Next Issue
Volume 8, October
Previous Issue
Volume 8, August
 
 

Infrastructures, Volume 8, Issue 9 (September 2023) – 10 articles

Cover Story (view full-size image): With the advancements in information, communication and sensing technologies, structural health monitoring (SHM), using wireless sensor nodes, has matured into a substantial pillar of infrastructure maintenance. However, wireless sensor nodes have limited power, are installed at fixed locations, and need to be employed at high density to reliably monitor large infrastructure, which may cause high installation costs. To resolve these critical constraints, a mobile structural health monitoring concept based on legged robots is proposed in this paper. The study explores the accuracy and cost efficiency of deploying legged robots in dense measurement setups for wireless SHM of civil infrastructure, representing a first step towards cost-efficient, autonomous robotic fleets to advance structural health monitoring. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 8236 KiB  
Article
Mobile Structural Health Monitoring Based on Legged Robots
by Kay Smarsly, Kosmas Dragos, Jan Stührenberg and Mathias Worm
Infrastructures 2023, 8(9), 136; https://doi.org/10.3390/infrastructures8090136 - 15 Sep 2023
Cited by 1 | Viewed by 1448
Abstract
With the advancements in information, communication, and sensing technologies, structural health monitoring (SHM) has matured into a substantial pillar of infrastructure maintenance. In particular, wireless sensor networks have gradually been incorporated into SHM, leveraging new opportunities towards reduced installation efforts and enhanced flexibility [...] Read more.
With the advancements in information, communication, and sensing technologies, structural health monitoring (SHM) has matured into a substantial pillar of infrastructure maintenance. In particular, wireless sensor networks have gradually been incorporated into SHM, leveraging new opportunities towards reduced installation efforts and enhanced flexibility and scalability, as compared to cable-based SHM systems. However, wireless sensor nodes are installed at fixed locations and need to be employed at high density to reliably monitor large infrastructure, which may cause high installation costs. Furthermore, the limited power autonomy of wireless sensor networks, installed at fixed locations for unattended long-term operation, still represents a significant constraint when deploying stationary wireless sensor nodes for SHM. To resolve the critical constraints stemming from costly high-density deployment and limited power autonomy, a mobile structural health monitoring concept based on legged robots is proposed in the study reported in this paper. The study explores the accuracy and cost-efficiency of deploying legged robots in dense measurement setups for wireless SHM of civil infrastructure, aiming to gain insights into the advantages of mobile wireless sensor nodes in general and of legged robots in particular, in terms of obtaining rich information on the structural condition. As is shown in this paper, the legged robots, as compared to stationary wireless sensor nodes, require a smaller number of nodes to be deployed in civil infrastructure to achieve rich sensor information, entailing more cost-efficient, yet accurate, SHM. In conclusion, this study represents a first step towards autonomous robotic fleets advancing structural health monitoring. Full article
Show Figures

Figure 1

13 pages, 4388 KiB  
Technical Note
Impact of the Structural Defects on Risk Assessment of Concrete Bridges According to the Italian Guidelines 2020
by Andrea Miano, Annalisa Mele, Irene Della Ragione, Antimo Fiorillo, Marco Di Ludovico and Andrea Prota
Infrastructures 2023, 8(9), 135; https://doi.org/10.3390/infrastructures8090135 - 13 Sep 2023
Viewed by 1621
Abstract
The Italian infrastructure network of roads and bridges is one of the most complex in the world due to the territory orography. Italy is strongly interested in seismic and hydrogeological hazards, and, in addition, degradation and obsolescence phenomena are common in infrastructures nowadays [...] Read more.
The Italian infrastructure network of roads and bridges is one of the most complex in the world due to the territory orography. Italy is strongly interested in seismic and hydrogeological hazards, and, in addition, degradation and obsolescence phenomena are common in infrastructures nowadays approaching the end of their nominal life. Furthermore, these infrastructures are subjected to continuous traffic load increase over time. In 2020, the Italian Ministry of Infrastructure and Transport (MIT) published the guidelines for risk classification and management, safety assessment, and monitoring of existing bridges (LG2020) as an attempt to unify the multiple procedures of inspection, monitoring, and maintenance of infrastructures. The multilevel approach proposed in the Italian guidelines for the management of the complex existing system of bridges is herein discussed and investigated, focusing on an operational methodology to evaluate the impact of structural defects on the risk assessment. This study aims to develop an operational methodology for the application of the procedure generically depicted in the LG2020 for the attribution of the level of defectiveness based on the outcomes of the periodical inspections. In particular, such a methodology is applied to two of the most widespread bridge structural typologies in the Mediterranean area: reinforced concrete (RC) and prestressed RC (PRC) bridges. The defects’ extent and level to structural members are associated with the proposed procedure for different bridge risk ratings. The work presents a useful tool to proceed from the outcomes of the inspections to the assignment of a level of defectiveness for the bridge, which enters into the risk assessment. This is to drive decision-makers in the definition of future actions and interventions, such as the detailed assessment of safety level and relevant strengthening interventions or installation of continuous monitoring systems. Full article
Show Figures

Figure 1

14 pages, 8786 KiB  
Article
Lessons Learned from the Construction and Initial Performance of a Double Chip Seal over a Paving Mat Pilot Project
by DingXin Cheng and Lerose Lane
Infrastructures 2023, 8(9), 134; https://doi.org/10.3390/infrastructures8090134 - 11 Sep 2023
Viewed by 1133
Abstract
Single chip seals are used by many agencies to maintain or preserve their roadways. While the construction and performance of single chip seals can be easily found from literature, the construction of double chip seals with and without paving fabric or paving mats [...] Read more.
Single chip seals are used by many agencies to maintain or preserve their roadways. While the construction and performance of single chip seals can be easily found from literature, the construction of double chip seals with and without paving fabric or paving mats is still not common. This paper investigates four double chip seal strategies used in a pilot project constructed on US 395 in Inyo County, California, by Caltrans. Within the double chip seal project limits, eight Performance Evaluation Sections (PESs) using four treatment strategies were established for detailed performance monitoring and evaluation: 1—a 3/8-inch asphalt rubber chip seal followed by a 1/4-inch PME chip seal without pavement-reinforcing fabric (PRF) or a paving mat as a control section; 2—a 3/8-inch PME chip seal over PRF, followed by a 1/4-inch PME chip seal; 3—a 3/8-inch PME chip seal over a paving mat, followed by a 1/4-inch PME chip seal; and 4—an asphalt rubber 3/8-inch chip seal over a paving mat, followed by a 1/4-inch PME chip seal. This pilot project was monitored during construction and evaluated 1 year later to help identify any construction issues and was used to improve the specifications and performance of Caltrans’ chip seals. This paper presents the initial findings following construction, and the one-year performance of the pilot project and lessons learned. The findings presented were accomplished by using these four treatment strategies on a highway with a very adverse high desert climate type and high traffic volumes. Project reviews are also planned for up to seven years to determine the long-term project performance. Full article
Show Figures

Figure 1

15 pages, 10308 KiB  
Article
Assessment of Liquefaction Hazard for Sites in Romania Using Empirical Models
by Florin Pavel and Robert Vladut
Infrastructures 2023, 8(9), 133; https://doi.org/10.3390/infrastructures8090133 - 05 Sep 2023
Viewed by 1139
Abstract
This paper is focused on the evaluation of the liquefaction hazard for different sites in Romania. To this aim, a database of 139 ground motions recorded during Vrancea intermediate-depth earthquakes having moment magnitudes MW ≥ 6.0 is employed for the evaluation of [...] Read more.
This paper is focused on the evaluation of the liquefaction hazard for different sites in Romania. To this aim, a database of 139 ground motions recorded during Vrancea intermediate-depth earthquakes having moment magnitudes MW ≥ 6.0 is employed for the evaluation of the equivalent number of cycles for this seismic source. Several functional forms for the empirical evaluation of the equivalent number of cycles considering various seismological or engineering parameters are tested and evaluated. The regression analysis shows smaller uncertainties for the empirical models based on ground motion engineering parameters. Considering the lack of information in terms of engineering parameters, a simpler empirical model which accounts for the earthquake magnitude, source–site distance and soil conditions is selected for the liquefaction hazard analysis. Based on the proposed empirical model, specific magnitude scaling factors for Vrancea intermediate-depth earthquakes are proposed for the first time as well. The liquefaction hazard analysis is performed for sites whose seismic hazard is generated by either the Vrancea intermediate-depth seismic source or by local shallow crustal seismic sources. In the case of some of the selected sites, liquefaction phenomena were observed during past large-magnitude earthquakes. Unlike previous studies dealing with liquefaction analyses for sites in Romania, in this research, the hazard assessment is performed for various ground motion levels evaluated based on probabilistic seismic hazard assessment. Liquefaction hazard curves are constructed for each analyzed site. The results of the liquefaction hazard analysis show that this phenomenon is more likely to occur in the areas exposed to Vrancea intermediate-depth earthquakes, compared to the areas affected by local shallow earthquakes. In the case of the analyzed soil profiles from Bucharest, Craiova and Ianca, the minimum liquefaction safety factors less than one even for seismic hazard levels having mean return periods of 100 years and less. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering)
Show Figures

Figure 1

18 pages, 1560 KiB  
Article
A Review of the Effect of Nano-Silica on the Mechanical and Durability Properties of Cementitious Composites
by Haneen AlTawaiha, Fadi Alhomaidat and Tamer Eljufout
Infrastructures 2023, 8(9), 132; https://doi.org/10.3390/infrastructures8090132 - 04 Sep 2023
Cited by 4 | Viewed by 3188
Abstract
The incorporation of nanotechnology has led to significant strides in the concrete industry, ushering in innovative construction methodologies. Various nanomaterials, including nano-silica (NS), have undergone comprehensive scrutiny as potential partial substitutes for cement in concrete formulations. This article aims to provide a comprehensive [...] Read more.
The incorporation of nanotechnology has led to significant strides in the concrete industry, ushering in innovative construction methodologies. Various nanomaterials, including nano-silica (NS), have undergone comprehensive scrutiny as potential partial substitutes for cement in concrete formulations. This article aims to provide a comprehensive overview of the impacts of NS on several mechanical properties of concrete, encompassing compressive, split tensile, and flexural strengths. Additionally, the review delves into the influence of NS on the concrete’s durability, including microstructural characterization and the eradication of structural micropores. NS has demonstrated the capacity to bolster both strength and durability while concurrently diminishing structural micropores. Moreover, this review explores the contemporary status of NS application in cement concrete and presents avenues for prospective research. The assessment of engineering attributes becomes imperative for concrete infused with nano-silica. This encompasses aspects like bond strength, creep, shrinkage, and more. A rigorous evaluation of fresh and hardened properties is necessary to discern the material’s thermal and acoustical characteristics. Such a comprehensive understanding contributes to a holistic evaluation of the material’s adaptability across diverse applications. Full article
Show Figures

Figure 1

16 pages, 4221 KiB  
Article
Investigation of the Bearing Capacity of Transport Constructions Made of Corrugated Metal Structures Reinforced with Transversal Stiffening Ribs
by Vitalii Kovalchuk, Mykola Sysyn, Majid Movahedi Rad and Szabolcs Fischer
Infrastructures 2023, 8(9), 131; https://doi.org/10.3390/infrastructures8090131 - 01 Sep 2023
Viewed by 1050
Abstract
Methods of increasing the bearing capacity of corrugated metal structures of transport constructions using transversal stiffening ribs in the form of additional corrugation and stiffeners are given. Based on the theory of elasticity, a mathematical model for estimating the stress-strain state of transport [...] Read more.
Methods of increasing the bearing capacity of corrugated metal structures of transport constructions using transversal stiffening ribs in the form of additional corrugation and stiffeners are given. Based on the theory of elasticity, a mathematical model for estimating the stress-strain state of transport constructions made of corrugated metal structures reinforced with stiffening ribs in the form of double corrugation was developed. The method of determining equivalent forces during rolling stock passage is offered. It has been established that double corrugation increases the bearing capacity of corrugated metal structures. Therefore, additional corrugation of corrugated metal structures reduces stresses by up to 20% and deflections by 50%. The obtained results show that the increase in rolling stock speed does not lead to a significant increase in stresses and strains in CMS when the railway track corresponds to the design state. Full article
(This article belongs to the Special Issue Recent Advances in Railway Engineering)
Show Figures

Figure 1

19 pages, 10856 KiB  
Article
Analyzing Wind Effects on Long-Span Bridges: A Viable Numerical Modelling Methodology Using OpenFOAM for Industrial Applications
by Yuxiang Zhang, Reamonn MacReamoinn, Philip Cardiff and Jennifer Keenahan
Infrastructures 2023, 8(9), 130; https://doi.org/10.3390/infrastructures8090130 - 26 Aug 2023
Cited by 1 | Viewed by 1301
Abstract
Aerodynamic performance is of critical importance to the design of long-span bridges. Computational fluid dynamics (CFD) modelling offers bridge designers an opportunity to investigate aerodynamic performance for long-span bridges during the design phase as well as during operation of the bridge. It offers [...] Read more.
Aerodynamic performance is of critical importance to the design of long-span bridges. Computational fluid dynamics (CFD) modelling offers bridge designers an opportunity to investigate aerodynamic performance for long-span bridges during the design phase as well as during operation of the bridge. It offers distinct advantages when compared with the current standard practice of wind tunnel testing, which can have several limitations. The proposed revisions to the Eurocodes offer CFD as a methodology for wind analysis of bridges. Practicing engineers have long sought a computationally affordable, viable, and robust framework for industrial applications of using CFD to examine wind effects on long-span bridges. To address this gap in the literature and guidance, this paper explicitly presents a framework and demonstrates a workflow of analyzing wind effects on long-span bridges using open-source software, namely FreeCAD, OpenFOAM, and ParaView. Example cases are presented, and detailed configurations and general guidance are discussed during each step. A summary is provided of the validation of this methodology with field data collected from the structural health monitoring (SHM) systems of two long-span bridges. Full article
(This article belongs to the Special Issue Bridge Modeling, Monitoring, Management and Beyond)
Show Figures

Figure 1

18 pages, 4801 KiB  
Article
Intrinsic Properties of Composite Double Layer Grid Superstructures
by Shahrokh Maalek, Reza Maalek and Bahareh Maalek
Infrastructures 2023, 8(9), 129; https://doi.org/10.3390/infrastructures8090129 - 25 Aug 2023
Cited by 1 | Viewed by 1329
Abstract
This paper examined the opportunities of composite double-layer grid superstructures in short-to-medium span bridge decks. It was empirically shown here that a double-layer grid deck system in composite action with a thin layer of two−way reinforced concrete slab introduced several structural advantages over [...] Read more.
This paper examined the opportunities of composite double-layer grid superstructures in short-to-medium span bridge decks. It was empirically shown here that a double-layer grid deck system in composite action with a thin layer of two−way reinforced concrete slab introduced several structural advantages over the conventional composite plate-girder superstructure system. These advantages included improved seismic performance, increased structural rigidity, reduced deck vibration, increased failure capacity, and so on. Optimally proportioned space grid superstructures were found to be less prone to progressive collapse, increasing structural reliability and resilience, while reducing the risk of sudden failure. Through a set of dynamic time-series experiments, considerable enhancement in load transfer efficiency in the transverse direction under dynamic truck loading was gained. Furthermore, the multi-objective generative optimization of the proposed spatial grid bridge (with integral variable depth) using evolutionary optimization methods was examined. Finally, comprehensive discussions were given on: (i) mechanical properties, such as fatigue behavior, corrosion, durability, and behavior in cold environments; (ii) health monitoring aspects, such as ease of inspection, maintenance, and access for the installation of remote monitoring devices; (iii) sustainability considerations, such as reduction of embodied Carbon and energy due to reduced material waste, along with ease of demolition, deconstruction and reuse after lifecycle design; and (iv) lean management aspects, such as support for industrialized construction and mass customization. It was concluded that the proposed spatial grid system shows promise for building essential and sustainable infrastructures of the future. Full article
Show Figures

Figure 1

22 pages, 7279 KiB  
Article
Quantification and Reduction of Uncertainty in Seismic Resilience Assessment for a Roadway Network
by Vishnupriya Jonnalagadda, Ji Yun Lee, Jie Zhao and Seyed Hooman Ghasemi
Infrastructures 2023, 8(9), 128; https://doi.org/10.3390/infrastructures8090128 - 25 Aug 2023
Viewed by 1168
Abstract
The nation’s transportation systems are complex and are some of the highest valued and largest public assets in the United States. As a result of repeated natural hazards and their significant impact on transportation functionality and the socioeconomic health of communities, transportation resilience [...] Read more.
The nation’s transportation systems are complex and are some of the highest valued and largest public assets in the United States. As a result of repeated natural hazards and their significant impact on transportation functionality and the socioeconomic health of communities, transportation resilience has gained increasing attention in recent years. Previous studies on transportation resilience have heavily emphasized network functionality during and/or following a scenario hazard event by implicitly assuming that sufficient knowledge of structural capacity and environmental/service conditions is available at the time of an extreme event. However, such assumptions often fail to consider uncertainties that arise when an extreme hazard event occurs in the future. Thus, it is essential to quantify and reduce uncertainties to better prepare for extreme events and accurately assess transportation resilience. To this end, this paper proposes a dynamic Bayesian network-based resilience assessment model for a large-scale roadway network that can explicitly quantify uncertainties in all phases of the assessment and investigate the role of inspection and monitoring programs in uncertainty reduction. Specifically, the significance of data reliability is investigated through a sensitivity analysis, where various sets of data having different reliabilities are used in updating system resilience. To evaluate the effectiveness of the model, a benchmark problem involving a highway network in South Carolina, USA is utilized, showcasing the systematic quantification and reduction of uncertainties in the proposed model. The benchmark problem result shows that incorporating monitoring and inspection data on important variables could improve the accuracy of predicting the seismic resilience of the network. It also suggests the need to consider equipment reliability when designing monitoring and inspection programs. With the recent development of a wide range of monitoring and inspection techniques, including nondestructive testing, health monitoring equipment, satellite imagery, LiDAR, etc., these findings can be useful in assisting transportation managers in identifying necessary equipment reliability levels and prioritizing inspection and monitoring efforts. Full article
Show Figures

Figure 1

35 pages, 2587 KiB  
Article
An Infrastructure Management Humanistic Approach for Smart Cities Development, Evolution, and Sustainability
by Carlos M. Chang, Gianine Tejada Salinas, Teresa Salinas Gamero, Stella Schroeder, Mario A. Vélez Canchanya and Syeda Lamiya Mahnaz
Infrastructures 2023, 8(9), 127; https://doi.org/10.3390/infrastructures8090127 - 24 Aug 2023
Viewed by 2497
Abstract
Over the next decades, people will continue moving to urban areas all over the world, increasing infrastructure needs to satisfy economic, environmental, and social demands. The connection between civil urban infrastructure and smart cities is strong due to the common goal of fulfilling [...] Read more.
Over the next decades, people will continue moving to urban areas all over the world, increasing infrastructure needs to satisfy economic, environmental, and social demands. The connection between civil urban infrastructure and smart cities is strong due to the common goal of fulfilling public service demands. Infrastructure management contributes to the development, evolution, and sustainability of smart cities. The main problem with traditional approaches to the development, evolution, and sustainability of smart cities is the lack of a holistic, integrated vision of infrastructure management. The main objective of this research is to introduce an infrastructure management humanistic approach with a smart city conceptual model that also considers an educational perspective. A mixed research methodology that combines quantitative and qualitative approaches was used, applying inductive-deductive tools. The paper concludes with the development of an infrastructure management framework for smart cities with five dimensions: (1) Environmental, (2) financial-economic, (3) political-governance, (4) social-people, and (5) technological. Two case studies for the cities of Lima and Piura in Perú illustrate how to incorporate this framework into practice. The research products are relevant because they foster an inclusive better quality of life for all citizens by preserving civil infrastructure systems. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop