Advances in Steel and Composite Steel–Concrete Bridges and Buildings

A special issue of Infrastructures (ISSN 2412-3811).

Deadline for manuscript submissions: 31 August 2024 | Viewed by 5388

Special Issue Editor

Mechanics, Sound & Vibration Laboratory, Department of Civil Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
Interests: behavior of reinforced; prestressed concrete and steel structures; bridge engineering; engineering material; machine learning; method of finite elements; structural health assessment and monitoring
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Construction steel has widely been used worldwide for developing infrastructures, e.g., bridges and buildings, because of its many advantages, including durability, lightweight, high strength, and sustainability. Moreover, combining such advantages with those of concrete, composite steel–concrete structures have increasingly been applied due to a growing demand for new research. In recent years, a great variety of structural members have been developed, including post-tensioned thin-walled steel box-girders, steel–concrete composite decks with shear connectors, and concrete-filled steel tubular and concrete-encased steel members. Particularly, research topics on steel and composite steel–concrete bridges and buildings cover corrosion, fatigue, fire scenarios, limit and ultimate state designs, linear and nonlinear analyses, maintenance, monitoring, post-tensioning applications, progressive collapse, resistance of components, retrofitting and strengthening, seismic, dynamic, and static loadings, stability, etc.

This Special Issue aims to gather new, genuine, and detailed contributions and future perspectives in the aforementioned topics. State-of-the-art papers are also welcome. It is our pleasure to invite you to submit your work and share this call for papers with your colleagues. High-quality manuscripts related to (but not limited to) the following topics in steel and composite steel–concrete bridges and buildings are welcome:

  • Advanced construction technologies;
  • Advanced discrete and finite element modeling;
  • Development of design standards;
  • Development of high-performance material;
  • Laboratory and field investigations;
  • Linear and nonlinear analyses of geometric and material properties;
  • Monitoring techniques/sensor technologies for deterioration conditions;
  • Nondestructive testing methods;
  • Progressive collapse performance;
  • Serviceability issues under seismic, dynamic, and static loadings, fracture, fatigue, fire, corrosion, etc.;
  • Strengthening and repair interventions.

Dr. Marco Bonopera
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Infrastructures is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • composite structure
  • limit-state behavior
  • linear and nonlinear analysis
  • mechanics
  • numerical modeling
  • post–tensioning
  • service condition
  • stability
  • steel structure
  • structural performance

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

16 pages, 5200 KiB  
Article
Experimental and Numerical Evaluation of Equivalent Stress Intensity Factor Models under Mixed-Mode (I+II) Loading
by Estefanía Gómez-Gamboa, Jorge Guillermo Díaz-Rodríguez, Jairo Andrés Mantilla-Villalobos, Oscar Rodolfo Bohórquez-Becerra and Manuel del Jesús Martínez
Infrastructures 2024, 9(3), 45; https://doi.org/10.3390/infrastructures9030045 - 01 Mar 2024
Viewed by 885
Abstract
This study determines the equivalent stress intensity factor (SIF) model that best fits the experimental behavior of low-carbon steel under mixed modes (I and II). The study assessed Tanaka, Richard, and Pook’s equivalent SIF models. The theoretical values used for [...] Read more.
This study determines the equivalent stress intensity factor (SIF) model that best fits the experimental behavior of low-carbon steel under mixed modes (I and II). The study assessed Tanaka, Richard, and Pook’s equivalent SIF models. The theoretical values used for comparison correspond to the experimental results in a modified C(T) geometry by machining a hole ahead of the crack tip subjected to fatigue loads with a load ratio of R = 0.1. The comparison involved the SIF for six experimental points and the values computed through the numerical simulation. The Paris, Klesnil, and Modified Forman–Newman crack growth models were used with each equivalent SIF to analyze the prediction in the estimated number of cycles. The Klesnil model showed the closest prediction since the error between the calculated and experimentally recorded number of cycles is the lowest. However, the material behavior reflects a reduced crack propagation rate attributed to plasticity in the crack tip. The results suggest that Asaro equivalent SIF conservatively estimates the element lifespan with increasing errors from 2.3% at the start of growth to 27% at the end of the calculation. This study sheds light on the accuracy and limitations of different equivalent SIF models, providing valuable insights for structural integrity assessments in engineering applications. Full article
Show Figures

Figure 1

13 pages, 7907 KiB  
Article
Fatigue Characteristics of Steel–Concrete Composite Beams
by Ayman El-Zohairy, Hani Salim, Hesham Shaaban and Mahmoud T. Nawar
Infrastructures 2024, 9(2), 29; https://doi.org/10.3390/infrastructures9020029 - 04 Feb 2024
Viewed by 1116
Abstract
Fatigue in steel–concrete composite beams can result from cyclic loading, causing stress fluctuations that may lead to cumulative damage and eventual failure over an extended period. In this paper, the experimental findings from fatigue loading tests on composite beams with various arrangements are [...] Read more.
Fatigue in steel–concrete composite beams can result from cyclic loading, causing stress fluctuations that may lead to cumulative damage and eventual failure over an extended period. In this paper, the experimental findings from fatigue loading tests on composite beams with various arrangements are presented. Fatigue tests were performed up to 1,000,000 cycles using four-point loading, encompassing various ranges of shear stress at a consistent amplitude. Additionally, the effects of external post-tensioning and the strength of the shear connection were investigated. Static tests were run until failure to assess the enduring strength of the specimens subjected to fatigue. The cyclic mid-span deflections, slippages, and strains were measured during the testing. Based on the experimental findings, it was found that the damage region that the shear studs caused in the concrete slab, which resulted in a reduction in stiffness within the shear connection, grew as the loading cycles increased, leading to an increase in residual deflections and plastic slippages. Controlling the longitudinal fatigue cracks in the concrete slab was largely dependent on the strength of the shear connection between the steel beams and concrete slabs. Moreover, the applied fatigue loading range affected the propagation and distribution of fatigue cracks in the concrete slab. The strains in different parts of the composite specimens were significantly reduced by applying the external post-tensioning. With no signs of distress at the anchors, the tendons displayed excellent fatigue performance. Full article
Show Figures

Figure 1

24 pages, 21460 KiB  
Article
Strength and Deformation of Concrete-Encased Grouting-Filled Steel Tubes Columns Exposed to Monotonic Quasi-Static Loading Conditions
by Ahlam A. Abbood, Nazar Oukaili, Abbas A. Allawi and George Wardeh
Infrastructures 2024, 9(2), 26; https://doi.org/10.3390/infrastructures9020026 - 01 Feb 2024
Viewed by 1052
Abstract
This study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel [...] Read more.
This study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentricities of 25 mm and 50 mm, respectively), and one tested under lateral flexural loads. To validate the experimental results, finite element (FE) analysis was conducted using ABAQUS software version 6.14. The experimental findings for concentric load reveal that columns with the second type of reinforcement, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars exhibited a failure load 19% lower than those with steel bars, while columns with the third type of reinforcement, concrete-filled steel tubes with the same reinforcement ratio as steel bars achieved a failure load 17% greater than the traditional steel bars. The FE analysis demonstrates good agreement with the experimental outcomes in terms of ultimate strength, deformation, and failure modes. Full article
Show Figures

Figure 1

Other

Jump to: Research

14 pages, 5911 KiB  
Technical Note
Practical Aspects of Correlation Analysis of Compressive Strength from Destructive and Non-Destructive Methods in Different Directions
by Baitollah Badarloo and Petr Lehner
Infrastructures 2023, 8(11), 155; https://doi.org/10.3390/infrastructures8110155 - 24 Oct 2023
Viewed by 1441
Abstract
The research presented here demonstrates the practical aspects of the numerical correlation of the results of the compressive strength test. The destructive test (DT) in a hydraulic press and the non-destructive test (NDT) using a Schmidt hammer in several process variations were evaluated. [...] Read more.
The research presented here demonstrates the practical aspects of the numerical correlation of the results of the compressive strength test. The destructive test (DT) in a hydraulic press and the non-destructive test (NDT) using a Schmidt hammer in several process variations were evaluated. The aim was to evaluate the real differences between the tool supplier’s curve and testing. Therefore, 150 concrete cube specimens with an edge length of 150 mm were produced using a mixture of three types of concrete classes: C30, C35, and C40. The test was carried out 7 and 28 days of age of the concrete. The Schmidt hammer test was carried out in horizontal (θ = 0) and vertical (θ = 90) directions and using a series of 10 measurements. Furthermore, the tests were performed in two sets: first, the sample was placed on the ground, and second, under a hydraulic jack with a load of 50% of the maximum bearing capacity of specific concrete. Then, regression analysis was performed on the data sets to establish linear mathematical relationships between compressive strength and number of bounces. The results showed that the correlation between the DT and NDT tests has a high value for each group, but the correlation equations are different and must be taken into account. Full article
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Experimental and Numerical Evaluation of Equivalent Stress Intensity Factor Models under mixed-mode (I+II) loading
Author: Díaz-Rodriguez
Highlights: Experimental fatigue crack growth (FCG) is compared with two numerical methods Numerical SIF and SIF ranges are valitated with Digital Image Correlation SIF Three equivalent SIF models are used as benchmark for FCG in combination with three FCG rules The FCG is achieved regarless of the numerical model used.

Back to TopTop