Next Issue
Volume 15, February-2
Previous Issue
Volume 15, January-2
 
 

Polymers, Volume 15, Issue 3 (February-1 2023) – 315 articles

Cover Story (view full-size image): The phase behavior of complex colloidal systems, while of paramount importance for numerous industrial and technological applications, remains rather poorly understood. Through extensive simulations, we study the local and global structure of athermal polymers as a function of volume fraction and equilibrium bending angle. A plethora of morphologies are obtained, from close-packed crystals at the level of monomers, to nematic mesophases with prolate and oblate mesogens at the level of chains. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2160 KiB  
Article
Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime
by Krzysztof Zembrzycki, Sylwia Pawłowska, Filippo Pierini and Tomasz Aleksander Kowalewski
Polymers 2023, 15(3), 787; https://doi.org/10.3390/polym15030787 - 03 Feb 2023
Cited by 1 | Viewed by 1704
Abstract
The four most popular water models in molecular dynamics were studied in large-scale simulations of Brownian motion of colloidal particles in optical tweezers and then compared with experimental measurements in the same time scale. We present the most direct comparison of colloidal polystyrene [...] Read more.
The four most popular water models in molecular dynamics were studied in large-scale simulations of Brownian motion of colloidal particles in optical tweezers and then compared with experimental measurements in the same time scale. We present the most direct comparison of colloidal polystyrene particle diffusion in molecular dynamics simulations and experimental data on the same time scales in the ballistic regime. The four most popular water models, all of which take into account electrostatic interactions, are tested and compared based on yielded results and resources required. Three different conditions were simulated: a freely moving particle and one in a potential force field with two different strengths based on 1 pN/nm and 10 pN/nm. In all cases, the diameter of the colloidal particle was 50 nm. The acquired data were compared with experimental measurements performed using optical tweezers with position capture rates as high as 125 MHz. The experiments were performed in pure water on polystyrene particles with a 1 μm diameter in special microchannel cells. Full article
Show Figures

Graphical abstract

12 pages, 14140 KiB  
Article
Designing Multistimuli-Responsive Anisotropic Bilayer Hydrogel Actuators by Integrating LCST Phase Transition and Photochromic Isomerization
by Shijun Long, Jiacheng Huang, Jiaqiang Xiong, Chang Liu, Fan Chen, Jie Shen, Yiwan Huang and Xuefeng Li
Polymers 2023, 15(3), 786; https://doi.org/10.3390/polym15030786 - 03 Feb 2023
Cited by 5 | Viewed by 1702
Abstract
Stimuli-responsive hydrogel actuators have attracted tremendous interest in switches and microrobots. Based on N-isopropylacrylamide (NIPAM) monomers with LCST phase separation and photochromic molecule spiropyran which can respond to ultraviolet light and H+, we develop a novel multistimuli-responsive co-polymer anisotropic bilayer hydrogel, which [...] Read more.
Stimuli-responsive hydrogel actuators have attracted tremendous interest in switches and microrobots. Based on N-isopropylacrylamide (NIPAM) monomers with LCST phase separation and photochromic molecule spiropyran which can respond to ultraviolet light and H+, we develop a novel multistimuli-responsive co-polymer anisotropic bilayer hydrogel, which can undergo complex deformation behavior under environmental stimuli. Diverse bending angles were achieved based on inhomogeneous swelling. By controlling the environmental temperature, the bilayer hydrogels achieved bending angles of 83.4° and −162.4° below and above the critical temperature of PNIPAM. Stimulated by ultraviolet light and H+, the bilayer hydrogels showed bending angles of −19.4° and −17.3°, respectively. In addition, we designed a strategy to enhance the mechanical properties of the hydrogel via double network (DN). The mechanical properties and microscopic Fourier transform infrared (micro-FTIR) spectrum showed that the bilayer hydrogel can be well bonded at the interfaces of such bilayers. This work will inspire the design and fabrication of novel soft actuators with synergistic functions. Full article
(This article belongs to the Special Issue Advances in Multifunctional Hydrogel)
Show Figures

Graphical abstract

15 pages, 9559 KiB  
Article
Functional Properties of Nonwovens as an Insulating Layer for Protective Gloves
by Dunja Šajn Gorjanc
Polymers 2023, 15(3), 785; https://doi.org/10.3390/polym15030785 - 03 Feb 2023
Viewed by 1346
Abstract
The basic intention of the present work is to analyze the influence of the incorporated microporous membrane and the technology of the needling process on the functional properties of nonwovens designed as an insulating layer for protective gloves for protection against high temperatures. [...] Read more.
The basic intention of the present work is to analyze the influence of the incorporated microporous membrane and the technology of the needling process on the functional properties of nonwovens designed as an insulating layer for protective gloves for protection against high temperatures. The investigated nonwovens are produced in carded nonwoven formation and mechanically bonded with needle bonding. The studied nonwovens contain a microporous membrane of polyester (PES) with a thickness of 20 µm (samples marked as ST and STL). In the theoretical part of the research work, the nonwovens and some technology stages are presented. The experimental part of the present work deals with the mechanical properties: breaking stress and strain, viscoelastic properties (yield strength, elastic modulus) and elastic recovery after cyclic loading and thermal conduction. In the experimental part, permeability properties (water vapor permeability, air permeability) are also analyzed. The results of the investigation show that the samples marked as ST and STL, which contain a microporous PES membrane, have a higher breaking stress than the samples marked as T and TL without the microporous PES membrane. Samples marked as ST and STL also exhibit higher values of elongation at break and limit of recoverable deformation (stress and strain at yield) and a lower modulus of elasticity than samples marked as T and TL. The samples marked as ST and STL are mechanically bonded to the lamellar plate using forked needles and therefore have a textured (ribbed) shape that affects the improved mechanical properties. The TL and STL samples, which contain a microporous PES membrane, have higher elastic recovery and lower air permeability than the T and TL samples, while water vapor permeability is lower only for the ST sample. Full article
(This article belongs to the Special Issue Feature Papers in Polymer Membranes and Films II)
Show Figures

Figure 1

15 pages, 3940 KiB  
Article
Full Optoelectronic Simulation of Lead-Free Perovskite/Organic Tandem Solar Cells
by Marwa S. Salem, Ahmed Shaker, Mohamed Abouelatta and Ahmed Saeed
Polymers 2023, 15(3), 784; https://doi.org/10.3390/polym15030784 - 03 Feb 2023
Cited by 9 | Viewed by 2722
Abstract
Organic and perovskite semiconductor materials are considered an interesting combination thanks to their similar processing technologies and band gap tunability. Here, we present the design and analysis of perovskite/organic tandem solar cells (TSCs) by using a full optoelectronic simulator (SETFOS). A wide band [...] Read more.
Organic and perovskite semiconductor materials are considered an interesting combination thanks to their similar processing technologies and band gap tunability. Here, we present the design and analysis of perovskite/organic tandem solar cells (TSCs) by using a full optoelectronic simulator (SETFOS). A wide band gap lead-free ASnI2Br perovskite top subcell is utilized in conjunction with a narrow band gap DPPEZnP-TBO:PC61BM heterojunction organic bottom subcell to form the tandem configuration. The top and bottom cells were designed according to previous experimental work keeping the same materials and physical parameters. The calibration of the two cells regarding simulation and experimental data shows very good agreement, implying the validation of the simulation process. Accordingly, the two cells are combined to develop a 2T tandem cell. Further, upon optimizing the thickness of the front and rear subcells, a current matching condition is satisfied for which the proposed perovskite/organic TSC achieves an efficiency of 13.32%, Jsc of 13.74 mA/cm2, and Voc of 1.486 V. On the other hand, when optimizing the tandem by utilizing full optoelectronic simulation, the tandem shows a higher efficiency of about 14%, although it achieves a decreased Jsc of 12.27 mA/cm2. The study shows that the efficiency can be further improved when concurrently optimizing the various tandem layers by global optimization routines. Furthermore, the impact of defects is demonstrated to highlight other possible routes to improve efficiency. The current simulation study can provide a physical understanding and potential directions for further efficiency improvement for lead-free perovskite/organic TSC. Full article
(This article belongs to the Special Issue Advanced Polymers for Solar Cells Applications)
Show Figures

Figure 1

20 pages, 7502 KiB  
Article
Noise Evaluation of Coated Polymer Gears
by Brigita Polanec, Srečko Glodež and Aleš Belšak
Polymers 2023, 15(3), 783; https://doi.org/10.3390/polym15030783 - 03 Feb 2023
Cited by 2 | Viewed by 1231
Abstract
A comprehensive experimental investigation of the noise evaluation of coated spur polymer gears made of POM was performed in this study. The three Physical Vapour Deposition (PVD) coatings investigated were aluminium (Al), chromium (Cr), and chromium nitrite (CrN). The gears were tested on [...] Read more.
A comprehensive experimental investigation of the noise evaluation of coated spur polymer gears made of POM was performed in this study. The three Physical Vapour Deposition (PVD) coatings investigated were aluminium (Al), chromium (Cr), and chromium nitrite (CrN). The gears were tested on an in-house-developed testing machine under a torque of 20 Nm and at a rotational speed of 1000 rpm. The noise measurements were performed with the tested gear pair on the testing device with a sound-proof acoustic foam used for the acoustic sound-proof insulation. The sound signal was analysed in time, frequency, and time–frequency domains and typical phenomena were identified in the signal. Experimental results showed that the noise level was higher for polymer gears with different coatings if compared to the polymer gears without coatings. With sound analysis in the time–frequency domain, precise degradation of the coatings could be noticed. In future studies, it would be appropriate to use a new method for signal analysis, e.g., high-order statistics and hybrid technique. Full article
Show Figures

Figure 1

30 pages, 431 KiB  
Review
Coating Materials to Increase the Stability of Liposomes
by Diana Pasarin, Andra-Ionela Ghizdareanu, Cristina Emanuela Enascuta, Catalin Bogdan Matei, Catalin Bilbie, Luciana Paraschiv-Palada and Petronela-Andreea Veres
Polymers 2023, 15(3), 782; https://doi.org/10.3390/polym15030782 - 03 Feb 2023
Cited by 17 | Viewed by 4412
Abstract
Liposomes carry various compounds with applications in pharmaceutical, food, and cosmetic fields, and the administration route is especially parenteral, oral, or transdermal. Liposomes are used to preserve and release the internal components, thus maintaining the properties of the compounds, the stability and shelf [...] Read more.
Liposomes carry various compounds with applications in pharmaceutical, food, and cosmetic fields, and the administration route is especially parenteral, oral, or transdermal. Liposomes are used to preserve and release the internal components, thus maintaining the properties of the compounds, the stability and shelf life of the encapsulated products, and their functional benefits. The main problem in obtaining liposomes at the industrial level is their low stability due to fragile phospholipid membranes. To increase the stability of liposomes, phospholipid bilayers have been modified or different coating materials have been developed and studied, both for liposomes with applications in the pharmaceutical field and liposomes in the food field. In the cosmetic field, liposomes need no additional coating because the liposomal formulation is intended to have a fast penetration into the skin. The aim of this review is to provide current knowledge regarding physical and chemical factors that influence stability, coating materials for liposomes with applications in the pharmaceutical and food fields to increase the stability of liposomes containing various sensitive compounds, and absorption of the liposomes and commercial liposomal products obtained through various technologies available on the market. Full article
Show Figures

Graphical abstract

20 pages, 4656 KiB  
Article
Cellulose-Based Scaffolds: A Comparative Study for Potential Application in Articular Cartilage
by Rachel Cordeiro, Rui D. Alvites, Ana C. Sousa, Bruna Lopes, Patrícia Sousa, Ana C. Maurício, Nuno Alves and Carla Moura
Polymers 2023, 15(3), 781; https://doi.org/10.3390/polym15030781 - 03 Feb 2023
Cited by 1 | Viewed by 1506
Abstract
Osteoarthritis is a highly prevalent disease worldwide that leads to cartilage loss. Tissue engineering, involving scaffolds, cells, and stimuli, has shown to be a promising strategy for its repair. Thus, this study aims to manufacture and characterise different scaffolds with poly(ε-caprolactone) (PCL) with [...] Read more.
Osteoarthritis is a highly prevalent disease worldwide that leads to cartilage loss. Tissue engineering, involving scaffolds, cells, and stimuli, has shown to be a promising strategy for its repair. Thus, this study aims to manufacture and characterise different scaffolds with poly(ε-caprolactone) (PCL) with commercial cellulose (microcrystalline (McC) and methyl cellulose (MC) or cellulose from agro-industrial residues (corncob (CcC)) and at different percentages, 1%, 2%, and 3%. PCL scaffolds were used as a control. Morphologically, the produced scaffolds presented porosities within the desired for cell incorporation (57% to 65%). When submitted to mechanical tests, the incorporation of cellulose affects the compression resistance of the majority of scaffolds. Regarding tensile strength, McC2% showed the highest values. It was proven that all manufactured scaffolds suffered degradation after 7 days of testing because of enzymatic reactions. This degradation may be due to the dissolution of PCL in the organic solvent. Biological tests revealed that PCL, CcC1%, and McC3% are the best materials to combine with human dental pulp stem/stromal cells. Overall, results suggest that cellulose incorporation in PCL scaffolds promotes cellular adhesion/proliferation. Methyl cellulose scaffolds demonstrated some advantageous compressive properties (closer to native cartilaginous tissue) to proceed to further studies for application in cartilage repair. Full article
Show Figures

Graphical abstract

19 pages, 5798 KiB  
Article
Enzymatically-Crosslinked Gelatin Hydrogels with Nanostructured Architecture and Self-Healing Performance for Potential Use as Wound Dressings
by Alina Gabriela Rusu, Loredana Elena Nita, Natalia Simionescu, Alina Ghilan, Aurica P. Chiriac and Liliana Mititelu-Tartau
Polymers 2023, 15(3), 780; https://doi.org/10.3390/polym15030780 - 03 Feb 2023
Cited by 5 | Viewed by 1922
Abstract
Development of natural protein-based hydrogels with self-healing performance and tunable physical properties has attracted increased attention owing to their wide potential not only in the pharmaceutical field, but also in wounds management. This work reports the development of a versatile hydrogel based on [...] Read more.
Development of natural protein-based hydrogels with self-healing performance and tunable physical properties has attracted increased attention owing to their wide potential not only in the pharmaceutical field, but also in wounds management. This work reports the development of a versatile hydrogel based on enzymatically-crosslinked gelatin and nanogels loaded with amoxicillin (Amox), an antibiotic used in wound infections. The transglutaminase (TGase)-crosslinked hydrogels and encapsulating nanogels were formed rapidly through enzymatic crosslinking and self-assembly interactions in mild conditions. The nanogels formed through the self-assemble of maleoyl-chitosan (MAC5) and polyaspartic acid (PAS) may have positive influence on the self-healing capacity and drug distribution within the hydrogel network through the interactions established between gelatin and gel-like nanocarriers. The physicochemical properties of the enzymatically-crosslinked hydrogels, such as internal structure, swelling and degradation behavior, were studied. In addition, the Amox release studies indicated a rapid release when the pH of the medium decreased, which represents a favorable characteristic for use in the healing of infected wounds. It was further observed through the in vitro and in vivo biocompatibility assays that the optimized scaffolds have great potential to be used as wound dressings. Full article
(This article belongs to the Special Issue Self-Healing Polymers, Proteins and Composites)
Show Figures

Graphical abstract

20 pages, 1754 KiB  
Article
The Fabrication of Gelatin–Elastin–Nanocellulose Composite Bioscaffold as a Potential Acellular Skin Substitute
by Ahmad Mus’ab Ahmad Hariza, Mohd Heikal Mohd Yunus, Mh Busra Fauzi, Jaya Kumar Murthy, Yasuhiko Tabata and Yosuke Hiraoka
Polymers 2023, 15(3), 779; https://doi.org/10.3390/polym15030779 - 03 Feb 2023
Cited by 2 | Viewed by 2135
Abstract
Gelatin usage in scaffold fabrication is limited due to its lack of enzymatic and thermal resistance, as well as its mechanical weakness. Hence, gelatin requires crosslinking and reinforcement with other materials. This study aimed to fabricate and characterise composite scaffolds composed of gelatin, [...] Read more.
Gelatin usage in scaffold fabrication is limited due to its lack of enzymatic and thermal resistance, as well as its mechanical weakness. Hence, gelatin requires crosslinking and reinforcement with other materials. This study aimed to fabricate and characterise composite scaffolds composed of gelatin, elastin, and cellulose nanocrystals (CNC) and crosslinked with genipin. The scaffolds were fabricated using the freeze-drying method. The composite scaffolds were composed of different concentrations of CNC, whereas scaffolds made of pure gelatin and a gelatin–elastin mixture served as controls. The physicochemical and mechanical properties of the scaffolds, and their cellular biocompatibility with human dermal fibroblasts (HDF), were evaluated. The composite scaffolds demonstrated higher porosity and swelling capacity and improved enzymatic resistance compared to the controls. Although the group with 0.5% (w/v) CNC recorded the highest pore size homogeneity, the diameters of most of the pores in the composite scaffolds ranged from 100 to 200 μm, which is sufficient for cell migration. Tensile strength analysis revealed that increasing the CNC concentration reduced the scaffolds’ stiffness. Chemical analyses revealed that despite chemical and structural alterations, both elastin and CNC were integrated into the gelatin scaffold. HDF cultured on the scaffolds expressed collagen type I and α-SMA proteins, indicating the scaffolds’ biocompatibility with HDF. Overall, the addition of elastin and CNC improved the properties of gelatin-based scaffolds. The composite scaffolds are promising candidates for an acellular skin substitute. Full article
(This article belongs to the Special Issue Biopolymers for Regenerative Medicine Applications)
Show Figures

Figure 1

21 pages, 8183 KiB  
Article
Study on the Mechanical Properties and Energy Absorbing Capability of Polyurethane Microcellular Elastomers under Different Compressive Strain Rates
by Zhiying Zhao, Xiaodong Li, Hao Jiang, Xing Su, Xudong Zhang and Meishuai Zou
Polymers 2023, 15(3), 778; https://doi.org/10.3390/polym15030778 - 03 Feb 2023
Cited by 5 | Viewed by 1758
Abstract
Polyurethane microcellular elastomers (PUME) are good at impact protection and energy absorption, and belong to rate sensitive- and strain history-dependent materials. In this study, PUME with different densities of 800 kg/m3, 600 kg/m3 and 400 kg/m3 were prepared, then [...] Read more.
Polyurethane microcellular elastomers (PUME) are good at impact protection and energy absorption, and belong to rate sensitive- and strain history-dependent materials. In this study, PUME with different densities of 800 kg/m3, 600 kg/m3 and 400 kg/m3 were prepared, then the compressive responses of PUME in the strain rate range of 0.001 s−1 to 3400 s−1 were systemically investigated. By studying the energy absorption and efficiency diagram of PUME, the compressive properties of materials with different densities under compressive impact load were described, which showed that PUME with a density of 600 kg/m3 had better performance. A visco–hyperelasticity–air constitutive model was established to describe the large deformation response of PUME at high strain rates. The model included three components: hyperelastic part, viscoelastic part and gas pressure part. Quasi-static and dynamic compression tests were used to determine the constitutive relations of seven parameters. The samples with a density of 600 kg/m3 at different strain rates were fitted by MATLAB software, and the constitutive model parameters were obtained. The comparison between the constitutive equation and the experimental results showed that there was a good consistency. The constitutive model can provide data support for simulation analysis and application of PUME as energy absorbing protective facilities. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

23 pages, 7515 KiB  
Article
Detection of Limbal Stem Cells Adhered to Melt Electrospun Silk Fibroin and Gelatin-Modified Polylactic Acid Scaffolds
by Emilija Zdraveva, Krešo Bendelja, Luka Bočkor, Tamara Dolenec and Budimir Mijović
Polymers 2023, 15(3), 777; https://doi.org/10.3390/polym15030777 - 03 Feb 2023
Cited by 4 | Viewed by 1523
Abstract
Limbal stem cells (LSCs) are of paramount importance in corneal epithelial tissue repair. The cornea becomes opaque in case of limbal stem cell deficiency (LSCD), which may cause serious damage to the ocular visual function. There are many techniques to restore damaged epithelium, [...] Read more.
Limbal stem cells (LSCs) are of paramount importance in corneal epithelial tissue repair. The cornea becomes opaque in case of limbal stem cell deficiency (LSCD), which may cause serious damage to the ocular visual function. There are many techniques to restore damaged epithelium, one of which is the transplantation of healthy cultured LSCs, usually onto a human amniotic membrane or onto bio-based engineered scaffolds in recent years. In this study, melt electrospun polylactic acid (PLA) was modified by silk fibroin or gelatin and further cultured with LSCs originating from three different donors. In terms of physicochemical properties, both modifications slightly increased PLA scaffold porosity (with a significantly larger pore area for the PLA/gelatin) and improved the scaffolds’ swelling percentage, as well as their biodegradation rate. In terms of the scaffold application function, the aim was to detect/visualize whether LSCs adhered to the scaffolds and to further determine cell viability (total number), as well as to observe p63 and CK3 expressions in the LSCs. LSCs were attached to the surface of microfibers, showing flattened conformations or 3D spheres in the formation of colonies or agglomerations, respectively. All scaffolds showed the ability to bind the cells onto the surface of individual microfibers (PLA and PLA/gelatin), or in between the microfibers (PLA/silk fibroin), with the latter showing the most intense red fluorescence of the stained cells. All scaffolds proved to be biocompatible, while the PLA/silk fibroin scaffolds showed the highest 98% viability of 2.9 × 106 LSCs, with more than 98% of p63 and less than 20% of CK3 expressions in the LSCs, thus confirming the support of their growth, proliferation and corneal epithelial differentiation. The results show the potential of these bio-engineered scaffolds to be used as an alternative clinical approach. Full article
(This article belongs to the Special Issue Biopolymers for Regenerative Medicine Applications)
Show Figures

Figure 1

23 pages, 20208 KiB  
Article
Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level
by Elena-Luiza Epure, Florina Daniela Cojocaru, Mihaela Aradoaei, Romeo Cristian Ciobanu and Gianina Dodi
Polymers 2023, 15(3), 776; https://doi.org/10.3390/polym15030776 - 03 Feb 2023
Cited by 3 | Viewed by 1801
Abstract
With a significant number of features (namely being multipurpose, inexpensive and durable), thermoplastic polymers, most often named plastics, are part of our daily routine, with an increasing production over the last decade. Among them, polyethylene terephthalate (PET), high-density polyethylene (HDPE) and polypropylene (PP) [...] Read more.
With a significant number of features (namely being multipurpose, inexpensive and durable), thermoplastic polymers, most often named plastics, are part of our daily routine, with an increasing production over the last decade. Among them, polyethylene terephthalate (PET), high-density polyethylene (HDPE) and polypropylene (PP) are distinguished as the five most commonly used plastics in various fields, mainly in the packaging industry. Even if it is difficult to imagine the world without plastics, the boosted plastic assembly comes with huge plastic waste, creating a number of challenges, as the most important threat for our environment, but also opportunities for recycling. Currently, a special attention is dedicated on how to improve the current recycling methods or to find new ones, since the quality of recycled plastics and potential chemical or biological contaminations are two problematic aspects. Understanding the properties of each thermoplastic polymer and the interaction with possible contaminants may be the key for an efficient recycling process. The aim of this paper was to evaluate the surface behaviour of different composite supports based on recycled PET before and after interaction with collagen (used as a biological contaminant). The surface contamination bias of PET supports was studied through different techniques: scanning electron microscopy (SEM), water uptake through swelling studies, contact angle measurements and attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR). Full article
(This article belongs to the Collection Progress in Recycling of (Bio)Polymers and Composites)
Show Figures

Figure 1

17 pages, 4375 KiB  
Article
Effective Removal of Glyphosate from Aqueous Systems Using Synthesized PEG-Coated Calcium Peroxide Nanoparticles: Kinetics Study, H2O2 Release Performance and Degradation Pathways
by Fan Li, Thomas Shean Yaw Choong, Luqman Chuah Abdullah, Siti Nurul Ain Md. Jamil and Nurul Nazihah Amerhaider Nuar
Polymers 2023, 15(3), 775; https://doi.org/10.3390/polym15030775 - 03 Feb 2023
Cited by 3 | Viewed by 1857
Abstract
Glyphosate (N-phosphonomethyl glycine) is a non-selective, broad-spectrum organophosphate herbicide. Its omnipresent application with large quantity has made glyphosate as a problematic contaminant in water. Therefore, an effective technology is urgently required to remove glyphosate and its metabolites from water. In this study, calcium [...] Read more.
Glyphosate (N-phosphonomethyl glycine) is a non-selective, broad-spectrum organophosphate herbicide. Its omnipresent application with large quantity has made glyphosate as a problematic contaminant in water. Therefore, an effective technology is urgently required to remove glyphosate and its metabolites from water. In this study, calcium peroxide nanoparticles (nCPs) were functioned as an oxidant to produce sufficient hydroxyl free radicals (·OH) with the presence of Fe2+ as a catalyst using a Fenton-based system. The nCPs with small particle size (40.88 nm) and high surface area (28.09 m2/g) were successfully synthesized via a co-precipitation method. The synthesized nCPs were characterized using transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), Brunauer–Emmett–Teller analysis (BET), dynamic light scattering (DLS), and field emission scanning electron microscopy (FESEM) techniques. Under the given conditions (pH = 3.0, initial nCPs dosage = 0.2 g, Ca2+/Fe2+ molar ratio = 6, the initial glyphosate concentration = 50 mg/L, RT), 99.60% total phosphorus (TP) removal and 75.10% chemical oxygen demand (COD) removal were achieved within 75 min. The degradation process fitted with the Behnajady–Modirshahla–Ghanbery (BMG) kinetics model. The H2O2 release performance and proposed degradation pathways were also reported. The results demonstrated that calcium peroxide nanoparticles are an efficient oxidant for glyphosate removal from aqueous systems. Full article
(This article belongs to the Special Issue Polymeric Materials for Wastewater Treatment Applications)
Show Figures

Graphical abstract

16 pages, 3179 KiB  
Article
Effects of Heat Treatment on Color, Dimensional Stability, Hygroscopicity and Chemical Structure of Afrormosia and Newtonia Wood: A Comparative Study of Air and Palm Oil Medium
by Lionnel Frederique Bidzanga Bessala, Jingjing Gao, Zhengbin He, Zhenyu Wang and Songlin Yi
Polymers 2023, 15(3), 774; https://doi.org/10.3390/polym15030774 - 02 Feb 2023
Cited by 4 | Viewed by 1728
Abstract
In recent years, China is increasingly dependent on imported wood. Afrormosia and Newtonia are some of the imported species with good utilization potential. However, both of them also have problems with poor dimensional stability. In order to make better use of these two [...] Read more.
In recent years, China is increasingly dependent on imported wood. Afrormosia and Newtonia are some of the imported species with good utilization potential. However, both of them also have problems with poor dimensional stability. In order to make better use of these two types of wood, the influence of heat treatment under air and palm oil conditions on the color, dimensional stability, and hygroscopicity of Afrormosia and Newtonia was investigated. The Afrormosia and Newtonia wood samples were heated in air or palm oil medium for two hours at 160 °C, 180 °C and 200 °C, respectively. Then, the color, weight changes, swelling, moisture absorption and chemical structure were evaluated for each case. As results, the heat treatments with air or palm oil increased the dark color of Newtonia and Afrormosia wood and this increase was proportional to the treatment temperature. The tangential and radial swelling coefficient for air heat treatment of Afrormosia wood at 200 °C were, respectively, reduced by 24.59% and 19.58%, while this reduction for Newtonia was 21.32% and 14.80%. The heat treatment in palm oil further improved the stability and hygroscopicity of the wood, showing that the Afrormosia samples treated by palm oil at 200 °C underwent a decrease of its tangential and radial swelling coefficient, respectively, by 49.34% and 45.88%, whereas the tangential and radial swelling coefficient of Newtonia treated under the same conditions were reduced by 42.85% and 33.63%, respectively. The heat treatments of Afrormosia and Newtonia samples under air at 200 °C diminished the water absorption by 21.67% and 22.12%. The water absorption of Afrormosia and Newtonia heat-treated under palm oil at 200 °C was reduced, respectively, by 39.40% and 37.49%. Moreover, the FTIR analysis showed the decrease of hydroxyl groups in proportion to the wood treatment temperature. Full article
(This article belongs to the Special Issue Wood-Based Nanofunctional Polymeric Materials)
Show Figures

Figure 1

19 pages, 4949 KiB  
Article
Effect of Manufacture-Induced Interfaces on the Tensile Properties of 3D Printed Polyamide and Short Carbon Fibre-Reinforced Polyamide Composites
by Yingwei Hou and Ajit Panesar
Polymers 2023, 15(3), 773; https://doi.org/10.3390/polym15030773 - 02 Feb 2023
Cited by 2 | Viewed by 1504
Abstract
This study aims to elucidate the structure–property–process relationship of 3D printed polyamide and short carbon fibre-reinforced polyamide composites. The macroscopic properties (tensile modulus) of the 3D printed samples are quantitatively correlated to the printing process-induced intrinsic microstructure with multiple interfaces. The samples were [...] Read more.
This study aims to elucidate the structure–property–process relationship of 3D printed polyamide and short carbon fibre-reinforced polyamide composites. The macroscopic properties (tensile modulus) of the 3D printed samples are quantitatively correlated to the printing process-induced intrinsic microstructure with multiple interfaces. The samples were printed with different layer thicknesses (0.1, 0.125 and 0.2 mm) to obtain the varied number of interface densities (number of interfaces per unit sample thickness). The result shows that the printed short carbon fibre-reinforced polyamide composites had inferior partially bonded interfaces compared to the printed polyamide, and consequently exhibited interface-dependent elastic performance. The tensile modulus of 3 mm thick composites decreased up to 18% as a function of interface density, whilst the other influencing aspects including porosity, crystallinity and fibre volume fraction (9%) were the same. Injection moulding was also employed to fabricate samples without induced interfaces, and their tensile properties were used as a benchmark. Predictions based on the shear-lag model were in close agreement (<5%) with the experimental data for the injection-moulded composites, whereas the tensile modulus of the printed composites was up to 38% lower than the predicted modulus due to the partial bonded interfaces. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymer Composites)
Show Figures

Figure 1

13 pages, 4069 KiB  
Article
Enhancement in Power Conversion Efficiency of Perovskite Solar Cells by Reduced Non-Radiative Recombination Using a Brij C10-Mixed PEDOT:PSS Hole Transport Layer
by Sehyun Jung, Seungsun Choi, Woojin Shin, Hyesung Oh, Jaewon Oh, Mee-Yi Ryu, Wonsik Kim, Soohyung Park and Hyunbok Lee
Polymers 2023, 15(3), 772; https://doi.org/10.3390/polym15030772 - 02 Feb 2023
Cited by 2 | Viewed by 1766
Abstract
Interface properties between charge transport and perovskite light-absorbing layers have a significant impact on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a polyelectrolyte composite that is widely used as a hole transport layer (HTL) to facilitate [...] Read more.
Interface properties between charge transport and perovskite light-absorbing layers have a significant impact on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a polyelectrolyte composite that is widely used as a hole transport layer (HTL) to facilitate hole transport from a perovskite layer to an anode. However, PEDOT:PSS must be modified using a functional additive because PSCs with a pristine PEDOT:PSS HTL do not exhibit a high PCE. Herein, we demonstrate an increase in the PCE of PSCs with a polyethylene glycol hexadecyl ether (Brij C10)-mixed PEDOT:PSS HTL. Photoelectron spectroscopy results show that the Brij C10 content becomes significantly high in the HTL surface composition with an increase in the Brij C10 concentration (0–5 wt%). The enhanced PSC performance, e.g., a PCE increase from 8.05 to 11.40%, is attributed to the reduction in non-radiative recombination at the interface between PEDOT:PSS and perovskite by the insulating Brij C10. These results indicate that the suppression of interface recombination is essential for attaining a high PCE for PSCs. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes)
Show Figures

Figure 1

29 pages, 9433 KiB  
Article
Variation in the Optical Properties of PEO-Based Composites via a Green Metal Complex: Macroscopic Measurements to Explain Microscopic Quantum Transport from the Valence Band to the Conduction Band
by Daron Q. Muheddin, Shujahadeen B. Aziz and Pshko A. Mohammed
Polymers 2023, 15(3), 771; https://doi.org/10.3390/polym15030771 - 02 Feb 2023
Cited by 7 | Viewed by 1868
Abstract
In this study, a green chemistry method was used to synthesize polymer composites based on polyethylene oxide (PEO). The method of the remediation of metal complexes used in this study is an environmentally friendly procedure with a low cost. Zinc metal ion (Zn [...] Read more.
In this study, a green chemistry method was used to synthesize polymer composites based on polyethylene oxide (PEO). The method of the remediation of metal complexes used in this study is an environmentally friendly procedure with a low cost. Zinc metal ion (Zn2+)-polyphenol (PPHNL) complexes were synthesized for two minutes via the combination of a black tea leaf (BTL) extract solution with dissolved Zn-acetate. Then, UV–Vis and FTIR were carried out for the Zn-PPHNL complexes in a liquid and solid. The FTIR spectra show that BTLs contain sufficient functional groups (O-H, C-H, C=O, C=C, C-O, C-N, and N-H), PPHNL, and conjugated double bonds to produce metal complexes by capturing the cations of Zn-acetate salt. Moreover, FTIR of the BTL and Zn–PPHNL complexes approves the formation of the Zn-PPHNL complex over the wide variation in the intensity of bands. The UV absorption spectra of BTL and Zn-PPHNL indicate complex formation among tea PPHNL and Zn cations, which enhances the absorption spectra of the Zn-PPHNL to 0.1 compared to the figure of 0.01 associated with the extracted tea solution. According to an XRD analysis, an amorphous Zn-PPHNL complex was created when Zn2+ ions and PPHNL interacted. Additionally, XRD shows that the structure of the PEO composite becomes a more amorphous structure as the concentration of Zn-PPHNL increases. Furthermore, morphological study via an optical microscope (OM) shows that by increasing the concentration of Zn-PPHNL in a PEO polymer composite the size of the spherulites ascribed to the crystalline phase dramatically decreases. The optical properties of PEO: Zn-PPHNL films, via UV–Vis spectroscopy, were rigorously studied. The Eg is calculated by examining the dielectric loss, which is reduced from 5.5 eV to 0.6 eV by increasing the concentration of Zn-PPHNL in the PEO samples. In addition, Tauc’s form was used to specify the category of electronic transitions in the PEO: Zn-PPHNL films. The impact of crystalline structure and morphology on electronic transition types was discussed. Macroscopic measurable parameters, such as the refractive index and extinction coefficient, were used to determine optical dielectric loss. Fundamental optical dielectric functions were used to determine some key parameters. From the viewpoint of quantum transport, electron transitions were discussed. The merit of this work is that microscopic processes related to electron transition from the VB to the CB can be interpreted interms of measurable macroscopic quantities. Full article
(This article belongs to the Special Issue Application of Metal Containing Polymers)
Show Figures

Figure 1

14 pages, 3107 KiB  
Article
A Thermo-Responsive Polymer Micelle with a Liquid Crystalline Core
by Yoko Mizoue, Rintaro Takahashi, Kazuo Sakurai and Shin-ichi Yusa
Polymers 2023, 15(3), 770; https://doi.org/10.3390/polym15030770 - 02 Feb 2023
Cited by 2 | Viewed by 1944
Abstract
An amphiphilic diblock copolymer (PChM-PNIPAM), composed of poly(cholesteryl 6-methacryloyloxy hexanoate) (PChM) and poly(N-isopropyl acrylamide) (PNIPAM) blocks, was prepared via reversible addition–fragmentation chain transfer radical polymerization. The PChM and PNIPAM blocks exhibited liquid crystalline behavior and a lower critical solution temperature (LCST), [...] Read more.
An amphiphilic diblock copolymer (PChM-PNIPAM), composed of poly(cholesteryl 6-methacryloyloxy hexanoate) (PChM) and poly(N-isopropyl acrylamide) (PNIPAM) blocks, was prepared via reversible addition–fragmentation chain transfer radical polymerization. The PChM and PNIPAM blocks exhibited liquid crystalline behavior and a lower critical solution temperature (LCST), respectively. PChM-PNIPAM formed water-soluble polymer micelles in water below the LCST because of hydrophobic interactions of the PChM blocks. The PChM and PNIPAM blocks formed the core and hydrophilic shell of the micelles, respectively. With increasing temperature, the molecular motion of the pendant cholesteryl groups increased, and a liquid crystalline phase transition occurred from an amorphous state in the core. With further increases in temperature, the PNIPAM block in the shell exhibited the LCST and dehydrated. Hydrophobic interactions of the PNIPAM shells resulted in inter-micellar aggregation above the LCST. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Japan (2021,2022))
Show Figures

Figure 1

23 pages, 2183 KiB  
Article
Assessment of fib Bulletin 90 Design Provisions for Intermediate Crack Debonding in Flexural Concrete Elements Strengthened with Externally Bonded FRP
by Alba Codina, Cristina Barris, Younes Jahani, Marta Baena and Lluís Torres
Polymers 2023, 15(3), 769; https://doi.org/10.3390/polym15030769 - 02 Feb 2023
Viewed by 1928
Abstract
With the assessment of intermediate crack debonding (ICD) being a subject of main importance in the design of reinforced concrete (RC) beams strengthened in flexure with externally bonded fibre-reinforced polymer (FRP), several approaches to predict the debonding loads have been developed in recent [...] Read more.
With the assessment of intermediate crack debonding (ICD) being a subject of main importance in the design of reinforced concrete (RC) beams strengthened in flexure with externally bonded fibre-reinforced polymer (FRP), several approaches to predict the debonding loads have been developed in recent decades considering different models and strategies. This study presents an analysis of formulations with different levels of approximation collected in the fib Bulletin 90 regarding this failure mode, comparing the theoretical predictions with experimental results. The carried-out experiments consisted of three RC beams strengthened with carbon FRP (CFRP) tested under a four-point bending configuration with different concrete strengths and internal steel reinforcement ratios. With failure after steel yielding, higher concrete strength, as well as a higher reinforcement ratio, lead to a higher bending capacity. In addition, the performance of the models is assessed through the experimental-to-predicted failure load ratios from an experimental database of 65 RC beams strengthened with CFRP gathered from the literature. The results of the comparative study show that the intermediate crack debonding failure mode is well predicted by all models with a mean experimental-to-predicted failure load ratio between 0.96 and 1.10 in beams tested under three- or four-point bending configurations. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites in Construction Materials)
Show Figures

Figure 1

13 pages, 4414 KiB  
Article
Investigation of Carbon Fibres Reclamation by Pyrolysis Process for Their Reuse Potential
by Stefania Termine, Valentina Naxaki, Dionisis Semitekolos, Aikaterini-Flora Trompeta, Massimo Rovere, Alberto Tagliaferro and Costas Charitidis
Polymers 2023, 15(3), 768; https://doi.org/10.3390/polym15030768 - 02 Feb 2023
Cited by 3 | Viewed by 1857
Abstract
During Carbon Fibre Reinforced Polymers (CFRPs) manufacturing, large quantities of scrap are being produced and usually disposed to landfill or incinerated, resulting in a high environmental impact. Furthermore, CFRP parts that have been damaged or reached their end-of-life, follow the same disposal route [...] Read more.
During Carbon Fibre Reinforced Polymers (CFRPs) manufacturing, large quantities of scrap are being produced and usually disposed to landfill or incinerated, resulting in a high environmental impact. Furthermore, CFRP parts that have been damaged or reached their end-of-life, follow the same disposal route and because of this, not only the environment is affected, but also high added-value materials, such as carbon fibres (CFs) are lost without further valorisation. Several recycling technologies have been suggested, such as pyrolysis, to retrieve the CF reinforcement from the CFRPs. However, pyrolysis produces CFs that have residual resin and pyrolytic carbon at their surface. In order to retrieve clean long fibres, oxidation treatment in high temperatures is required. The oxidation treatment, however, has a high impact on the mechanical properties of the reclaimed CFs; therefore, an optimised pyrolysis procedure of CFRPs and post-pyrolysis treatment of reclaimed fibres (rCFs) is required. In this study, CFRPs have been subjected to pyrolysis to investigate the reclamation of CF fabrics in their primal form. The temperature of 550 °C was selected as the optimum processing temperature for the investigated composites. A parametric study on the post-pyrolysis treatment was performed in order to remove the residues from the fabrics and at the same time to investigate the CFs reusability, in terms of their mechanical and surface properties. Full article
Show Figures

Figure 1

18 pages, 13527 KiB  
Article
Investigation of Morphological, Chemical, and Thermal Properties of Biodegradable Food Packaging Films Synthesised by Direct Utilisation of Cassava (Monihot esculanta) Bagasse
by Vindya Thathsaranee Weligama Thuppahige, Lalehvash Moghaddam, Zachary G. Welsh and Azharul Karim
Polymers 2023, 15(3), 767; https://doi.org/10.3390/polym15030767 - 02 Feb 2023
Cited by 1 | Viewed by 2264
Abstract
The utilisation of edible sources of starch such as corn, wheat, potato, and cassava has become the common approach to develop biodegradable food packaging. However, the future food security issue from the wide application of such edible starch sources has become a major [...] Read more.
The utilisation of edible sources of starch such as corn, wheat, potato, and cassava has become the common approach to develop biodegradable food packaging. However, the future food security issue from the wide application of such edible starch sources has become a major concern. Consequently, exploring non-edible sources of starch for starch-based biodegradable food packaging and their property enhancement have become one of the common research interests. Although there has been a great potentials of synthesising biodegradable food packaging by direct utilisation of agro-industrial waste cassava bagasse, there have been very limited studies on this. In this context, the current study investigated the potential of developing biodegradable food packaging by directly using cassava bagasse as an alternative matrix. Two film-forming mixtures were prepared by incorporating glycerol (30% and 35%), powdered cassava bagasse and water. The films were hot-pressed at 60 °C, 100 °C, and 140 °C temperatures under 0.28 t pressure for 6 min. The best film-forming mixture and temperature combination was further tested with 0.42 t and 0.84 t pressures, followed by analysing their morphology, functional group availability and the thermal stability. Accordingly, application of 35% glycerol, with 100 °C, 0.42 t temperature and pressure, respectively, were found to be promising for film preparation. The absence of starch agglomerates in film surfaces with less defects suggested satisfactory dispersion and compatibility of starch granules and glycerol. The film prepared under 0.42 t exhibited slightly higher thermal stability. Synthesised prototypes of food packaging and the obtained characterisation results demonstrated the high feasibility of direct utilisation of cassava bagasse as an alternative, non-edible matrix to synthesise biodegradable food packaging. Full article
(This article belongs to the Special Issue Eco-Friendly Polymers: Synthesis, Characterization and Applications)
Show Figures

Figure 1

20 pages, 6988 KiB  
Article
Mechanical Response of Epoxy Resin—Flax Fiber Composites Subjected to Repeated Loading and Creep Recovery Tests
by Constantin Stochioiu, Anton Hadăr and Benoît Piezel
Polymers 2023, 15(3), 766; https://doi.org/10.3390/polym15030766 - 02 Feb 2023
Cited by 1 | Viewed by 1752
Abstract
Flax fiber-reinforced plastics have an innate eco-friendly nature due to the fiber reinforcement and reduced energy requirements in fabrication when compared to current fiber reinforced composite materials. They possess a complex time-dependent material behavior, which is investigated in the present paper. A composite [...] Read more.
Flax fiber-reinforced plastics have an innate eco-friendly nature due to the fiber reinforcement and reduced energy requirements in fabrication when compared to current fiber reinforced composite materials. They possess a complex time-dependent material behavior, which is investigated in the present paper. A composite material with flax fiber reinforcement on the load direction, embedded in an epoxy resin matrix, was studied. The procedures used were tensile tests, repeated loading-recovery, and creep-recovery tests, which were meant to expose the components of the response with respect to stress level and load duration. The results showed an elastic bi-linear behavior, a yield point at approximately 20% of the ultimate tensile stress, and tensile moduli of 35.9 GPa and 26.3 GPa, before and after yield. This is coupled with significant non-linear viscoelastic and, after yield, viscoplastic components, accounting for up to 14% of the strain response. The behavior is inherited from both the matrix and the fiber reinforcement and is attributed to the amorphous nature of the matrix combined with the microstructural re-organization of the fiber under load, which are partially reversible. Full article
Show Figures

Figure 1

10 pages, 2128 KiB  
Article
A Reactive Molecular Dynamics Study on Crosslinked Epoxy Resin Decomposition under High Electric Field and Thermal Aging Conditions
by Wei-Feng Sun, Wen Kwang Chern, John Chok You Chan and Zhong Chen
Polymers 2023, 15(3), 765; https://doi.org/10.3390/polym15030765 - 02 Feb 2023
Cited by 3 | Viewed by 1719
Abstract
To reveal the microscopic mechanism of synergetic thermal–electrical degradation during a partial discharge process in epoxy insulation materials, the decomposition of crosslinked epoxy resin is investigated using reactive molecular dynamics simulations under high electric field and thermal degradation conditions. Bond-boost acceleration method is [...] Read more.
To reveal the microscopic mechanism of synergetic thermal–electrical degradation during a partial discharge process in epoxy insulation materials, the decomposition of crosslinked epoxy resin is investigated using reactive molecular dynamics simulations under high electric field and thermal degradation conditions. Bond-boost acceleration method is employed in reactive molecular dynamics simulations to successfully establish epoxy polymer models with a crosslink degree of 93%. Active molecular species derived from electrical partial discharges are considered in the current work. Small molecule products and decomposition temperature in the degradation process under an electric field are calculated to elucidate the effect of nitric acid and ozone molecules, being the active products generated by electrical partial discharges, on the synergetic thermal–electrical degradation of epoxy resin. Both nitric acid and ozone exacerbate thermal impact decomposition of crosslinked epoxy polymer by decreasing initial decomposition temperature from 1050 K to 940 K and 820 K, respectively. It is found that these active products can oxidize hydroxyl groups and carbon–nitrogen bridge bonds in epoxy molecular chains, leading to the aggravation of epoxy resin decomposition, as manifested by the significant increase in the decomposed molecular products. In contrast, thermal degradation of the epoxy resin without the active species is not expedited by increasing electric field. These strongly oxidative molecules are easily reduced to negative ions and able to obtain kinetic energies from electric field, which result in chemical corrosion and local temperature increase to accelerate decomposition of epoxy insulation materials. Full article
Show Figures

Figure 1

22 pages, 2797 KiB  
Review
Progress in Microtopography Optimization of Polymers-Based Pressure/Strain Sensors
by Shouheng Sun, Zhenqin Wang and Yuting Wang
Polymers 2023, 15(3), 764; https://doi.org/10.3390/polym15030764 - 02 Feb 2023
Cited by 6 | Viewed by 2234
Abstract
Due to the wide application of wearable electronic devices in daily life, research into flexible electronics has become very attractive. Recently, various polymer-based sensors have emerged with great sensing performance and excellent extensibility. It is well known that different structural designs each confer [...] Read more.
Due to the wide application of wearable electronic devices in daily life, research into flexible electronics has become very attractive. Recently, various polymer-based sensors have emerged with great sensing performance and excellent extensibility. It is well known that different structural designs each confer their own unique, great impacts on the properties of materials. For polymer-based pressure/strain sensors, different structural designs determine different response-sensing mechanisms, thus showing their unique advantages and characteristics. This paper mainly focuses on polymer-based pressure-sensing materials applied in different microstructures and reviews their respective advantages. At the same time, polymer-based pressure sensors with different microstructures, including with respect to their working mechanisms, key parameters, and relevant operating ranges, are discussed in detail. According to the summary of its performance and mechanisms, different morphologies of microstructures can be designed for a sensor according to its performance characteristics and application scenario requirements, and the optimal structure can be adjusted by weighing and comparing sensor performances for the future. Finally, a conclusion and future perspectives are described. Full article
(This article belongs to the Special Issue Advances in Polymers-Based Sensors)
Show Figures

Figure 1

14 pages, 3929 KiB  
Review
Paving the Way for Synthetic Intrinsically Disordered Polymers for Soft Robotics
by Orkid Coskuner-Weber, Elif Yuce-Erarslan and Vladimir N. Uversky
Polymers 2023, 15(3), 763; https://doi.org/10.3390/polym15030763 - 02 Feb 2023
Cited by 2 | Viewed by 1658
Abstract
Nature is full of examples of processes that, through evolution, have been perfected over the ages to effectively use matter and sustain life. Here, we present our strategies for designing intrinsically disordered smart polymers for soft robotics applications that are bio-inspired by intrinsically [...] Read more.
Nature is full of examples of processes that, through evolution, have been perfected over the ages to effectively use matter and sustain life. Here, we present our strategies for designing intrinsically disordered smart polymers for soft robotics applications that are bio-inspired by intrinsically disordered proteins. Bio-inspired intrinsically disordered smart and soft polymers designed using our deep understanding of intrinsically disordered proteins have the potential to open new avenues in soft robotics. Together with other desirable traits, such as robustness, dynamic self-organization, and self-healing abilities, these systems possess ideal characteristics that human-made formations strive for but often fail to achieve. Our main aim is to develop materials for soft robotics applications bio-inspired by intrinsically disordered proteins to address what we see as the largest current barriers in the practical deployment of future soft robotics in various areas, including defense. Much of the current literature has focused on the de novo synthesis of tailor-made polymers to perform specific functions. With bio-inspired polymers, the complexity of protein folding mechanisms has limited the ability of researchers to reliably engineer specific structures. Unlike existing studies, our work is focused on utilizing the high flexibility of intrinsically disordered proteins and their self-organization characteristics using synthetic quasi-foldamers. Full article
(This article belongs to the Special Issue Bio-Mimicked and Bio-Inspired Synthetic Polymers)
Show Figures

Scheme 1

14 pages, 3448 KiB  
Article
Poly(butylene adipate-co-terephthalate)/Poly(lactic acid) Polymeric Blends Electrospun with TiO2-R/Fe3O4 for Pollutant Photodegradation
by Alessandra Ruyz Medeiros, Fabiana da Silva Lima, Andressa Giombelli Rosenberger, Douglas Cardoso Dragunski, Edvani Curti Muniz, Eduardo Radovanovic and Josiane Caetano
Polymers 2023, 15(3), 762; https://doi.org/10.3390/polym15030762 - 02 Feb 2023
Cited by 4 | Viewed by 1989
Abstract
This work aimed to use the electrospinning technique to obtain PBAT/PLA polymer fibers, with the semiconductors rutile titanium dioxide (TiO2-R) and magnetite iron oxide (Fe3O4), in order to promote the photocatalytic degradation of environmental contaminants. The parameters [...] Read more.
This work aimed to use the electrospinning technique to obtain PBAT/PLA polymer fibers, with the semiconductors rutile titanium dioxide (TiO2-R) and magnetite iron oxide (Fe3O4), in order to promote the photocatalytic degradation of environmental contaminants. The parameters used in the electrospinning process to obtain the fibers were distance from the needle to the collecting target of 12 cm, flow of 1 mL h−1 and voltage of 14 kV. The best mass ratio of semiconductors in the polymeric fiber was defined from a 22 experimental design, and the values obtained were 10% TiO2-R, 1% Fe3O4 at pH 7.0. Polymer fibers were characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Fourier Transform Infrared (FTIR) techniques. SEM measurements indicated a reduction in fiber diameter after the incorporation of semiconductors; for the PBAT/PLA fiber, the average diameter was 0.9466 ± 0.2490 µm, and for the fiber with TiO2-R and Fe3O4 was 0.6706 ± 0.1447 µm. In the DSC, DRX, TGA and FTIR analyses, it was possible to identify the presence of TiO2-R and Fe3O4 in the fibers, as well as their interactions with polymers, demonstrating changes in the crystallinity and degradation temperature of the material. These fibers were tested against Reactive Red 195 dye, showing an efficiency of 64.0% within 24 h, showing promise for photocatalytic degradation of environmental contaminants. Full article
Show Figures

Figure 1

15 pages, 4160 KiB  
Article
Development of Photoluminescent and Photochromic Polyester Nanocomposite Reinforced with Electrospun Glass Nanofibers
by Mahmoud T. Abdu, Tawfik A. Khattab and Maiada S. Abdelrahman
Polymers 2023, 15(3), 761; https://doi.org/10.3390/polym15030761 - 02 Feb 2023
Cited by 28 | Viewed by 2185
Abstract
A polyester resin was strengthened with electrospun glass nanofibers to create long-lasting photochromic and photoluminescent products, such as smart windows and concrete, as well as anti-counterfeiting patterns. A transparent glass@polyester (GLS@PET) sheet was created by physically immobilizing lanthanide-doped aluminate (LA) nanoparticles (NPs). The [...] Read more.
A polyester resin was strengthened with electrospun glass nanofibers to create long-lasting photochromic and photoluminescent products, such as smart windows and concrete, as well as anti-counterfeiting patterns. A transparent glass@polyester (GLS@PET) sheet was created by physically immobilizing lanthanide-doped aluminate (LA) nanoparticles (NPs). The spectral analysis using the CIE Lab and luminescence revealed that the transparent GLS@PET samples turned green under ultraviolet light and greenish-yellow in the dark. The detected photochromism can be quickly reversed in the photoluminescent GLS@PET hybrids at low concentrations of LANPs. Conversely, the GLS@PET substrates with the highest phosphor concentrations exhibited sustained luminosity with slow reversibility. Transmission electron microscopic analysis (TEM) and scanning electron microscopy (SEM) were utilized to examine the morphological features of lanthanide-doped aluminate nanoparticles (LANPs) and glass nanofibers to display diameters of 7–15 nm and 90–140 nm, respectively. SEM, energy-dispersive X-ray spectroscopy (EDXA), and X-ray fluorescence (XRF) were used to analyze the luminous GLS@PET substrates for their morphology and elemental composition. The glass nanofibers were reinforced into the polyester resin as a roughening agent to improve its mechanical properties. Scratch resistance was found to be significantly increased in the created photoluminescent GLS@PET substrates when compared with the LANPs-free substrate. When excited at 368 nm, the observed photoluminescence spectra showed an emission peak at 518 nm. The results demonstrated improved hydrophobicity and UV blocking properties in the luminescent colorless GLS@PET hybrids. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

16 pages, 2085 KiB  
Article
Exploring the Potential of a Highly Scalable Metal-Organic Framework CALF-20 for Selective Gas Adsorption at Low Pressure
by Mostafa Yousefzadeh Borzehandani, Majid Namayandeh Jorabchi, Emilia Abdulmalek, Mohd Basyaruddin Abdul Rahman and Muhammad Alif Mohammad Latif
Polymers 2023, 15(3), 760; https://doi.org/10.3390/polym15030760 - 02 Feb 2023
Cited by 2 | Viewed by 4417
Abstract
In this study, the ability of the highly scalable metal-organic framework (MOF) CALF-20 to adsorb polar and non-polar gases at low pressure was investigated using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The results from the simulated adsorption isotherms revealed [...] Read more.
In this study, the ability of the highly scalable metal-organic framework (MOF) CALF-20 to adsorb polar and non-polar gases at low pressure was investigated using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The results from the simulated adsorption isotherms revealed that the highest loading was achieved for SO2 and Cl2, while the lowest loading was found for F2 molecules. The analysis of interaction energies indicated that SO2 molecules were able to form the strongest adsorbent-adsorbate interactions and had a tight molecular packing due to their polarity and angular structure. Additionally, Cl2 gas was found to be highly adsorbed due to its large van der Waals surface and strong chemical affinity in CALF-20 pores. MD simulations showed that SO2 and Cl2 had the lowest mobility inside CALF-20 pores. The values of the Henry coefficient and isosteric heat of adsorption confirmed that CALF-20 could selectively adsorb SO2 and Cl2. Based on the results, it was concluded that CALF-20 is a suitable adsorbent for SO2 and Cl2 but not for F2. This research emphasizes the importance of molecular size, geometry, and polarity in determining the suitability of a porous material as an adsorbent for specific adsorbates. Full article
(This article belongs to the Special Issue Synthesis and Properties of Polymeric Frameworks)
Show Figures

Graphical abstract

3 pages, 195 KiB  
Editorial
A New Year’s Message 2023
by Shin-ichi Yusa
Polymers 2023, 15(3), 759; https://doi.org/10.3390/polym15030759 - 02 Feb 2023
Viewed by 1048
Abstract
We wish you all happiness, health and progress in the new year [...] Full article
(This article belongs to the Section Polymer Chemistry)
23 pages, 9070 KiB  
Article
Structural, Mechanical, and Tribological Properties of Oriented Ultra-High Molecular Weight Polyethylene/Graphene Nanoplates/Polyaniline Films
by Tarek Dayyoub, Aleksey Maksimkin, Leonid K. Olifirov, Dilus Chukov, Evgeniy Kolesnikov, Sergey D. Kaloshkin and Dmitry V. Telyshev
Polymers 2023, 15(3), 758; https://doi.org/10.3390/polym15030758 - 02 Feb 2023
Cited by 3 | Viewed by 2320
Abstract
Preparing high-strength polymeric materials using an orientation drawing process is considered one of the most urgent topics in the modern world. Graphene nanoplates/polyaniline (GNP/PANI) were added to the commercial grade UHMWPE (GUR 4120) matrix as a filler with antifriction properties. The effect of [...] Read more.
Preparing high-strength polymeric materials using an orientation drawing process is considered one of the most urgent topics in the modern world. Graphene nanoplates/polyaniline (GNP/PANI) were added to the commercial grade UHMWPE (GUR 4120) matrix as a filler with antifriction properties. The effect of GNP/PANI addition on the structure, the orientation process, the void formation (cavitation), the mechanical, and tribological properties was studied using differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and scanning electron microscopy (SEM). The paper’s findings indicated an increase in the cavitation effect of 120–320% after the addition of GNP/PANI to the UHMWPE polymer matrix. This increase, during the process of the oriented films’ thermal orientation hardening, led, in turn, to a decrease in the tensile strength during the process of the oriented films’ thermal orientation hardening. Furthermore, the decrease in the coefficient of friction in the best samples of oriented UHMWPE films was two times greater, and the increase in wear resistance was more than an order of magnitude. This process was part of the orientation hardening process for the UHMWPE films containing PE-wax as an intermolecular lubricant, as well as the presence of GNP/PANI in the material, which have a high resistance to abrasive wear. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop