Special Issue "Collagen and Chitin from Marine Resources and Their Interdisciplinary Applications"

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Biomaterials of Marine Origin".

Deadline for manuscript submissions: 31 December 2023 | Viewed by 5804

Special Issue Editor

1. Department of Chemical & Physical Sciences, University of Toronto, Toronto, ON, Canada
2. Center for Climate Change Research, Toronto, ON, Canada
Interests: marine collagen; marine chitin; chitosan; marine proteins; marine polysaccharides; drug discovery; biomineralization; biomaterials; marine invertebrates; corals; marine algae; marine fish proteomics; marine biotechnology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Marine collagen and chitin have great potential applications in drug discovery, drug delivery, wound healing, tissue engineering, antiaging, agriculture, and environmental fields. These two biopolymers also exhibit similar hierarchical structural organizations. After cellulose, chitin is the second most important natural polymer in the world, and has been identified in bacteria, fungi, plants, and marine invertebrates. Chitin can also be enzymatically deacetylated to chitosan, a more flexible and soluble biopolymer. As mentioned above, it has many applications, including in the biomedical, environmental, and agricultural sectors. Similarly, nature is a source of massive quantities of collagen, especially in marine organisms. Collagen is the main fibrous structural protein in the extracellular matrix and connective tissue of animals. It contributes greatly to biotechnology products and medical applications.

As a Guest Editor of this Special Issue, I invite you to submit recent innovations in these two biopolymers, including original works, reviews, short communications, and innovations in biological sources and their promising applications.

Dr. Azizur Rahman
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine collagen
  • marine chitin
  • chitosan
  • marine proteins and peptides
  • biopolymers
  • corals
  • sponges
  • sea urchins
  • marine fish
  • mollusks/bivalves
  • marine algae
  • marine polysaccharides
  • marine bioactive compounds
  • marine biotechnology
  • marine biomaterials
  • proteomics

Related Special Issues

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
On the Mechanical Properties of Microfibre-Based 3D Chitinous Scaffolds from Selected Verongiida Sponges
Mar. Drugs 2023, 21(9), 463; https://doi.org/10.3390/md21090463 - 24 Aug 2023
Viewed by 437
Abstract
Skeletal constructs of diverse marine sponges remain to be a sustainable source of biocompatible porous biopolymer-based 3D scaffolds for tissue engineering and technology, especially structures isolated from cultivated demosponges, which belong to the Verongiida order, due to the renewability of their chitinous, fibre-containing [...] Read more.
Skeletal constructs of diverse marine sponges remain to be a sustainable source of biocompatible porous biopolymer-based 3D scaffolds for tissue engineering and technology, especially structures isolated from cultivated demosponges, which belong to the Verongiida order, due to the renewability of their chitinous, fibre-containing architecture focused attention. These chitinous scaffolds have already shown excellent and promising results in biomimetics and tissue engineering with respect to their broad diversity of cells. However, the mechanical features of these constructs have been poorly studied before. For the first time, the elastic moduli characterising the chitinous samples have been determined. Moreover, nanoindentation of the selected bromotyrosine-containing as well as pigment-free chitinous scaffolds isolated from selected verongiids was used in the study for comparative purposes. It was shown that the removal of bromotyrosines from chitin scaffolds results in a reduced elastic modulus; however, their hardness was relatively unaffected. Full article
Show Figures

Figure 1

Article
Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro
Mar. Drugs 2023, 21(9), 460; https://doi.org/10.3390/md21090460 - 22 Aug 2023
Viewed by 492
Abstract
Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with [...] Read more.
Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as “Iron-Spongin”, which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of “Iron-spongin” but also opens the door to other applications of these multifunctional materials. Full article
Show Figures

Graphical abstract

Article
Proteomic and Transcriptomic Analyses to Decipher the Chitinolytic Response of Jeongeupia spp.
Mar. Drugs 2023, 21(8), 448; https://doi.org/10.3390/md21080448 - 15 Aug 2023
Viewed by 560
Abstract
In nature, chitin, the most abundant marine biopolymer, does not accumulate due to the action of chitinolytic organisms, whose saccharification systems provide instructional blueprints for effective chitin conversion. Therefore, discovery and deconstruction of chitinolytic machineries and associated enzyme systems are essential for the [...] Read more.
In nature, chitin, the most abundant marine biopolymer, does not accumulate due to the action of chitinolytic organisms, whose saccharification systems provide instructional blueprints for effective chitin conversion. Therefore, discovery and deconstruction of chitinolytic machineries and associated enzyme systems are essential for the advancement of biotechnological chitin valorization. Through combined investigation of the chitin-induced secretome with differential proteomic and transcriptomic analyses, a holistic system biology approach has been applied to unravel the chitin response mechanisms in the Gram-negative Jeongeupia wiesaeckerbachi. Hereby, the majority of the genome-encoded chitinolytic machinery, consisting of various glycoside hydrolases and a lytic polysaccharide monooxygenase, could be detected extracellularly. Intracellular proteomics revealed a distinct translation pattern with significant upregulation of glucosamine transport, metabolism, and chemotaxis-associated proteins. While the differential transcriptomic results suggested the overall recruitment of more genes during chitin metabolism compared to that of glucose, the detected protein-mRNA correlation was low. As one of the first studies of its kind, the involvement of over 350 unique enzymes and 570 unique genes in the catabolic chitin response of a Gram-negative bacterium could be identified through a three-way systems biology approach. Based on the cumulative data, a holistic model for the chitinolytic machinery of Jeongeupia spp. is proposed. Full article
Show Figures

Graphical abstract

Article
The Loss of Structural Integrity of 3D Chitin Scaffolds from Aplysina aerophoba Marine Demosponge after Treatment with LiOH
Mar. Drugs 2023, 21(6), 334; https://doi.org/10.3390/md21060334 - 30 May 2023
Cited by 1 | Viewed by 817
Abstract
Aminopolysaccharide chitin is one of the main structural biopolymers in sponges that is responsible for the mechanical stability of their unique 3D-structured microfibrous and porous skeletons. Chitin in representatives of exclusively marine Verongiida demosponges exists in the form of biocomposite-based scaffolds chemically bounded [...] Read more.
Aminopolysaccharide chitin is one of the main structural biopolymers in sponges that is responsible for the mechanical stability of their unique 3D-structured microfibrous and porous skeletons. Chitin in representatives of exclusively marine Verongiida demosponges exists in the form of biocomposite-based scaffolds chemically bounded with biominerals, lipids, proteins, and bromotyrosines. Treatment with alkalis remains one of the classical approaches to isolate pure chitin from the sponge skeleton. For the first time, we carried out extraction of multilayered, tube-like chitin from skeletons of cultivated Aplysina aerophoba demosponge using 1% LiOH solution at 65 °C following sonication. Surprisingly, this approach leads not only to the isolation of chitinous scaffolds but also to their dissolution and the formation of amorphous-like matter. Simultaneously, isofistularin-containing extracts have been obtained. Due to the absence of any changes between the chitin standard derived from arthropods and the sponge-derived chitin treated with LiOH under the same experimental conditions, we suggest that bromotyrosines in A. aerophoba sponge represent the target for lithium ion activity with respect to the formation of LiBr. This compound, however, is a well-recognized solubilizing reagent of diverse biopolymers including cellulose and chitosan. We propose a possible dissolution mechanism of this very special kind of sponge chitin. Full article
Show Figures

Graphical abstract

Article
A Thermostable Type I Collagen from Swim Bladder of Silver Carp (Hypophthalmichthys molitrix)
Mar. Drugs 2023, 21(5), 280; https://doi.org/10.3390/md21050280 - 28 Apr 2023
Viewed by 969
Abstract
As a major component of the extracellular matrix, collagen has been used as a biomaterial for many purposes including tissue engineering. Commercial collagen derived from mammals is associated with a risk of prion diseases and religious restrictions, while fish-derived collagen can avoid such [...] Read more.
As a major component of the extracellular matrix, collagen has been used as a biomaterial for many purposes including tissue engineering. Commercial collagen derived from mammals is associated with a risk of prion diseases and religious restrictions, while fish-derived collagen can avoid such issues. In addition, fish-derived collagen is widely available and low-cost; however, it often suffers from poor thermal stability, which limits its biomedical application. In this study, collagen with a high thermal stability was successfully extracted from the swim bladder of silver carp (Hypophthalmichthys molitrix) (SCC). The results demonstrated that it was a type I collagen with high purity and well-preserved triple-helix structure. Amino acid composition assay showed that the amounts of threonine, methionine, isoleucine and phenylalanine in the collagen of swim bladder of silver carp were higher than those of bovine pericardium. After adding salt solution, swim-bladder-derived collagen could form fine and dense collagen fibers. In particular, SCC exhibited a higher thermal denaturation temperature (40.08 °C) compared with collagens from the swim bladder of grass carp (Ctenopharyngodon idellus) (GCC, 34.40 °C), bovine pericardium (BPC, 34.47 °C) and mouse tail (MTC, 37.11 °C). Furthermore, SCC also showed DPPH radical scavenging ability and reducing power. These results indicate that SCC presents a promising alternative source of mammalian collagen for pharmaceutical and biomedical applications. Full article
Show Figures

Figure 1

Article
Synthesis of Water-Soluble Sulfonated Chitin Derivatives for Potential Antioxidant and Antifungal Activity
Mar. Drugs 2022, 20(11), 668; https://doi.org/10.3390/md20110668 - 26 Oct 2022
Viewed by 785
Abstract
Chitin is a natural renewable and useful biopolymer limited by its insolubility; chemical derivatization can enhance the solubility and bioactivity of chitin. The purpose of this study was to synthesize novel water-soluble chitin derivatives, sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT), as antioxidant and antifungal [...] Read more.
Chitin is a natural renewable and useful biopolymer limited by its insolubility; chemical derivatization can enhance the solubility and bioactivity of chitin. The purpose of this study was to synthesize novel water-soluble chitin derivatives, sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT), as antioxidant and antifungal agents. The target derivatives were characterized by means of elemental analysis, FTIR, 13C NMR, TGA and XRD. Furthermore, the antioxidant activity of the chitin derivatives was estimated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical and superoxide-radical) and ferric reducing power. In addition, inhibitory effects against four fungi were also tested. The findings show that antioxidant abilities and antifungal properties were in order of SPCT > SCT > CT. On the basis of the results obtained, we confirmed that the introduction of sulfonated groups on the CT backbone would help improve the antioxidant and antifungal activity of CT. Moreover, its efficacy as an antioxidant and antifungal agent increased as the chain length of the substituents increased. This derivatization strategy might provide a feasible way to broaden the utilization of chitin. It is of great significance to minimize waste and realize the high-value utilization of aquatic product wastes. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

Review
Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review
Mar. Drugs 2023, 21(5), 304; https://doi.org/10.3390/md21050304 - 17 May 2023
Cited by 1 | Viewed by 1257
Abstract
Tissue engineering and regenerative medicine (TERM) holds great promise for addressing the growing need for innovative therapies to treat disease conditions. To achieve this, TERM relies on various strategies and techniques. The most prominent strategy is the development of a scaffold. Polyvinyl alcohol-chitosan [...] Read more.
Tissue engineering and regenerative medicine (TERM) holds great promise for addressing the growing need for innovative therapies to treat disease conditions. To achieve this, TERM relies on various strategies and techniques. The most prominent strategy is the development of a scaffold. Polyvinyl alcohol-chitosan (PVA-CS) scaffold emerged as a promising material in this field due to its biocompatibility, versatility, and ability to support cell growth and tissue regeneration. Preclinical studies showed that the PVA-CS scaffold can be fabricated and tailored to fit the specific needs of different tissues and organs. Additionally, PVA-CS can be combined with other materials and technologies to enhance its regenerative capabilities. Furthermore, PVA-CS represents a promising therapeutic solution for developing new and innovative TERM therapies. Therefore, in this review, we summarized the potential role and functions of PVA-CS in TERM applications. Full article
Show Figures

Figure 1

Back to TopTop