Next Issue
Volume 9, June
Previous Issue
Volume 9, April
 
 

Infrastructures, Volume 9, Issue 5 (May 2024) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 6685 KiB  
Article
Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements
by Gul Badin, Naveed Ahmad, Ying Huang and Yasir Mahmood
Infrastructures 2024, 9(5), 88; https://doi.org/10.3390/infrastructures9050088 - 17 May 2024
Viewed by 381
Abstract
Pavement construction practices have evolved due to increasing environmental impact and urban heat island (UHI) effects, as pavements, covering over 30% of urban areas, contribute to elevated air temperatures. This study introduces heat-reflective pavements, by replacing conventional black bitumen with a clear binder [...] Read more.
Pavement construction practices have evolved due to increasing environmental impact and urban heat island (UHI) effects, as pavements, covering over 30% of urban areas, contribute to elevated air temperatures. This study introduces heat-reflective pavements, by replacing conventional black bitumen with a clear binder and pigment-modified clear binders. Titanium dioxide white, zinc ferrite yellow, and iron oxide red pigments are used to give asphalt corresponding shades. The asphalt and bitumen specimens were subjected to thermal analysis in heat sinks, under varying solar fluxes. The pigment dosage was maintained at 4%, according to the weight of the total mix, for all pigment types. The samples were heated and cooled for 3 h and 2 h, respectively. Mechanical testing was conducted to ascertain the impact of temperature variations on both the neat clear binder (C.B) and pigmented C.B and asphalt mixture samples. Wheel tracking and dynamic modulus tests were conducted to evaluate their performance under high temperatures. The results indicate that non-black asphalt mixtures exhibit significant temperature reductions, up to 9 °C, which are further enhanced by pigmented binders, up to 11 °C. It was found that asphalt with a clear or transparent binder demonstrated lower temperatures and faster heat dissipation in extreme conditions. Moreover, C.B asphalt mixtures displayed a rut resistance of 15%, with the pigmented C.B asphalt mixture showing a remarkable rut resistance of 73%, outperforming conventional asphalt. Non-black mixtures, especially C.B + zinc ferrite, showed improved resistance to permanent deformation in dynamic modulus tests. Full article
(This article belongs to the Special Issue Sustainable and Digital Transformation of Road Infrastructures)
Show Figures

Figure 1

23 pages, 11765 KiB  
Article
Traffic Flow Optimization at Toll Plaza Using Proactive Deep Learning Strategies
by Habib Talha Hashmi, Sameer Ud-Din, Muhammad Asif Khan, Jamal Ahmed Khan, Muhammad Arshad and Muhammad Usman Hassan
Infrastructures 2024, 9(5), 87; https://doi.org/10.3390/infrastructures9050087 - 15 May 2024
Viewed by 384
Abstract
Global urbanization and increasing traffic volume have intensified traffic congestion throughout transportation infrastructure, particularly at toll plazas, highlighting the critical need to implement proactive transportation infrastructure solutions. Traditional toll plaza management approaches, often relying on manual interventions, suffer from inefficiencies that fail to [...] Read more.
Global urbanization and increasing traffic volume have intensified traffic congestion throughout transportation infrastructure, particularly at toll plazas, highlighting the critical need to implement proactive transportation infrastructure solutions. Traditional toll plaza management approaches, often relying on manual interventions, suffer from inefficiencies that fail to adapt to dynamic traffic flow and are unable to produce preemptive control strategies, resulting in prolonged queues, extended travel times, and adverse environmental effects. This study proposes a proactive traffic control strategy using advanced technologies to combat toll plaza congestion and optimize traffic management. The approach involves deep learning convolutional neural network models (YOLOv7–Deep SORT) for vehicle counting and an extended short-term memory model for short-term arrival rate prediction. When projected arrival rates exceed a threshold, the strategy proactively activates variable speed limits (VSLs) and ramp metering (RM) strategies during peak hours. The novelty of this study lies in its predictive and adaptive capabilities, ensuring efficient traffic flow management. Validated through a case study at Ravi Toll Plaza Lahore using PTV VISSIMv7, the proposed method reduces queue length by 57% and vehicle delays by 47% while cutting fuel consumption and pollutant emissions by 28.4% and 34%, respectively. Additionally, by identifying the limitations of conventional approaches, this study presents a novel framework alongside the proposed strategy to bridge the gap between theory and practice, making it easier for toll plaza operators and transportation authorities to adopt and benefit from advanced traffic management techniques. Ultimately, this study underscores the importance of integrated and proactive traffic control strategies in enhancing traffic management, minimizing congestion, and fostering a more sustainable transportation system. Full article
Show Figures

Figure 1

31 pages, 3384 KiB  
Review
Track Deterioration Model—State of the Art and Research Potentials
by Ursula Ehrhart, Dieter Knabl and Stefan Marschnig
Infrastructures 2024, 9(5), 86; https://doi.org/10.3390/infrastructures9050086 - 14 May 2024
Viewed by 366
Abstract
Track deterioration models (TDMs) help to allocate maintenance work (direct costs) to vehicle runs. Furthermore, these models demonstrate the impact of rolling stock properties on infrastructure. This paper review provides an overview of the state of the art in railway track deterioration modelling [...] Read more.
Track deterioration models (TDMs) help to allocate maintenance work (direct costs) to vehicle runs. Furthermore, these models demonstrate the impact of rolling stock properties on infrastructure. This paper review provides an overview of the state of the art in railway track deterioration modelling and outlines the research potential in this domain. The main focus lies on ballast degradation, rail surface wear and fatigue, and their description in an empiric analytic wear formula. The basis for discussion is the wear formula of the Graz University of Technology. While the TDM demonstrates effectiveness, enhancements are sought, particularly with regard to adjusting the track parameters that vary across railway networks. Further exploration aims to refine the description of rail surface wear and rolling contact fatigue (RCF), incorporating factors such as traction energy and short-wave effects and adapting mathematical functions such as the t-Gamma function. This review underscores the need for ongoing research to develop TDMs that are both simple and detailed enough to encourage track-friendly rolling stock design. Full article
(This article belongs to the Special Issue Recent Advances in Railway Engineering)
Show Figures

Figure 1

24 pages, 10999 KiB  
Article
Microstructural and Residual Properties of Self-Compacting Concrete Containing Waste Copper Slag as Fine Aggregate Exposed to Ambient and Elevated Temperatures
by Bypaneni Krishna Chaitanya, Ilango Sivakumar, Yellinedi Madhavi, Daniel Cruze, Chava Venkatesh, Yenigandla Naga Mahesh and Chereddy Sonali Sri Durga
Infrastructures 2024, 9(5), 85; https://doi.org/10.3390/infrastructures9050085 - 13 May 2024
Viewed by 387
Abstract
In recent times, with rapid development in the construction sector, the use of enormous amounts of materials is required for the production of concrete. Fire penetrates concrete, leading to chemical contamination, small cracks, and lightening. These effects can significantly change the properties of [...] Read more.
In recent times, with rapid development in the construction sector, the use of enormous amounts of materials is required for the production of concrete. Fire penetrates concrete, leading to chemical contamination, small cracks, and lightening. These effects can significantly change the properties of concrete’s structure, reduce its strength and durability, and also change the behavior of the structure and lead to effects on the environment. An attempt was made to study the effects of elevated temperature on the mechanical characteristics of self-compacting concrete (SCC) with by-products including fly ash as a partial replacement for cement and waste copper slag as a partial replacement for fine aggregate at 0%, 10%, 20%, 30%, 40%, 50%, 60%, and 70%. The SCC specimens were subjected to elevated temperatures ranging from 200, 400, 600, and 800 °C, respectively, for a steady-state of two hours in a digital muffle furnace. The residual compressive strength, mass loss, ultrasonic pulse velocity, and residual density along with a visual inspection of cracks and color changes were observed. In this study, with over 400 °C temperatures, surface fractures appeared. The residual compressive strength (R-CMS) of all the individual temperatures of the SCC-WCS% mixes exhibited a gain in strength range from 31 to 34 MPa at 400 °C, 26 to 35 MPa at 600 °C, and 22.5 MPa to 33.5 MPa at 800 °C, respectively. Microstructural analysis of SCC-WCS% mixtures subjected to elevated ambient temperatures is carried out with a scanning electron microscope (SEM) and X-ray diffraction (XRD). Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

20 pages, 5088 KiB  
Article
Building Information Modeling/Building Energy Simulation Integration Based on Quantitative and Interpretative Interoperability Analysis
by Carolina Fernandes Vaz, Luísa Lopes de Freitas Guilherme, Ana Carolina Fernandes Maciel, André Luis De Araujo, Bruno Barzellay Ferreira Da Costa and Assed Naked Haddad
Infrastructures 2024, 9(5), 84; https://doi.org/10.3390/infrastructures9050084 - 7 May 2024
Viewed by 523
Abstract
The integration between the building information modeling (BIM) methodology and the building energy simulation (BES) can contribute to a thermo-energetic analysis since the model generated and fed into BIM is exported to simulation software. This integration, also called interoperability, is satisfactory when the [...] Read more.
The integration between the building information modeling (BIM) methodology and the building energy simulation (BES) can contribute to a thermo-energetic analysis since the model generated and fed into BIM is exported to simulation software. This integration, also called interoperability, is satisfactory when the information flow is carried out without the loss of essential information. Several studies point out interoperability flaws between the methodologies; however, most of them occur in low-geometry-complexity models during quantitative experiments. The purpose of this research was to analyze the BIM/BES integration based on a quantitative and interpretative interoperability analysis of two buildings with complex geometries located on the UFU Campus (library and Building 5T) in Uberlândia, Brazil. To accomplish this, two geometries of each building were modeled, detailed, and simplified to analyze the data import, workflow, and model correction in the BES software. In the case of the library, the integration of Revit with DesignBuilder and IES-VE was analyzed, and in Block 5T, Revit was used with DesignBuilder and eQUEST. The BES software that presented the best integration with Revit for complex geometries was DesignBuilder, with the best performance being in the interpretative criteria. It was concluded that the simplification of complex geometries is essential for better data transfers. To determine the BES software that has better integration with BIM, a comprehensive evaluation is necessary, considering not only data transfers but also ease of working within BES software, the possibility of corrections in these, as well as the availability of tutorials and developer support. Full article
(This article belongs to the Special Issue Smart, Sustainable and Resilient Infrastructures, 2nd Edition)
Show Figures

Figure 1

31 pages, 4642 KiB  
Article
Hierarchical SVM for Semantic Segmentation of 3D Point Clouds for Infrastructure Scenes
by Mohamed Mansour, Jan Martens and Jörg Blankenbach
Infrastructures 2024, 9(5), 83; https://doi.org/10.3390/infrastructures9050083 - 6 May 2024
Viewed by 556
Abstract
The incorporation of building information modeling (BIM) has brought about significant advancements in civil engineering, enhancing efficiency and sustainability across project life cycles. The utilization of advanced 3D point cloud technologies such as laser scanning extends the application of BIM, particularly in operations [...] Read more.
The incorporation of building information modeling (BIM) has brought about significant advancements in civil engineering, enhancing efficiency and sustainability across project life cycles. The utilization of advanced 3D point cloud technologies such as laser scanning extends the application of BIM, particularly in operations and maintenance, prompting the exploration of automated solutions for labor-intensive point cloud modeling. This paper presents a demonstration of supervised machine learning—specifically, a support vector machine—for the analysis and segmentation of 3D point clouds, which is a pivotal step in 3D modeling. The point cloud semantic segmentation workflow is extensively reviewed to encompass critical elements such as neighborhood selection, feature extraction, and feature selection, leading to the development of an optimized methodology for this process. Diverse strategies are implemented at each phase to enhance the overall workflow and ensure resilient results. The methodology is then evaluated using diverse datasets from infrastructure scenes of bridges and compared with state-of-the-art deep learning models. The findings highlight the effectiveness of supervised machine learning techniques at accurately segmenting 3D point clouds, outperforming deep learning models such as PointNet and PointNet++ with smaller training datasets. Through the implementation of advanced segmentation techniques, there is a partial reduction in the time required for 3D modeling of point clouds, thereby further enhancing the efficiency and effectiveness of the BIM process. Full article
Show Figures

Figure 1

18 pages, 6106 KiB  
Article
Numerical Modeling and Performance Evaluation of Carbon Fiber-Reinforced Polymer-Strengthened Concrete Culverts against Water-Induced Corrosion
by Hafiz Ahmed Waqas, Alireza Bahrami, Fayiz Amin, Mehran Sahil and Muhammad Saud Khan
Infrastructures 2024, 9(5), 82; https://doi.org/10.3390/infrastructures9050082 - 6 May 2024
Viewed by 575
Abstract
Culverts fulfill the vital function of safely channeling water beneath railway tracks, highways, and overpasses. They serve various purposes, including facilitating drainage in areas such as watercourses, drainage zones, and regions with restricted ground-bearing capacity. Precast reinforced concrete (RC) box culverts are a [...] Read more.
Culverts fulfill the vital function of safely channeling water beneath railway tracks, highways, and overpasses. They serve various purposes, including facilitating drainage in areas such as watercourses, drainage zones, and regions with restricted ground-bearing capacity. Precast reinforced concrete (RC) box culverts are a popular choice because they are strong, durable, rigid, and economical. However, culverts are prone to corrosion due to exposure to a range of environmental factors and aggressive chemicals. Therefore, enhancing the design and construction of this crucial infrastructure is imperative to effectively combat corrosion and to adhere to modern standards of reliability and affordability. In this study, carbon fiber-reinforced polymer (CFRP) was used to strengthen corroded culverts, with promising potential to improve safety and longevity in these structures. This study compared the behavior of corroded RC box culverts to CFRP-strengthened ones using the finite element method (FEM). It explored the impact of varying the damage thicknesses owing to corrosion, ranging from 0 mm to 20 mm, on the structural performance of the box culverts. The results showed that the CFRP model exhibited a substantial 25% increase in the capacity and reduced the damage compared to the reference model. Moreover, a parametric study was conducted for establishing a cost-effective design, in which numerous CFRP strip configurations were examined for a damaged-culvert model. The results indicated that a complete CFRP sheet was most effective for the maximum design capacity and repair effectiveness. The study’s outcomes provide valuable insights for professionals engaged in enhancing the strength of box culverts, aiming to increase the capacity, enhance the stability, and strengthen corroded culverts. Full article
Show Figures

Figure 1

16 pages, 5324 KiB  
Article
Aging Resistance Evaluation of an Asphalt Mixture Modified with Zinc Oxide
by Hugo Alexander Rondón-Quintana, Carlos Alfonso Zafra-Mejía and Carlos Felipe Urazán-Bonells
Infrastructures 2024, 9(5), 81; https://doi.org/10.3390/infrastructures9050081 - 4 May 2024
Viewed by 648
Abstract
The phenomenon of the oxidation and aging of asphalt binders affects the strength and durability of asphalt mixtures in pavements. Several studies are trying to improve the resistance to this phenomenon by modifying the properties of the binders with nano-particles. One material that [...] Read more.
The phenomenon of the oxidation and aging of asphalt binders affects the strength and durability of asphalt mixtures in pavements. Several studies are trying to improve the resistance to this phenomenon by modifying the properties of the binders with nano-particles. One material that shows promise in this field is zinc oxide (ZnO), especially in improving ultraviolet (UV) aging resistance. Few studies have evaluated the effect of these nano-particles on the thermo-oxidative resistance of asphalt binders, and, on hot-mix asphalt (HMA), studies are even more scarce and limited. Therefore, in the present study, the resistance to thermo-oxidative aging of an HMA manufactured with an asphalt binder modified with ZnO was evaluated. An asphalt cement (AC 60–70) was initially modified with 0, 1, 3, 5, 7.5, and 10% ZnO (percentage by weight of asphalt binder; ZnO/AC in wt%), and then exposed to aging in Rolling Thin-Film Oven tests (RTFOT) and a Pressure Aging Vessel (PAV). Penetration, viscosity, and softening point tests were performed on these binders, and aging indices were calculated and evaluated. Samples of HMAs were then manufactured using these binders and designed by the Marshall method, determining the optimum asphalt binder content (OAC) and the optimum ZnO/AC ratio. Control (unmodified) and modified HMA were subjected to short-term oven aging (STOA) and long-term oven aging (LTOA) procedures. Marshall, Indirect Tensile Strength (ITS), and resilient modulus (RM) tests were performed on these mixtures. LTOA/STOA results of the parameters measured in these tests were used as aging indices. In this study, ZnO was shown to increase the thermo-oxidative aging resistance of the asphalt binder and HMA. It also contributed to an increase in the resistance under monotonic loading in the Marshall and ITS tests, and under repeated loading in RM test. Likewise, it contributed to a slightly increasing resistance to moisture damage. The best performance is achieved using ZnO/AC = 5 wt%. Full article
Show Figures

Figure 1

29 pages, 10022 KiB  
Article
The Influence of Soil Deformability on the Seismic Response of 3D Mixed R/C–Steel Buildings
by Paraskevi K. Askouni
Infrastructures 2024, 9(5), 80; https://doi.org/10.3390/infrastructures9050080 - 4 May 2024
Viewed by 512
Abstract
Following effective seismic codes, common buildings are considered to be made of the same material throughout the story distribution and based on an ideal rigid soil. However, in daily construction practice, there are often cases of buildings formed by a bottom part constructed [...] Read more.
Following effective seismic codes, common buildings are considered to be made of the same material throughout the story distribution and based on an ideal rigid soil. However, in daily construction practice, there are often cases of buildings formed by a bottom part constructed with reinforced concrete (r/c) and a higher steel part, despite this construction type not being recognized by code assumptions. In addition, soil deformability, commonly referred to as the Soil–Structure Interaction (SSI), is widely found to affect the earthquake response of typical residence structures, apart from special structures, though it is not included in the normative design procedure. This work studies the seismic response of in-height mixed 3D models, considering the effect of sustaining deformable ground compared to the common rigid soil hypothesis, which has not been clarified so far in the literature. Two types of soft soil, as well as the rigid soil assumption, acting as a reference point, are considered, while two limit interconnections between the steel part on the concrete part are included in the group analysis. The possible influence of the seismic orientation angle is explored in the analysis set. Selected numerical results of the dynamic nonlinear analyses under strong near-fault ground excitations were plotted through dimensionless parameters to facilitate an objective comparative discussion. The effect of SSI on the nonlinear performance of three-dimensional mixed models is identified, which serves as the primary contribution of this work, making it unique among the numerous research works available globally and pointing to findings that are useful for the enhancement of the seismic rules regarding the design and analysis of code-neglected mixed buildings. Full article
Show Figures

Figure 1

15 pages, 2709 KiB  
Article
Warm-Mix Asphalt Containing Reclaimed Asphalt Pavement: A Case Study in Switzerland
by Nicolas Bueche, Samuel Probst and Shahin Eskandarsefat
Infrastructures 2024, 9(5), 79; https://doi.org/10.3390/infrastructures9050079 - 29 Apr 2024
Viewed by 550
Abstract
Among the technologies proposed for achieving carbon neutralization in asphalt road pavements, warm-mix asphalt (WMA) has garnered increasing attention in recent years. While WMA holds the potential for various environmental and technical benefits, a comprehensive understanding of its implementation, technology selection, and additives [...] Read more.
Among the technologies proposed for achieving carbon neutralization in asphalt road pavements, warm-mix asphalt (WMA) has garnered increasing attention in recent years. While WMA holds the potential for various environmental and technical benefits, a comprehensive understanding of its implementation, technology selection, and additives is essential for successful application. This study presents a case where a bio-based chemical additive was employed to produce WMA containing 50% reclaimed asphalt pavement (RAP) for a surface course in Bern, Switzerland. To minimize additional variables during testing and analysis, no other additive or rejuvenator was introduced into the mixtures. The testing plan encompassed laboratory tests on samples collected during material placement and recompacted at varying temperatures in the laboratory, as well as cores extracted from the job site. As anticipated, the presence of the chemical WMA additive did not alter the rheological properties of the reference bitumen. Although in the mixture-scale tests, the WMA mixture exhibited comparable properties to the control hot-mix asphalt (HMA), it is not expected that the small dosage of the chemical additive functions the same grade after reheating and compaction. Nevertheless, the cores extracted from the job site proved the efficiency of the applied WMA technology. In addition, consistent with existing literature, the cracking tolerance (CT) index values of 62 for HMA and 114 and 104.9 for WMA mixtures indicated that the latter is less susceptible to cracking. Consequently, this characteristic could contribute to the enhanced durability of asphalt pavements. Full article
Show Figures

Figure 1

39 pages, 16952 KiB  
Article
Ensemble Learning Approach for Developing Performance Models of Flexible Pavement
by Ali Taheri and John Sobanjo
Infrastructures 2024, 9(5), 78; https://doi.org/10.3390/infrastructures9050078 - 25 Apr 2024
Viewed by 622
Abstract
This research utilizes the Long-Term Pavement Performance database, focusing on devel-oping a predictive model for flexible pavement performance in the Southern United States. Analyzing 367 pavement sections, this study investigates crucial factors influencing asphaltic concrete (AC) pavement deterioration, such as structural and material [...] Read more.
This research utilizes the Long-Term Pavement Performance database, focusing on devel-oping a predictive model for flexible pavement performance in the Southern United States. Analyzing 367 pavement sections, this study investigates crucial factors influencing asphaltic concrete (AC) pavement deterioration, such as structural and material components, air voids, compaction density, temperature at laydown, traffic load, precipitation, and freeze–thaw cycles. The objective of this study is to develop a predictive machine learning model for AC pavement wheel path cracking (WpCrAr) and the age at which cracking initiates (WpCrAr) as performance indicators. This study thoroughly investigated three ensemble machine learning models, including random forest, extremely randomized trees (ETR), and extreme gradient boosting (XGBoost). It was observed that XGBoost, optimized using Bayesian methods, emerged as the most effective among the evaluated models, demonstrating good predictive accuracy, with an R2 of 0.79 for WpCrAr and 0.92 for AgeCrack and mean absolute errors of 1.07 and 0.74, respectively. The most important features influencing crack initiation and progression were identified, including equivalent single axle load (ESAL), pavement age, number of layers, precipitation, and freeze–thaw cycles. This paper also showed the impact of pavement material combinations for base and subgrade layers on the delay of crack initiation. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop