals (B) and cycle stages (C) reported
by Garcia-Alonso et al. [21]. The epithelial subsets bearing SOX9 and LGR5 are specific phenotypes
of interest to these authors, with SOX9 being enriched in, but not exclusive to, the proliferative phase.
LGR5 cells are mainly luminal and sometimes ciliated.
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Figure 6. (A) Hypernetwork analysis demonstrating the correlations between LE genes with cognate
cell-surface genes in day 6 TE against the rest of the luminal transcriptome. Hierarchical clustering
based on the dendrogram identified gene clusters (black box) that share highly connected correlations.
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Red within the heatmap depicts a low number of gene correlations whereas yellow depicts more
highly correlated genes. (B) Venn diagram of the LE cluster genes comparing day 6 and day 7
interactomes. The overlapping number represents LE cluster components which interact with the TE
surface proteins on both day 6 and day 7. Non-overlapping numbers specify the genes unique to
each interactome. (C) Overarching GO terms of LE networks reported via indirect action analysis of
LE hypernetwork cluster in A. The X axis shows gene enrichment in the GO term and the Y axis the
statistical significance of over-representation (negative log10 false discovery rate). Dot size relates to
the number of genes in the sample matching the GO term.

A proportion of aneuploid cells can often be found in the human blastocyst [35,36]. To
predict the possible impact at the level of gene expression, aneuploid cells (a total of 22)
were removed from the data matrix, effecting a 9% decrease on day 7 TE. Limited changes
were noted: ENPP3 (Ectonucleotide pyrophosphatase) was exclusively associated with
aneuploid-containing day 7 TE interactions while CRISP3 (cysteine-rich secretory protein 3)
was absent from aneuploid-free day 7 interactome (data not shown). All subsequent
maternal-embryo interface modelling was performed with euploid-only TE data. This
analysis is consistent with the observation that, at least in some cases, implantation can
proceed even when aneuploid cells are present in the blastocyst [37].

We assessed GO biological process terms associated with the highly correlated day
7 TE-interacting LE genes of the HN cluster (n = 441). Over-representation analysis es-
tablished 83 significantly enriched terms, more than in the bulk EEC model. These were
consolidated into 10 overarching terms, including ‘mRNA metabolic processes’, ‘intracellu-
lar transport‘, and ‘immune response’ (Figure 5), the latter reflecting what was observed in
bulk EEC hypernetworks.

3.5. Trophectoderm-Ciliated Epithelium and Trophectoderm-Glandular Epithelium Gene Networks

DEG analysis of ciliated epithelial cells (CE) identified 1240 genes that differed be-
tween proliferative and secretory phases. Of these, 385 encoded cell surface proteins, and
HN identified 85 interacting genes in day 7 TE that were highly correlated to the rest of the
CE transcriptome (Figure 7, Table S2). Gene ontology analysis identified 127 biological pro-
cesses associated with the CE cluster which were consolidated to 10 overarching pathways
including ‘cellular response to stress’, ‘response to toxic substance’, apoptotic processes’,
and ‘regulation of cell proliferation’.

Analysis of the CE genes suggests processes important in this cell subset: ion transport
(eg SLC26A2), membrane organization, and membrane-cytoskeletal interaction (TSPAN,
CD81, EZR), and cell adhesion (LGALS1, LGALS3 (also represented in the bulk sequencing
data), EPHA2).

TE may interact at implantation with cells at the necks of glands, and early cytotro-
phoblasts can enter gland lumena [38]. Therefore, it was relevant to profile the prospective
TE-gland epithelial interactome. Changes in 340 glandular cell DEGs were detected be-
tween the proliferative and secretory phases at an adjusted p < 0.05. This list was refined to
leave 77 surface or secreted gene products through DAVID utilising the gene ontology terms
“extracellular space”, “extracellular matrix”, “extracellular region”, and “proteinaceous
extracellular matrix”. The term “cell surface” was not associated with any of the DEGs,
consistent with GE cells mainly functioning through secretory activity as implantation
is initiated.

Interactions of genes encoding proteins secreted by GE with cognate TE cell-surface
genes on day 7 were examined. HN analysis of the interactome defined only 3 GE genes
(IGFBP4, EPB41L2, MTRNR2L1) to be highly correlated to genes in TE (Table S2). Insulin-
like growth factor binding protein 4 (IGFBP4) is associated with cell growth via regulation
of IGF bioavailability [39] and is an inhibitor of canonical Wnt signalling [40]. Wnt has been
implicated in the development of ciliated epithelial cells [21]. GO enrichment analysis of
the gene sets implicated in indirect action correlated with the cluster genes (n = 1380) shows
association with 85 biological process that make up 10 overarching processes (Figure 8).
However, it should be noted that the correlated dataset may not reflect genes that respond
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to TE interactions, as could be the case for cell surface genes in the previous analyses.
Furthermore, enrichment ratios are lower, so caution is required in interpretation.
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Figure 7. (A) Hypernetwork analysis of day 6 TE-interacting endometrial ciliated epithelial genes
(CE). The heatmap demonstrates correlations between CE genes and cognate cell-surface genes in day
6 TE against the rest of the CE transcriptome. Hierarchical clustering selects genes that share highly
connected correlations (black box). (B) GO analysis of the indirect action analysis of CE hypernetwork
cluster in A. Gene enrichment in the GO term and statistical significance of over-representation
(negative log10 false discovery rate) are plotted. Dot size relates to the number of genes in the sample
matching the GO term.
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Figure 8. (A) Hypernetwork analysis of day 6 TE-interacting glandular epithelial genes (GE). The
heatmap demonstrates correlations between GE genes and cognate cell-surface genes in day 6 TE
against the rest of the GE transcriptome. Hierarchical clustering selects genes that share highly
connected correlations (black box). (B) Gene Ontology (GO) of GE networks identified via indirect
action analysis. Enriched biological pathways were identified using over-representation analysis.
The X-axis represents the log2 (fold enrichment) and the Y-axis represents the negative log10 (FDR)
of each enriched biological process (GO term). Each dot demonstrates a specific pathway, and the
size of the dot shows the gene set size of each enriched pathway. All GO terms were significant at an
FDR < 0.01.
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3.6. Comparison of Maternal Gene Networks at the Different TE Interface Models

The maternal–TE interface model determined from bulk EEC transcriptome data as
expected yielded the highest number of transcriptome-correlated genes, as derived by HN
analysis (Figure 9A). Amongst the epithelial subsets, the associated gene networks of the
LE interface model were the most coherent in terms of enriched biological process ontology
terms The CE model contained a similar number of highly correlated interface genes to
the LE model but fewer associated ontology terms while the GE interface model yielded
very few transcriptome-correlated interface genes and their associations were much less
enriched in ontology terms. A comparison of the significance and enrichment levels of
the umbrella ontology terms for each interface model shows that the LE and CE interface
models are associated with much more highly significant ontology terms than any other
model apart from the ‘secretory’ term in EEC cluster 3 (Figure 9B; cf Figure 4B). Thus,
the results predict that both ciliated and non-ciliated cells in the luminal compartment
contribute to interaction with an implanting embryo.
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4. Discussion

The hypernetwork approach to analysis of correlated gene expression allows identi-
fication of coregulation patterns that would not be detected in pairwise analysis of gene
expression, so observations may stem from actions upstream (such as a transcriptional
activator or repressor) or downstream (such as an adaptor protein or solute transporter)
control points that may not be visible after data filtration. Central gene clusters are asso-
ciated with different degrees of pathway promiscuity, reflecting regulatory coordination
of a stochastic change [41]. Correlation is non-directional; that is, co-variation and inverse
variation are treated the same. Since the analysis arises from system change, in this case in
cycling EEC, we cannot expect to identify all interactions that are relevant to the success of
implantation; rather, genes emerge that play a part in mediating changes in the function of
the cells against a background of conserved genes that may still be interactive. The results
suggest that the single cell LE cluster yields the most highly causally enriched model (better
than bulk EEC), and that CE modelling indicates a likely additional contribution to the
interface with TE.

In the secretory phase, obtaining larger single cell data sets will be important as it is
here that receptivity to the blastocyst arises, and the comparison between bulk sequencing
and single cell data does not account for possible changes in the abundance of the three cell
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subpopulations. This applies especially to mid secretory phase. Given the presence of inter-
individual variation overlaid on cycle progression, with speed of response to progesterone
known to vary between individuals [42], we are not currently in possession of enough
samples to see the extent of variation. However, it is likely that this combination of factors
accounts for the documented problems with attempts to specify and schedule the receptive
phase using transcriptomics [14].

A further limitation of the analysis is that we are considering both EEC and TE in their
respective states before interaction begins, thus ignoring any effects of the spatiotemporal
advance of the mutual dialogue. Indeed, we have shown [4] that contact between TE and
LE generates a signal that turns on differentiation-related transcription factors within a few
hours, consistent with the rapid differentiation of trophoblast required to advance implan-
tation. Therefore, we can only consider the interactions predicted here as representing an
initial phase of implantation. Day 6 and Day 7 TE behave similarly, consistent with the idea
that implantation could occur on either day.

To examine the maternal-embryonic dialogue as it evolves, ex vivo models in which
blastocysts or blastoids interact with 3D endometrial tissue constructs can be combined with
scRNA analysis; while blastoids have already been reported interacting with endometrial
cells in 2D [17], as well as embryos interacting with 3D endometrial assembloids [43], there
are still technical challenges to overcome. Spatial transcriptomics of implantation sites
generated ex vivo will also be informative as spatial relationships are lost in single cell
analysis [44].

The substantial differences between gene expression in epithelial cells in proliferative
vs secretory phase are consistent with many previous studies showing that progesterone
can act directly on receptor in epithelial cells, or indirectly on receptor-bearing stromal
cells, which subsequently emit paracrine signals that act on the epithelium [33]. In both
instances, the effects are far reaching.

It is clear from morphology studies that both glands and luminal epithelium contain
ciliated as well as non-ciliated cells [45]. Ciliated cells are thought to arise in response
to estrogen stimulation in the proliferative phase [45,46]. They change phenotype in the
proliferative to secretory transition, but according to the snapshot achieved here, do so
less radically than other epithelial subsets. They are abundant in the LE and express the
galectin LGAL3 (also detected in EEC and LE), which suggests a possible role in the initial,
perhaps relatively weak, interaction with glycoprotein on TE at apposition. This could be
linked to repositioning or rotation of the embryo prior to stable adhesion. The data also
suggest that CE cells might act as sensors of the luminal environment, invoking metabolic
pathways to respond to stressors such as nutrient deprivation, which, even if confined to
the peri-implantation period, could exert far-reaching effects on the conceptus [47–49].

Comparisons of bulk sequencing data with the single cell analysis identifies other
pathways with plausible functional significance in specific epithelial subsets. The epithelial
surface is dynamic with prominent paracrine signalling, vesicular trafficking and ion
transport functions. Protease activity and its inhibition appear widely, for example in
the presence of SLPI in both EEC and LE. Down-regulation of this inhibitor has been
implicated at implantation [50]. Ephrin A1 (EFNA1), the hyaluronan binding protein
HABP2 and CXCL2 are expressed in both EEC and LE. TM4SF1, a tetraspanin associated
with cell migration and Wnt inhibition [51] is present in EEC and all three single cell types.
SMAD3, a transcription factor activated by TGFβ and implicated in endometrial priming
for implantation [52–54], is found in EEC bulk sequencing, but only in the GE single cell
data. The cluster analysis supports the idea that distinct functional repertoires in different
epithelial subsets contribute to interactions at implantation.

In GE, little evidence was found for direct cell-cell interaction with TE, consistent with
the spatial relationship with TE at early implantation. However the data are consistent
with a secretory role for GE, offering a biological readout that supports the validity of
this methodology. A combination of secretory at-a-distance signals with direct cell-cell
interactions involving distinct epithelial subsets is likely to be the emerging picture of
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implantation biology. Localised activation of GE is likely at and near the implantation site
to target secretory activity, and the glands show a capacity where necessary to activate
immune and stromal cell populations adjacent to the embryo.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/reprodmed4010006/s1, Figure S1: Principal Component analysis
(PCA) of primary endometrial epithelial cell transcriptomes; Table S1: Genes identified in the
hypernetwork clusters from bulk transcriptome EEC; Table S2: Genes identified in the hypernetwork
clusters from single-cell LE, CE and GE transcriptomes.
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