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Abstract: Marine sponges of the subclass Keratosa originated on our planet about 900 million years
ago and represent evolutionarily ancient and hierarchically structured biological materials. One of
them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons
and remains enigmatic with complex chemistry. The objective of this study was to investigate the
interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the
occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new
lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 ◦C using artificial
seawater and iron is described for the first time. This method helps to obtain a new composite
as “Iron-Spongin”, which was characterized by infrared spectroscopy and thermogravimetry. Fur-
thermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray
diffraction were used to determine the structure. This research proposed a corresponding mecha-
nism of lepidocrocite formation, which may be connected with the spongin amino acids functional
groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine
sensor is proposed. The conducted research not only shows the mechanism or sensor properties of
“Iron-spongin” but also opens the door to other applications of these multifunctional materials.
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1. Introduction

Marine sponges are a resourceful provider of a large diversity of biologically active
compounds and biological materials, including chitin and spongin [1,2]. Proteinaceous
spongin in the form of 3D porous network-like scaffolds is recognized as a renewable ma-
rine biomaterial due to its ability of selected demosponges (mostly bath sponges) to grow
under marine ranching conditions [3]. It consists mainly of protein-derived collagen of still
unknown type [4], a significant amount of sulfur (up to 5%) similar to keratins, unique
halogenated amino acids, xylose, as well as traces of calcium carbonates and silica [5–8].
This biopolymer is characterized by a complex hierarchical structure based on intercon-
nected nano- and micro-fibers [9–12]. Such a composition gives this marine biomaterial
special resistance to a wide range of acids and enzymes as well as specific structural and
mechanical features [13]. Consequently, there are numerous fields of spongin’s applications
in the form of ready-to-use scaffolds, including tissue engineering and biomedicine [14], as
well as bioinspired material science [15–18].

In addition, spongin’s range of applications in extreme biomimetics [19] is enhanced
due to its thermal stability of up to 300 ◦C [6]. Three-dimensional spongin scaffolds can also
be carbonized at high temperatures under anaerobic conditions. Carbonization at 1200 ◦C
confirms the preservation of spongin scaffold morphology in the formed graphite [20]. All
these features mark a breakthrough opportunity in modern materials science with respect
to spongin-based scaffolding strategies [20–31].

Biomimetics is the science-driven imitation of the natural phenomena, processes, and
fascinating architectural principles of natural materials using a wide range of modern
tools [22]. It is an interdisciplinary direction in the creation of new materials with unique
properties for broad practical applications, where special priority is given to renewable
biopolymers such as spongin, which precludes the deliberate depletion of natural resources.
By combining inorganic compounds (e.g., iron (III) chloride [20], titanium (IV) oxide [24],
manganese (IV) oxide [23], and copper (II) tetraamine chloride [19,22]) and spongin using
a nature-inspired biomimetic approach, it can provide highly attractive solutions to current
technological challenges and lead to the development of new advanced, sustainable, and
biodegradable composite materials [32].

Intriguingly, the skeletons of selected species of spongin-based bath sponges represent
examples of naturally occurring iron-containing 3D composites formed due to the corrosion
of artificial iron constructs found in marine environments (Figure 1). The biocorrosion of
metal structures in seawater is the cause of elevated iron ion concentrations in water [33].
Consequently, iron ions are involved in biomineralization, which results, as an example, in
the formation of a unique iron-based mineral phase, lepidocrocite, on the organic part of
the three-dimensional skeleton of the marine sponge–sponging (see for an overview [5])
(Figure 1). Crystalline lepidocrocite (γ-FeOOH) is an iron oxide–hydroxide mineral with
magnetic properties [34]. It is red to reddish-brown in color and has a sub-metallic luster.
Lepidocrocite is commonly found on rusted metal structures underwater, in soils, and in
iron ore deposits [35,36]. It is stable over a wide range of temperatures (10–60 ◦C) and pH
(4.0–8.0) [37]. Previously, lepidocrocite as a mineral was applied as a sensor, catalyst [38–40],
and adsorbent of diverse pollutants [37,41] and pigments [42].

Diverse methods for the synthesis of lepidocrocite without the presence of organic
matrices were proposed previously. For example, this mineral phase can be obtained
by the oxidation of FeCl2 with NaClO3 under slow heating of a common solution from
20 to 75 ◦C [43]. The “Process for the preparation of synthetic lepidocrocite” where this
compound “can be produced by reacting an aqueous iron (II) chloride solution with
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aqueous alkali metal hydroxides with simultaneous oxidation with atmospheric oxygen”
has been patented [44].
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main source of iron ions in the aquatic environment surrounding the bath sponges. This leads to the 
development of a well-visible rusty coloration (B) due to the presence of the lepidocrocite mineral 
phase tightly attached to the organic spongin. A natural skeleton isolated from the marine 
demosponge Hippospongia communis growing with the absence of iron ions (C) is yellowish in color. 
This kind of iron-based biomineralization is also detectable deep within the sponge skeleton ((D), 
arrows). 
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between a spongin template and iron ions is presented, which leads to the formation of a 
new 3D composite material called “Iron-Spongin” that resembles the size and shape of 
the original sponge skeleton. The corresponding mechanism for the possible formation of 
crystalline lepidocrocite on spongin is discussed. This simple biomimetic approach has 
led to obtaining a specific multifunctional material that can be readily fabricated with 
realistic prospects for large-scale application within the framework of the marine 
bioeconomy of sponges [2]. Moreover, for the first time, a potential application of this 
unique lepidocrocite-spongin composite as a sensor for dopamine (DA) detection is 
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Figure 1. Corrosion of artificial iron-based tools after contact with seawater: (A) remains to be the
main source of iron ions in the aquatic environment surrounding the bath sponges. This leads to the
development of a well-visible rusty coloration (B) due to the presence of the lepidocrocite mineral
phase tightly attached to the organic spongin. A natural skeleton isolated from the marine demosponge
Hippospongia communis growing with the absence of iron ions (C) is yellowish in color. This kind of
iron-based biomineralization is also detectable deep within the sponge skeleton ((D), arrows).

In this study, inspired by the previously reported phenomenon of natural biominer-
alization of iron into lepidocrocite in demosponges [45–47], a biomimetic method for the
development of lepidocrocite on spongin scaffolds using artificial seawater under labora-
tory conditions, is proposed. The reaction in an artificial seawater environment between
a spongin template and iron ions is presented, which leads to the formation of a new 3D
composite material called “Iron-Spongin” that resembles the size and shape of the original
sponge skeleton. The corresponding mechanism for the possible formation of crystalline
lepidocrocite on spongin is discussed. This simple biomimetic approach has led to obtain-
ing a specific multifunctional material that can be readily fabricated with realistic prospects
for large-scale application within the framework of the marine bioeconomy of sponges [2].
Moreover, for the first time, a potential application of this unique lepidocrocite-spongin
composite as a sensor for dopamine (DA) detection is proposed.

2. Results
2.1. Confocal Micro X-ray Fluorescence (CMXRF)

Preliminary experiments with the aim to obtain knowledge of the chemistry of nat-
urally occurring rusty sponges were carried out using CMXRF techniques. Thus, corre-
sponding measurements were performed for the samples of spongin scaffold with naturally
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formed lepidocrocite (“Spongin Fe-natural”) and the control sample of the spongin scaffold
(“Spongin pure”) (Table 1) with identical measurement parameters.

Table 1. CMXRF measurements (maximum voxel counts) for the elements identified in the samples.

Sample/Signal
Count Rates Fe-Kα Br-Kα Ca-Kα S-Kα I-Lβ Si-Kα

Spongin Fe-natural 243.0 39.0 31.0 27.0 15.0 -
Spongin pure (control) 18.0 19.0 19.0 18.0 19.0 12.0

From the fluorescence spectra of sample ‘Spongin Fe-natural’ five main elements are
identified: sulfur, calcium, iron, bromine, and iodine. All five elements are assigned to
the spongin structure (Figure 2A). Due to the relatively high count rates for iron (Table 1),
a representative 3D distribution image for this element could be generated, which is in
very good structural agreement with the video image (view on the top) provided by the
spectrometer camera (Figure 2A).
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For all the other four observed elements, far more diffuse elemental distribution im-
ages are obtained, caused by the overall lower signal count rates (Table 1). Nevertheless, the
quality of the 3D reconstructions still allows assigning these elements to the spongin struc-
ture (Figure 2A). Even the distribution of S shows some correlation with the distribution of
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the other elements, especially when measured at high sample densities (e.g., at conjunctions
of the sponge strings). This result was rather unexpected since S with a relatively low Z
number exhibits the lowest lateral resolution of the 5 elements detected in this sample
(diameter of probing volume approx. 69.0 µm) together with a low fluorescence yield due
to the high liability for absorption effects.

The same five elements and, additionally, silicon are identified from the fluorescence
spectra of the control sample ‘Spongin pure’. Only four of them (sulfur, calcium, iodine, and
bromine) can be assigned to the spongin structure. Hereby, in contrast to the ‘Spongin Fe-
natural’ sample, the most representative reconstruction of the spongin structure provides
a 3D distribution image of bromine (Figure 2B, green). This is due to the relatively high
fluorescence energy of bromine (Br Kα: 11.902 keV) and the coherent smaller excitation
volume. The iron distribution (Figure 2B, red) for the control sample can also be assigned
to the sponge structure, but it does not show a homogenous distribution throughout the
sample and is distributed rather pointwise, and the absolute signal count rate for Fe in the
control sample (compared to the ‘Spongin Fe-natural’ sample) is also much lower (Table 1).
However, for all the observed elements, diffuse elemental distribution images (Figure 2B)
were obtained. In particular, intensified silicon fluorescence radiation can be detected from
a certain spot in the sample (Figure 2B, cyan). By matching it with the bromine distribution
pattern, it seems to be located within the spongin structure and is probably a grain of sand
(quartz) incorporated into the spongin structure (see example [48]).

2.2. Digital Microscopy

In the images obtained with a digital microscope (Figure 3), a significant difference
was observed in the appearance of the control sample and the “Iron-Spongin” sample
after the ultrasound treatment. After 30 days of initiated corrosion, the spongin acquired a
consistent rusty color, indicating the transformation of iron powder into an iron oxide form
that was tightly bound to the organic matter.
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Figure 3. Digital microscopy imagery of two different samples of spongin from lower to higher
magnifications (see the scale bars). (A–C) Control sample of spongin isolated from H. communis
demosponge growing in a Fe-free environment remain to be yellowish in color. This biomaterial
known as commercial, or bath sponge, found broad applications in human life. However, the same
sponge material after induced corrosion of iron powder in artificial seawater for 30 days (D–F)
becomes a rusty color that is still stable even after 2 h of ultrasonic treatment at 24 ◦C.
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2.3. Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Analysis (EDX)

The SEM images in Figure 4 show the control sample and “Iron-Spongin” after ul-
trasonic treatment. In Figure 4A,B, a network of spongin microfibers is observed, which
forms complex porous formations. An analysis of the SEM images confirmed that uniform
deposition of iron oxide crystals occurred during the initiated corrosion. The SEM images
in Figure 4C,D show spongin fibers densely covered with iron oxide clusters. In the ap-
proximation in Figure 4E,F, crystal-like structures can be clearly observed. The high quality
of the inorganic coating may be due to the corrosion-initiated synthesis procedure, which
took 30 days. Importantly, the unique porous structure with numerous iron oxide clusters
was preserved even after ultrasonic treatment for 2 h.
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Figure 4. SEM images of iron-free spongin fibers with both lower (A) and higher (B) magnifications
(scale bars represent 200 µm and 50 µm, respectively) (see also Figure 2A–C) drastically differ from
that obtained after “Iron-Spongin” 3D composite, where the formation of crystalline phase (C–F)
(scale bars represent 200 µm, 50 µm, 20 µm, and 4 µm, respectively) remains to be well visible even
after ultrasonic treatment. (F) Arrows show needle-like crystals.

EDX analysis performed on an “Iron-Spongin after ultrasound treatment” material
in the area with visible crystal-like structures showed a very high iron content (34.4 at%).
In a control sample of spongin in seawater, the iron content was detected to be very low
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(0.2 at%). This confirmed the formation of crystals during the initiated corrosion, consisting
mainly of iron (Figure 5) (for details, see also Supplementary Materials, Figures S1–S8). The
distribution of elements within the spongin fibers is shown in Figures 6 and 7. The results
of the biomineralization are well visible both in the longitudinal (Figure 6A) and in the
cross-section (Figures 6B and 7) of the fiber as two different (inner and outer) layers. The
differences in the content of Fe and O in these layers are also noticeable (Figure 7).
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(A) (B) 

Figure 5. EDX Analysis (elemental mapping) of a single fiber of an “Iron-Spongin after ultrasound
treatment” sample. Clearly visible is the presence of Fe and S on the surface of the scaffold strain (A).
Fe is predominantly deposited in the crust-like structure (B), whereas sulfur is more or less equally
distributed over the surface (C). C is present on the whole sample due to the organic compounds of
the sample and of carbon coating used for SEM (D).
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Figure 6. Block face images of a single spongin fiber: longitudinal section (A) and cross-section (B).
In both images, two different layers are distinguishable. According to the high contrast given in these
layers, the presence of elements with higher atomic numbers—combined with elements origin from
biological tissue—is most likely. Bars represent 10 µm.
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Figure 7. EDX analysis (elemental mapping) of a block face image cross-section of a single “Iron-
Spongin after ultrasound treatment” fiber, whereby the element contents are colored in red for iron,
blue for oxygen, and green for sulfur (in the case of red and green overlapping, a bright yellow color
is observed). The presence of Fe and O in the two layers (A,B,E,F) is clearly visible. Sulfur seems
more or less equally distributed over the cross-section (C,D). The inner layer seems to be higher in Fe
and O combined with the outer layer (B,E,F).

2.4. High-Resolution Transmission Electron Microscopy (HR-TEM)

HR-TEM analysis was used to confirm the presence of crystalline phase as lepidocrocite
in the “Iron-Spongin after ultrasound treatment” sample. Figure 8A shows a cross-section of
a selected section of the composite fiber with lath-like Fe-containing nanoparticles forming
conglomerates inside the outer shell of the spongin fiber. This indicates the effective
binding of the iron-containing phase to spongin during biomimetic-initiated corrosion
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under laboratory conditions. The HR-TEM image shows that the particles consist of several
nanocrystallites with crystallite sizes of 3–5 nm (Figure 8B). The calculated FFT of the HR-
TEM image of the “Iron-Spongin after ultrasound treatment” sample consists of discrete
diffraction spots of randomly oriented nanocrystals, reflecting the fine crystallinity of
the particles (Figure 8C). An analysis of the reflections indicates that the majority of the
particles can be attributed to the orthorhombic lepidocrocite phase (Amam space group [36]
or Cmcm [49]). There are also interplane separations of 1.55 Å, 2.64 Å, and 2.66 Å consistent
with the (110) and (100) planes of hexagonal feroxyhyte [50]. It is an unstable aqueous
iron oxide that transforms spontaneously into goethite and is usually formed under high-
pressure conditions on the ocean grounds [51]. For example, according to Vacelet and
co-workers, lepidocrocite and a small amount of goethite are minerals that occur in the
natural iron-rich skeletons of spongin-based Spongia officinalis marine demosponges [46].
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Figure 8. TEM overview (A) and high-resolution TEM (B) of Fe-containing nanoparticles on a
selected nanofiber of “Iron-Spongin” composite investigated after ultrasound treatment. Calculated
fast Fourier transform (FFT) with measurement of interplane separations indicating the occurrence of
lepidocrocite and possible minor phase of feroxyhyte (C).

2.5. Fourier-Transform Infrared Spectroscopy

In an attempt to identify the ferrous layer formed on the spongin scaffold under
study, FTIR spectroscopy of the materials was performed to examine the presence of
characteristic functional groups. Detailed studies were carried out for spongin control
samples in seawater as well as “Iron-spongin”, before and after ultrasound treatment
(Figure 9A). Additional measurements were made for iron powder after 30 days in the
seawater with and without the presence of the spongin scaffold (Figure 9B) (details of the
bands present in the spectra, with their wave numbers and band assignments, are given in
Supplementary Material, Table S1).

Most of the bands in the FTIR spectra of “Iron-Spongin” and “Iron-Spongin after
ultrasound treatment” correspond to the bands in the spectrum of the control sample of
spongin in seawater. The bands that occur only in the samples in the presence of corroded
iron powder are 570, 740, 1021, and 1150 cm−1 (Figure 9A). The band at 570 cm−1 is char-
acteristic of Fe-O vibrations in iron oxides [52,53]. The most intense band at 1021 cm−1 in
the FT-IR spectra is associated with lepidocrocite (γ-FeOOH) [54]. The bands at 1150 cm−1

and 740 cm−1 can also be assigned to OH deformation and bending in γ–FeOOH [55].
The high-intensity bands at 1021 cm−1 and 740 cm−1 may suggest that a well-crystallized
lepidocrocite phase is strongly present.

The effect of spongin scaffold on iron corrosion in seawater was also investigated
(Figure 9B). The band characteristic of iron oxides (570 cm−1) and lepidocrocite (740, 1021,
1150 cm−1) were observed only in the FTIR spectrum of the corroded iron powder after
30 days in seawater in the presence of the spongin scaffold.
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2.6. X-ray Diffraction

The X-ray diffraction pattern of spongin under study is similar to that reported pre-
viously [15,22,24]. The treatment of spongin samples with iron powder using artificial
seawater (see Section 4) causes the appearance of reflection characteristics for that of
lepidocrocite [56], which confirms that this mineral phase is formed during the prepara-
tion of the “Iron-Spongin” composite. Further data analysis confirms the formation of
lepidocrocite on both the “Iron-Spongin” sample and on “Iron-Spongin after ultrasound
treatment”. This is indicated by the peaks present in the XRD graphs of these samples at
~14◦, ~27◦, ~38◦, ~47◦, ~53◦, ~61◦, and ~68◦, which correspond to the (020), (120), (111),
(020), (151), (231), and (251) crystal planes, respectively (Figure 10). These peaks correspond
to polymorphs of the iron oxyhydroxide lepidocrocite (γ-FeOOH) [57]. For comparison,
a diffractogram of iron powder (Figure 10E) obtained after 30 days in seawater in the
presence of spongin with lepidocrocite-characteristic reflections is included.

2.7. Thermogravimetric Analysis

The thermal degradation of a control spongin sample in seawater and “Iron-Spongin
after ultrasound treatment” was studied. Two weight losses occur during the thermal
degradation of both samples (Figure 11). The first, a weight loss of about 5–8% in the
70–150 ◦C range, is related to the evaporation of physically adsorbed and hydrogen-bonded
water from the spongin scaffold [12]. The second weight loss in the temperature range of
230–450 ◦C is about 63.2% for the control sample and about 44.8% for “Iron-Spongin after
ultrasound treatment”. This may be related to the decomposition of the protein matrix:
the disintegration of the peptide bonds [12,25], and thermal degradation of disulfide
bonds [12,58] and hydrogen bonds [12]. In the “Iron-Spongin after ultrasound treatment”
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material, the thermal stability is higher than that of the control spongin sample. The
difference in thermal stability can be attributed to the formation of bonds between spongin
and iron and electrostatic interactions formed between the hydroxyl groups of spongin and
lepidocrocite [29].
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2.8. Magnetic Properties

The “Iron-Spongin after ultrasound treatment” is attracted by a neodymium magnet
with a pull force of 192 N (see Supplementary Materials, Figure S9). It is well known that
lepidocrocite is paramagnetic at room temperature with low field magnetic susceptibil-
ity [34,59,60]. Paramagnetism is the phenomenon whereby a material magnetizes in an
external magnetic field in a direction consistent with the direction of the external field. This
phenomenon occurs in all atoms and molecules with unpaired electrons, e.g., free atoms,
free radicals, and transition metal compounds that contain ions with unfilled electron
shells [61]. Paramagnetic materials have a relative magnetic permeability slightly greater
than 1 (i.e., low positive magnetic susceptibility), and are therefore attracted to magnetic
fields [62]. In contrast to the “Iron-Spongin after ultrasound treatment” represented here,
all 35 naturally occurring rusty sponges (see Figures 1B,D and 15), which are approved for
their magnetic features under the same experimental conditions, show no attachment to
the neodymium magnet.

2.9. Dopamine Detection

The application of spongin-based sensors remains to be in trend. In this study, we used
the developed composite for the detection of DA. This compound is a vital catecholamine
neurotransmitter found in mammals’ central and peripheral nervous systems. It regulates
a wide variety of neuronal functions, including emotion, behavior, cognition, learning,
memory, and movement. In living systems, DA controls the transmission of signal messages
to various domains of the brain and other parts of the body. In addition, DA receptors are
vital targets for neuropsychiatric illnesses such as depression, Parkinson’s, schizophrenia,
and Huntington’s [63,64]. Therefore, the quantitative detection of DA in biological and
chemical systems is critical. Various analytical methods are used for the detection of DA, but
each of them has some disadvantages. Among them, electrochemical methods have proven
to be the most effective for the determination of DA in the presence of other biological
molecules [65–68]. However, developing a simple, cost-effective, and compatible composite
material as an electrode material for the selective detection of DA at low concentrations
without interfering with other biologicals is challenging.

Herein, for the first time, a novel, low-cost, sensitive, and selective electrochemical
sensor for the detection of DA based on carbon paste electrodes (CPE) modified with natu-
rally occurring iron-spongin and biomimetic “Iron-Spongin after ultrasound treatment” is
developed. The electrodes are denoted as N-Iron-Sp/CPE and B-Iron-Sp/CPE, respectively.
The amperometric responses of N-Iron-Sp/CPE and B-Iron-Sp/CPE for the successive
addition of different concentrations of DA in 0.1 M phosphate buffer pH 6.5 are given
in Figure 12A. The oxidation reaction at each electrode was fast in reaching the dynamic
equilibrium, producing a steady-state current within almost 10 s. To calculate the sensi-
tivity of the electrodes, calibration curves were plotted (Figure 12B), which recorded the
increase in the current with each subsequent addition of DA. The linear regression equation
of DA oxidation for each of N-Iron-Sp/CPE and B-Iron-Sp/CPE was obtained between
5 µM to 1.3 mM with an equation of I (µA) = 28.104 CDA (mM) + 0.7336 (R2 = 0.998) and
I (µA) = 17.527 CDA (mM) + 0.4549 (R2 = 0.9981), respectively. The sensitivity of N-Iron-
Sp/CPE and B-Iron-Sp/CPE was found to be 0.22 µA mM−1 cm−2 and 0.14 µA mM−1

cm−2, respectively. The remarkable electrochemical behavior of each electrode toward
DA sensing is ascribed to the excellent electrocatalytic performance of crystalline Fe-oxide
tightly bound to the 3D spongin scaffold. The high electrocatalytic activity, low response
time of 2 s, and high sensitivity of “Iron-Spongin” are attributed to its high concentration
of active sites and facile charge transfer characteristics.

The specificity of the B-Iron-Sp/CPE sensor was evaluated in the presence of possible
coexisting species (sucrose, glucose, sodium chloride (NaCl), and UA). The obtained
results showed that the fabricated sensor diminished the influence of possible interfering
species and exhibited excellent selectivity toward DA detection. The detection of DA in
human urine has received interest in medical diagnostics due to the impacts of abnormal
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concentrations of DA in regulating blood pressure, lipolysis, Huntington’s disease, and
Parkinson’s disease. The detection of DA in human urine samples was performed using
B-Iron-Sp/CPE to assess the practical applicability of the constructed DA sensor. A recovery
of 93–115% was obtained for the studied sample, indicating the accuracy and reliability of
the constructed sensor, which guaranteed its on-site applications.
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3. Discussion

Lepidocrocite, as a biomineral, has been known since its discovery in the teeth of
Chiton mollusc (Lowenstamm, 1967) [69]. Also, a microbial scenario of its formation,
including the so-called forced biomineralization [70], is well documented in the literature.
Bacterial biomineralization of lepidocrocite has been reported for diverse nitrate-reducing
Fe(II)-oxidizing bacteria [71], as well as in denitrifying As(III)-oxidizing bacterium [72]
under anaerobic conditions. Also, it was observed that iron oxyhydroxide crystallization
could be directed during the cultivation of Leptothrix sp. bacterium [73]. The formation
of strongly magnetic nanoscale particles due to lepidocrocite bioreduction by the iron-
reducing bacterium Shewanella putrefaciens ATCC 8071 is described in [74]. In lithotrophic
iron-oxidizing bacteria, such as Gallionella ferruginea or Mariprofundus ferrooxydans, up to
100 nm large lepidocrocite crystals nucleate on the surface of organic extracellular twisted
ribbon-like stalks [75]. Maybe this phenomenon is based on the templating activity of
bacterial exopolysaccharides, which are known as stabilizers of lepidocrocite. For example,
iron oxyhydroxide–polysaccharide hybrid colloids with unusual pH stability of up to pH
13 are reported [76].

To the best of our knowledge, there are only two publications concerning the in vitro
development of lepidocrocite-based composites using biopolymers as templates. For
example, highly crystalline layers of lepidocrocite up to 125 nm large are obtained due to
biomimetic mineralization of protein microtubules (MTs) with a diameter of 25 nm. It is
suggested that MTs “can be used as scaffolds for the in situ production of high-aspect-ratio
inorganic nanowires” [77]. In another paper, fibrillary collagen was used as a generic
mineralization template for lepidocrocite [78]. The mineral phase was obtained both on
and within the collagen fibrils after mixing them with Fe(OH)2 and the addition of poly
(aspartic acid) to promote the crystallization of lepidocrocite.

Based on the previous literature data [45–47,79] on the interactions between marine
demosponges and iron, it was possible to design a nature-inspired biomimetic method
for the mineralization of iron on spongin fibers. As early as 1968 [45], the existence of
crystalline iron mineralization in the spongin fibers of Ircinia fasciculate, Spongia graminea,
and S. officinalis marine sponges was first discovered. Then, it was proven that the reddish-
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brown microgranules are formed of very fine crystallites of poorly organized lepidocrocite
(Figure 13). It was also found that selected marine sponges grow only in the presence
of iron ions [80], which are supplied to waters mainly from atmospheric sediments [81],
hydrothermal vents [82], marginal sediments [83], artificial fertilization [84], groundwater
discharges [85], and biocorrosion of artificial metal structures and shipwrecks [5,33,86]. The
source of iron ions due to the biocorrosion of corresponding metallic constructs in seawater
is crucial, especially when sponges use them as the substrate for attachment and growth [87].
Nevertheless, the mechanism of iron biomineralization on spongin fibers in nature, as well
as under the laboratory conditions used in this study, is still not fully understood.
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The possible mechanism of lepidocrocite formation on spongin fibers may be as-
sociated with spongin amino acid sequences, including cysteine, histidine, lysine, or
tyrosine [7,8]. Functional groups derived from amino acids (e.g., –SH, –OH, –NH2, and
–COOH) [22] and the presence of electron donor atoms (O, N, S) result in the ability to form
complexes with iron ions [88]. A large group of Fe-S clusters of proteins is known; in most
cases, the terminal ligands attached to iron are derived from thiol groups from cysteinyl
residues [89–92]. Therefore, it is possible that cysteine/cysteine sulfur is involved in the
formation of an iron-based crystalline mineral phase in spongins. Iron is a transition metal
with well-known redox and ligand-binding properties [93]. It is capable of accepting and
donating electrons, transitioning between the ferric (Fe3+) and ferrous (Fe2+) forms [94]. In
seawater at pH 8.1, the Fe2+ form is rapidly oxidized to the Fe3+ form, so it exists mainly in
the form of iron(III) oxyhydroxide, which has a very low solubility and a thermodynami-
cally stable oxidation state [95–98]. Cornell and Schneider [99] demonstrated that in the
presence of cysteine at pH 8.0, a fast transformation of non-crystalline iron(III) hydroxide
into mainly crystalline lepidocrocite with a small amount of goethite occurs. Alkaline
seawater conditions affect the surface chemistry of spongin—cysteine-derived thiol groups
(SH–), which are converted to thiolate anions (RS–) [100]. Then, the interaction between
cysteine and non-crystalline iron(III) hydroxide involves the oxidative dehydration of
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cysteine, which can form disulfide bonds (S–S) to produce cysteine [101,102]. There is also
a concomitant reduction in some interfacial ferric sites, transforming the solid iron phase
into a compound with mixed-valence Fe2+/Fe3+. This compound dissolves more readily
than the starting material, and the dissolution/precipitation mechanism then leads to more
thermodynamically stable iron mineral phases, such as lepidocrocite (Figure 14) [103–105].
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Learning about the mechanism of iron mineralization in spongin fibers is essential
to understanding the nature of the exceptional composite “Iron-Spongin”. It is easy and
simple to prepare, and it consists of a biodegradable and renewable source—spongin. By
combining both components, lepidocrocite (magneticity, stability over a wide range of
temperatures (10–60 ◦C), pH (4.0–8.0), and spongin (3D porous structure, high thermal
stability, resistance to a wide range of acids and enzymes), a nature-inspired biomaterial
with many remarkable features, are created.

In this study, it was shown that such a 3D composite can be used as a sensor for
neurotransmitter detection. Many methods for quantifying neurotransmitters, such as DA,
are available, but most of them have their limitations [106–109]. Recently, there has been
increased attention on the use of electrochemical methods for neurotransmitter analysis due
to their advantages, such as high sensitivity, simplicity of analysis, fast time response, and
low cost of material consumption [110]. The electroanalysis method relies on an enzymatic
or enzyme-free method for detecting neurotransmitters such as DA. The main disadvantage
of enzymatic biosensors is the insufficient stability of the enzymes used to develop these
sensors. Their shortcomings create a real need for the development of non-enzymatic
sensors. Non-enzymatic sensors generally detect chemical or biological substances through
their redox activity. Electrochemical sensors based on metal oxides, such as iron, are
ideal for the electroanalysis of neurotransmitters because of their simplicity, low cost, fast
response, and good portability [111,112]. In their application, the electrochemical detection
of specific analytes is enabled by the behavior of semiconductors, while the separation of
analytes is achieved by magnetic properties. Lepidocrocite, which has magnetic properties
combined with spongin, provides a large surface area and a well-developed 3D structure
that seems to possess the potential for use as a DA sensor. Various magnetic iron oxide
nanoparticles [113–115] have been proven to be excellent non-enzymatic materials for DA
sensing. Previous electrochemical studies of lepidocrocite have shown its high sensitivity
and selectivity in detecting DA [116]. In our study, the “Iron-Spongin” composite as
a non-enzymatic electrode showed high sensitivity toward DA detection, which was
attributed to the excellent electrocatalytic performance of Fe-oxide adsorbed on the unique



Mar. Drugs 2023, 21, 460 16 of 25

3D spongin scaffold. The development of “Iron-Spongin” 3D constructs in this study will
stimulate experiments on their application for sodium-ion batteries, or for photocatalytic
hydrogen production, where heterostructured lepidocrocite titanate-carbon nanostructures
have already been used recently [117,118]. Also, such composites as potential magnetic
scaffolds [119] should be investigated in the future.

4. Materials and Methods
4.1. Materials

Purified, acellular, and mineral-free spongin scaffolds of Hippospongia communis
(Lamarck, 1814) marine demosponges were purchased from INTIB GmbH (Freiberg, Ger-
many). InstantOcean®SeaSalt acquired from Spectrum Brands (Blacksburg, VA, USA) was
used to prepare artificial seawater. Sodium hydroxide (analytical grade) purchased from
EuroChem BGD (Tarnów, Poland) was used to prepare a 1 M (mol/L) NaOH solution. Iron
powder 99.99% (with a particle size in the range of 25–100 µm) was acquired from Chempur
(Piekary Śląskie, Poland). To prepare the artificial seawater, 18 g of sea salt was placed in a
glass bottle and dissolved in 500 mL of distilled water. The pH of the solution was brought
to pH 8.1 (the value present in natural seawater [120]) with 1 M NaOH solution. Dopamine
(DA), paraffin oil, and sodium phosphate (Na2HPO4 and NaH2PO4) were purchased from
Sigma-Aldrich (Burlington, MA, USA). Phosphate-buffered solution (PBS, 0.1 M, pH 6.5)
was prepared using a mixture of stock solutions (NaH2PO4 and Na2HPO4) and employed
as an electrolyte solution for amperometric measurements. Graphite powder was obtained
from Merck (Darmstadt, Germany).

4.2. Samples Preparation
Preparation of the “Iron-Spongin” Material

A fragment of spongin scaffold weighing 1.1 g and measuring 3 cm × 6 cm × 3 cm was
placed in a 500 mL bottle of artificial seawater, and 3.5 g of iron powder was added. The
whole content was shaken vigorously for one minute until the entire spongin scaffold was
covered with iron powder. Then, it was stored in the lab for 30 days at room temperature.
Similarly, a control sample without iron powder and a control sample of iron powder
alone in seawater without the presence of the spongin scaffold were prepared. After
this, the obtained “Iron-Spongin” material with rusty color was placed in an ultrasonic
bath (Bandelin, Berlin, Germany) for 2 h at room temperature to remove excess iron
powder that did not bond to the spongin scaffold (Figure 15). The dry mass of the “Iron-
Spongin” samples was measured to be 1.967 ± 0.035 g prior to and 0.708 ± 0.040 g after
ultrasonic treatment.
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The “Iron-Spongin” material, spongin control sample, iron from seawater alone,
and iron from seawater and the presence of the sponge scaffold were then air-dried for
further analysis.
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4.3. Characterisation Techniques
4.3.1. Digital Microscopy

A control sample of spongin in seawater and iron-spongin after ultrasonic treatment
was observed and analyzed using an advanced imaging system consisting of a VHX-6000
digital optical microscope (Keyence, Osaka, Japan) and VH-Z20R zoom lenses (magnifi-
cation up to 200×), as well as a VHX-7000 digital optical microscope (Keyence, Osaka,
Japan) and VHX-E20 (magnification up to 100×) and VHX-E100 (magnification up to 500×)
zoom lenses.

4.3.2. Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Analysis (EDX)

For block-face analysis, the regions of interest (ROI) of TEM samples in resin blocks
were trimmed using the Leica EM Trim 2 (Leica Microsystems, Wetzlar, Germany). In order
to obtain a flat surface, the samples were cut with a Leica UC7 ultramicrotome using a
diamond knife (Diatome, Nidau, Switzerland).

The samples were mounted on a heavy metal-free Al-SEM-carrier (co. PLANO,
Wetzlar, Germany) with adhesive conductive carbon tape (Spectro Tabs, TED PELLA
INC, Redding, CA, USA) and coated with carbon (5.0 nm thickness) under vacuum (CCU
010 HV-Coating Unit, Co. Safematic GmbH, Zizers, Switzerland).

The samples were analyzed using a field emission scanning electron microscope
(SEM, MERLIN® VP Compact, Co. Zeiss, Oberkochen, Germany) equipped with an energy-
dispersive X-ray (EDX) detector (XFlash 6/30, Co. Bruker, Berlin, Germany). Representative
areas or defined lines of the samples were analyzed and mapped for elemental distribution
based on the EDX-spectra data using QUANTAX ESPRIT Microanalysis software (version
2.0, Berlin, Germany) SEM images were taken from selected regions (the conditions are
shown in the figures).

Comparative SEM-EDX analyses of the control sample and iron-spongin after ultra-
sound treatment were carried out using a scanning electron microscope (Quanta 250 FEG;
FEI Ltd., Brno, Czech Republic) correlated with an energy-dispersive X-ray spectrometer
(EDX Team Software) to determine the elemental composition and surface morphology of
the samples studied.

Moreover, SEM and supplementary EDX measurements were carried out using a
low-vacuum scanning electron microscope, JEOL JSM-6610LV, with a LaB6 cathode, which
was also equipped with an energy-dispersive X-ray spectrometer (10 mm2 Silicon Drift
Detector (SDD) X-Flash 6|10, Bruker Co., Berlin, Germany).

4.3.3. High-Resolution Transmission Electron Microscopy (HR-TEM)

Conventional TEM analysis was carried out using the FEI Tecnai F30-G2 with Super-
Twin lens (FEI) with a field emission gun at an acceleration voltage of 300 kV. The point
resolution amounted to 2.0 Å, and the information limit was about 1.2 Å. The microscope
was equipped with a wide-angle slow-scan CCD camera (MultiScan, 2k × 2k pixels; Gatan
Inc., Pleasanton, CA, USA).

4.3.4. Transmission Electron Microscopy (TEM)

Selected fragments of “Iron-Spongin after ultrasonic treatment” were placed in dis-
tilled H2O for one night at room temperature (RT). Then, they were dehydrated in an
ethanol series from 30% to 100% at RT and embedded in Araldite (Sigma-Aldrich, Burling-
ton, MA, USA) epoxy embedding media according to the manufacturer’s instructions.
Ultra-thin sections (60–70 nm) were cut with an Ultramicrotome PowerTome XL (Boeckeler
Instruments, Inc., Tucson, AZ, USA) equipped with a Druker International b.V (Amster-
dam, the Netherlands) 45 diamond knife, double-stained with UranyLess (EMS), lead
citrate, and lead citrate. Ultrathin sections were studied under Tecnai G2 20 TWIN (FEI
Company, Alhambra, CA, USA) transmission electron microscope with an acceleration
voltage of 200 kV.
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4.3.5. Fourier-Transform Infrared Spectroscopy

FTIR spectra of the control and obtained samples were recorded using a Nicolet iS50
spectrometer (Thermo Fisher Scientific Co., Hillsboro, OR, USA). Each measurement was
performed using a built-in attenuated total reflectance (ATR) accessory. The analysis was
carried out in the wavelength range of 4000–400 cm−1.

4.3.6. X-ray Diffraction

The X-ray studies of the examined materials were performed using a powder diffrac-
tometer (SmartLab Rigaku, Tokyo, Japan) with a Cu K-alpha X-ray tube, in the range of
3–80 (2 theta), scan step 0.01, and scan speed 4◦/min.

4.3.7. Thermogravimetric Analysis

Thermogravimetric analysis (TG/DTG) was performed on a TGA/DSC1 Star Syste-
manalyzer (Mettler Toledo, Columbus, OH, USA) Measurements were carried out at a
heating rate of 10 ◦C/min under nitrogen flow conditions (60 mL/min) in the temperature
range of 30–700 ◦C.

4.3.8. Confocal Micro X-ray Fluorescence (CMXRF)

CMXRF measurements were performed with a modified commercial MXRF spec-
trometer (M4 TORNADO) by Bruker Nano GmbH, Berlin, Germany, which was equipped
with a 30 W Rh-microfocus X-ray tube (50 kV, 600 µA), a polycapillary full lens in the
excitation channel for X-ray focusing, and a 30 mm2 silicon drift detector (SDD). Due to
the modification, a polycapillary half lens was installed in the detection channel before
a 60 mm2 SDD. The confocal arrangement of both lenses resulted in a defined probing
volume, providing three-dimensional resolved element analysis by lateral movement of
the sample with an xyz-motorized sample stage. The calibration of the optics alignment
was realized by the precise movement of the second lens by piezo actuators and tracking
the signal intensity of a 2 µm thick Cu foil.

The CMXRF measurements were performed within a total sample volume of
500 × 500 × 500 µm3 and a global step size of 5 µm. A spot measurement time of 10 ms
was utilized with five measurement cycles, resulting in a measurement time of 50 ms for
each point and an overall measurement time of approximately 63 h. Additionally, with
respect to the presence of light elements in the spongin samples, a vacuum of 20 mbar was
applied for all the measurements.

For the first data evaluation of the 101 generated xy area mappings at varying z
positions, the spectrometer corresponding software was utilized, providing the impulse
count values for the element signals Si-Kα (1.740 keV), S-Kα (2.307 keV), Ca-Kα (3.691 keV),
I-Lβ (4.239 keV), Fe-Kα (6.397 keV), and Br-Kα (11.902 keV). Due to the physical properties
of the lenses used, quite different probing volume sizes need to be considered for the
different fluorescence energies of the element lines. For the utilized setup, the probing
volume sizes were calculated as a function of the energy by calibrating the characteristics
of the spectrometer parameters [121]. Hereby, the following probing volume z-sizes can
be expected in approximation: Si-Kα (77.2 µm), S-Kα (69.0 µm), Ca-Kα (55.6 µm), I-Lβ
(51.8 µm), Fe-Kα (42.0 µm) and Br-Kα (31.4 µm).

The exported measurement datasets (containing information about the location coor-
dinates x and y and the signal count values) were then further processed using in-house
software (applied in references [122,123]), providing tools like the normalization of the xy
mappings to a global signal maximum, generating RGB color-coded images and signal
noise correction. The final stacking of the two-dimensional distribution datasets was carried
out with the Python application Mayavi, achieving three-dimensional distribution images.
For the three-dimensional reconstruction of the element distributions (Si (cyan), S (yellow),
Ca (blue), I (magenta), Fe (red), and Br (green)) a volume module was used in combination
with light and shade calculations for better visibility of the three-dimensional structure.
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Due to the small size of the sponge structure (~30 µm) compared to the probing vol-
ume sizes (≥31.4 µm), weak signal values were excluded from the volume rendering by
setting the RGB alpha value to zero.

Due to the properties of natural samples (varying density, elemental composition,
and absorption due to the 3D structure) and different physical behaviors of the observed
elements (fluorescence yield, sensitivity, and concentration), different alpha values were
utilized for the volume reconstruction of each element and sample. Hereby, data points
within the range of 1 to 10% of the global maximum count value were excluded, aiming
for a less cluttered representation of the 3D elemental distributions. Therefore, the volume
reconstructions depict only a qualitative approximation of the 3D elemental distribution.
Further data processing is needed for the correction of the influences of probing volume
size and absorption effects. Since these samples exhibit a quite complex three-dimensional
structure and composition, the feasibility of these complex reconstruction tasks (both
qualitatively and quantitatively) needs to be addressed in future work.

4.3.9. Magnetic Properties

The magnetic properties of the obtained “Iron-Spongin” material were tested using a
neodymium magnet with a pull force of 192 N, purchased from Mistral, Jaworzno, Poland.

4.4. Dopamine Detection

For the sensor preparation, modified carbon paste electrodes (CPE) were fabricated
by grinding graphite, paraffin oil as a binder, and a modifier in a mortar with a ratio of
65:15:20 (w/w/w) and a grinding time of 40 min. The components were homogenized to
form a paste, which was then pressed into a holder with an inner diameter of 4 mm.

Amperometric measurements were carried out using a PalmSens 4 electrochemical
analyzer with the software PSTrace 5.8 (PalmSens BV, Houten, the Netherlands) and a
three-electrode setup including modified CPE as the working electrode, Ag/AgCl (3 M
KCl) electrode as the reference, and a platinum wire as the counter electrode. The ampero-
metric response of the different modified CPEs for the successive addition of DA in 0.1 M
phosphate buffer pH 6.5 was recorded at a potential of 0.25 V.

5. Conclusions

This study focused on a better understanding of the interaction between biomaterial
spongin and iron ions in marine environments due to biocorrosion, which led to the
occurrence of the biomineral lepidocrocite. For this purpose, a biomimetic approach for
the creation of a new lepidocrocite-containing 3D spongin scaffold using artificial seawater
and iron powder under laboratory conditions at 24 ◦C is described for the first time. This
simple method allowed obtaining a new composite called “Iron-Spongin”. The limiting
factors such as the concentration of iron ions, pH, and temperature should be studied in
the future with the aim of finding optimal parameters for the development of functional
lepidocrocite-based 3D composites on a large scale.

The discovery of rusty bath sponges in the industrial production of marine sponges,
from both open ocean colonies and those grown in marine culture, is not uncommon. On
the contrary, rusty sponges are found in mass quantities (Figure 13) and are rejected by the
respective companies due to a lack of demand or use for traditional cosmetic purposes.

However, our work shows the possibility of further application of such rusty sponges
in biomimetics and materials science. Consequently, the strategy for the use of these specific
sponges must be changed drastically. This opens a way for the sustainable and correct use
of sponges without the presence of substandard biomaterials. Intriguingly, technologies
have been developed to grow sponges under marine ranching conditions on reinforced
iron pins or plates to create iron-containing composites as functional materials.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/md21090460/s1, Figure S1: EDX measurements of pure
spongin scaffold isolated from Hippospongia communis demosponge (control sample); Figure S2: SEM
image of lepidocrocite nanoparticles formed on the surface of natural spongin scaffold of H. communis,
described as rusty sponge; Figure S3: SEM image with spots of EDX measurements of the rusty
natural spongin scaffold of H. communis (for measurements data see Figure S4); Figure S4: EDX
measurements for the natural rusty spongin scaffold of H. communis (for spot locations, see Figure
S3) and EDX measurements for the natural rusty spongin scaffold of H. communis (for spot locations,
see Figure S3); Figure S5: SEM images of the “Iron-Spongin” scaffold with well-defined crystals of
lepidocrocite. See also Figure S6; Figure S6: SEM image with spots of EDX measurements carried out
on “Iron-Spongin” sample (for measurements data, see Figure S7).; Figure S7: EDX measurements for
the “Iron-Spongin” scaffold (for spot locations, see Figure S6); Figure S8: Quantitative EDX analysis
(line scan) of a block face image cross-section of a single “Iron-Spongin after ultrasound treatment”
fiber; Table S1: Wavenumbers of the bands present in the spectra of the studied samples and their
assignment; Figure S9. Magnetic properties of biomimetically created “Iron-Spongin after ultrasound
treatment” sample; Video S1: 3D distribution of Fe on the natural spongin scaffold of H. communis,
described as a rusty sponge.
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