Latest Advances and Prospects into Sources and Potential Applications of Antioxidants, Bioactive and (Poly)Phenolic Compounds in Foods

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Physics and (Bio)Chemistry".

Deadline for manuscript submissions: closed (31 August 2023) | Viewed by 9092

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
Interests: phenolic compounds; phytochemicals; flavonoids; anthocyanins; antioxidant activity; bioactivity; food chemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
Interests: anthocyanins; non-thermal processing; juice; enzyme; fruit and vegetable processing; quality; antioxidant activity

Special Issue Information

Dear Colleagues,

Epidemiological evidences have substantially proved that food-derived bioactive ingredients, such as polyphenols, flavonoids, and saponins, possess many different health-improving properties. Although these compounds are the minor components in foods, their important roles in nutrition and physiological function of foods are increasingly concerned by consumers. However, there are many kinds of these ingredients in foods, and their bioactivities, mechanisms and potential applications are still limited understood to people. Therefore, it is necessary to continue in-depth research and exploitation on the sources, bioactivities and applications of these ingredients. In order to enhance the growth of research related to food-derived bioactive ingredients and their biological activities, this Special Issue aims to collect original works or reviews with high quality about the latest advances and prospects into sources of antioxidants, bioactive and (poly)phenolic compounds in foods. With the initiative in raising this Special Issue, we hope to publish research results that will further promote people's understanding of bioactive ingredients in foods, expand their applications, and thereby providing important suggestions for human health.

Dr. Shengbao Cai
Dr. Linyan Zhou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fruits
  • vegetables
  • bioactive compounds in food by-product
  • (poly)phenols
  • bioactive peptides
  • health
  • improving functions
  • functional products
  • food preservation
  • food processing

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 3468 KiB  
Article
New Insights into the Inhibition of Hesperetin on Polyphenol Oxidase: Inhibitory Kinetics, Binding Characteristics, Conformational Change and Computational Simulation
by Xinyue Hong, Xiaoqiao Luo, Langhong Wang, Deming Gong and Guowen Zhang
Foods 2023, 12(4), 905; https://doi.org/10.3390/foods12040905 - 20 Feb 2023
Cited by 3 | Viewed by 1587
Abstract
The inhibitory activity of hesperetin on polyphenol oxidase (PPO) and their interaction characteristics were investigated using multiple spectroscopic methods and computational simulation. Hesperetin, a mixed inhibitor, reversibly inhibited PPO activity, and its half-maximum inhibitory concentration (IC50) values on monophenolase and diphenolase [...] Read more.
The inhibitory activity of hesperetin on polyphenol oxidase (PPO) and their interaction characteristics were investigated using multiple spectroscopic methods and computational simulation. Hesperetin, a mixed inhibitor, reversibly inhibited PPO activity, and its half-maximum inhibitory concentration (IC50) values on monophenolase and diphenolase were 80.8 ± 1.4 μM and 776.0 ± 15.5 μM, respectively. Multivariate curve resolution–alternate least squares (MCR–ALS) analysis suggested PPO interacted with hesperetin and formed PPO–hesperetin complex. Hesperetin statically quenched PPO’s endogenous fluorescence, and hydrophobic interactions mainly drove their binding. Hesperetin affected the polarity of the microenvironment around the Trp residues in PPO, but had no effect on that around Tyr residues. Circular dichroism (CD) results showed that hesperetin increased α-helix content and decreased β-fold and random coil contents, thus tightening PPO’s structure. Molecular docking showed that hesperetin entered the hydrophobic cavity of PPO, bound near the dinuclear copper active center, interacted with Val283, Phe264, His85, Asn260, Val248, and His263 via hydrophobic interactions, formed hydrogen bonds with Met280, His89, and His259 residues and also interacted with Phe292, His61, Phe90, Glu256, His244, Asn260, Phe264, and Gly281 via van der Waals forces. The molecular dynamics simulation results also demonstrated that the addition of hesperetin reduced the stability and hydrophobicity of PPO and increased PPO’s structural denseness. Thus, the inhibition of hesperetin on PPO may be because hesperetin bound near the active center of PPO, interacted with the surrounding residues, occupied the binding site for substrate, and induced the changes in PPO’s secondary structure, thus inhibiting the catalytic activity of PPO. This study may provide novel views for the inhibition of hesperetin on PPO and theoretical guidance for developing flavonoids as new and efficient PPO inhibitors. Full article
Show Figures

Graphical abstract

13 pages, 2343 KiB  
Article
Characterization of Hypolipidemic Phenol Analogues from Fermented Tea by Eurotium cristatum
by Fuhang Song, Wei Dai, Honghua Li, Xinwan Zhang, Xiuli Xu, Linlin Ma and Long Wang
Foods 2023, 12(1), 49; https://doi.org/10.3390/foods12010049 - 22 Dec 2022
Cited by 1 | Viewed by 1560
Abstract
Fuzhuan brick tea (FBT), a type of black tea, is a traditional beverage in China, especially popular among frontier ethnic groups. FBT is well-known for its health benefits, such as hypoglycemic, anti-hypertensive, anti-inflammatory, diuretic, and detoxification effects. Nevertheless, the underlying mechanisms on the [...] Read more.
Fuzhuan brick tea (FBT), a type of black tea, is a traditional beverage in China, especially popular among frontier ethnic groups. FBT is well-known for its health benefits, such as hypoglycemic, anti-hypertensive, anti-inflammatory, diuretic, and detoxification effects. Nevertheless, the underlying mechanisms on the molecular level are still elusive and the key compounds responsible for the health benefits are unidentified. Previous studies have mainly focused on functional studies of the water extract. However, FBT is typically cooked with butter or milk. Therefore, we hypothesized that some lipophilic components in FBT, which can be absorbed through the co-consumption of butter or milk, may play an important role in the health benefits. The present study aimed to investigate whether the liposoluble extract of FBT alleviates symptoms related to metabolic diseases and to identify the active compounds involved. By comparing the high-performance liquid chromatography (HPLC) profiles of water, milk and hexane extract, some low polarity peaks were observed in the milk and hexane extracts. Furthermore, the hexane extract treatment alleviated body weight gain, serum total cholesterol and triglyceride levels, and inhibited the accumulation of hepatic fat granules in a high-fat diet (HFD)-induced C57BL/6N mouse model. In order to identify the key functional lipophilic compounds in FBT, the hexane extract of FBT was subjected to chemical characterization. Four phenol analogs were characterized, namely, isodihydroauroglaucin (1), dihydroauroglaucin (2), tetrahydroauroglaucin (3), and flavoglaucin (4). Compounds 1 and 4 reduced the levels of total cholesterol and triglyceride in vivo. Both compounds also inhibited the high-fat diet-induced body weight gain and accumulation of fat granules in the liver of C57BL/6N mice. Isodihydroauroglaucin and flavoglaucin have therefore been identified as bioactive ingredients that contribute to the health benefits of FBT. Full article
Show Figures

Figure 1

16 pages, 4691 KiB  
Article
Exploring the Promotive Effects and Mechanisms of Different Polyphenolic Extracts from Prinsepia utilis Royle Seed Shell on Tyrosinase
by Shuang Ma, Xiuqing Zheng, Yuanyue Zhang, Shuai Zhao, Junjie Yi and Shengbao Cai
Foods 2022, 11(24), 4015; https://doi.org/10.3390/foods11244015 - 12 Dec 2022
Cited by 4 | Viewed by 1512
Abstract
Prinsepia utilis Royle (P. utilis) is commonly used as a food ingredient and herbal medicine according to folk records, yet little research has been done on the seed shell, a processing waste. The aim of this study was to investigate the [...] Read more.
Prinsepia utilis Royle (P. utilis) is commonly used as a food ingredient and herbal medicine according to folk records, yet little research has been done on the seed shell, a processing waste. The aim of this study was to investigate the distribution of polyphenolic components and the tyrosinase activation activity of different extracts from the seed shell by UHPLC-ESI-HRMS/MS, in vitro tyrosinase activity assay, molecular docking and molecular dynamics. A total of 16 phytochemicals were identified, of which (+)-catechin and (−)-epicatechin were the major polyphenolic compounds. Both the esterified and insoluble bound polyphenols exhibited tyrosinase activation activity, and the esterified polyphenols showed better tyrosinase activation activity. (+)-Catechin and (−)-epicatechin might be the main activators of tyrosinase, both of which may act as substrate to affect tyrosinase activity. By molecular docking and molecular dynamics simulation studies, (+)-catechin and (−)-epicatechin can be efficiently and stably bound to the tyrosinase active site through hydrogen bonds, van der Waals forces and π-bonds. The results of this study may not only provide a scientific basis for exploring P. utilis seed shell as a potential activator of tyrosinase, but also contribute to the high value utilization of P. utilis processing by-products. Full article
Show Figures

Figure 1

15 pages, 5341 KiB  
Article
Protective Effects of Several Common Amino Acids, Vitamins, Organic Acids, Flavonoids and Phenolic Acids against Hepatocyte Damage Caused by Alcohol
by Yashen Wang, Nanhai Zhang, Jingxuan Zhou, Peng Sun, Liang Zhao and Feng Zhou
Foods 2022, 11(19), 3014; https://doi.org/10.3390/foods11193014 - 28 Sep 2022
Cited by 3 | Viewed by 1747
Abstract
With the increase in alcohol consumption, more and more people are suffering from alcoholic liver disease (ALD). Therefore, it is necessary to elaborate the pathogenesis of ALD from the aspects of alcohol metabolism and harm. In this study, we established an alcoholic liver [...] Read more.
With the increase in alcohol consumption, more and more people are suffering from alcoholic liver disease (ALD). Therefore, it is necessary to elaborate the pathogenesis of ALD from the aspects of alcohol metabolism and harm. In this study, we established an alcoholic liver injury model in vitro by inducing L02 cells with different concentration of ethanol and acetaldehyde. Results showed that the metabolism of ethanol can promote the content of ROS, MDA, TNF-α, IL-6, and caspase 3, causing oxidative and inflammatory stress and membrane permeability changes. However, unmetabolized ethanol and acetaldehyde had little effect on cell membrane permeability and inflammation, indicating that ethanol metabolites were the main reason for cell membrane damage. We also evaluated the effects of amino acids (taurine and methionine), vitamins (E and vitamin D), organic acids (malic acid and citric acid), flavonoids (rutin and quercetin), and phenolic acids (ferulic acid and chlorogenic acid) on alcohol-induced cell membrane damage of L02 cells. Chlorogenic acid, taurine, vitamin E, and citric acid had remarkable effects on improving cell membrane damage. Malic acid, rutin, quercetin, and ferulic acid had obvious therapeutic effects, while vitamin D and methionine had poor therapeutic effects. The relationship between the structure and effect of active ingredients can be further studied to reveal the mechanism of action, and monomers can be combined to explore whether there is a synergistic effect between functional components, in order to provide a certain theoretical basis for the actual study of liver protection. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

17 pages, 1519 KiB  
Review
A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities
by Xiaoxuan Jing, Jingxuan Zhou, Nanhai Zhang, Liang Zhao, Shiran Wang, Liebing Zhang and Feng Zhou
Foods 2022, 11(23), 3941; https://doi.org/10.3390/foods11233941 - 06 Dec 2022
Cited by 2 | Viewed by 1897
Abstract
Chronic diseases, including metabolic syndrome related to sugar and lipid metabolic disorders, are the leading causes of premature death around the world. Novel treatment strategies without undesirable effects are urgently needed. As a natural functional ingredient, puerarin is a promising alternative for the [...] Read more.
Chronic diseases, including metabolic syndrome related to sugar and lipid metabolic disorders, are the leading causes of premature death around the world. Novel treatment strategies without undesirable effects are urgently needed. As a natural functional ingredient, puerarin is a promising alternative for the treatment of sugar and lipid metabolic disorders. However, the applications of puerarin are limited due to its poor solubility and short half-life. Various drug delivery systems have been investigated to improve the bioavailability of puerarin. This review summarizes the mechanisms involved in the beneficial action of puerarin: suppressing the release of glucose and FFA; regulating the transport of glucose and fatty acids; acting on the PI3K–Akt and AMPK signaling pathways to decrease the synthesis of glucose and fatty acids; acting on the PPAR signaling pathway to promote β-oxidation; and improving insulin secretion and sensitivity. In addition, the preparation technologies used to improve the bioavailability of puerarin are also summarized in this review, in the hope of helping to promote the application of puerarin. Full article
Show Figures

Figure 1

Back to TopTop