Polymer-Based Functional Nanomaterials: Preparation, Property and Performance

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Chemistry".

Deadline for manuscript submissions: closed (25 May 2023) | Viewed by 15803

Special Issue Editor


E-Mail Website
Guest Editor
School of Materials & Engineering, University of Shanghai for Science and Technology, Shanghai, China
Interests: biomolecules; electrospinning; electrospraying; biomaterials; drug delivery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymers offer remarkable physical properties such as their light weight, low cost, easy processability, corrosion resistance, improved design options, etc. These properties distinguish polymers from their traditional rivals such as ceramics and metals. Nonetheless, in order to employ polymers as the next generation of advanced materials, their physical properties must be significantly improved. This can be carried out via incorporating multifunctional nanomaterials into the polymer matrices.

Despite the outstanding physical properties of different types of nanomaterials, the full exploitation of their physical properties toward the development of multifunctional polymer nanocomposites is still a challenge, due to their synthesis challenges, agglomeration, poor affinity toward polymers, nanofiller–polymer processing challenges, etc. This Special Issue aims to create an interdisciplinary forum of discussion on applications and advancements in the area of the development of multifunctional polymer nanocomposites holding various types of nanomaterials. This issue accepts high-quality research articles as well as review articles that will illustrate and stimulate the continuing effort to understand the area of multifunctional nanomaterial–polymer nanocomposites.

Prof. Dr. Deng-Guang Yu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • synthesis
  • surface modification and functionalization
  • characterization of physical and structural properties
  • fabrication of nanocomposites

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 3448 KiB  
Article
Poly(butylene adipate-co-terephthalate)/Poly(lactic acid) Polymeric Blends Electrospun with TiO2-R/Fe3O4 for Pollutant Photodegradation
by Alessandra Ruyz Medeiros, Fabiana da Silva Lima, Andressa Giombelli Rosenberger, Douglas Cardoso Dragunski, Edvani Curti Muniz, Eduardo Radovanovic and Josiane Caetano
Polymers 2023, 15(3), 762; https://doi.org/10.3390/polym15030762 - 02 Feb 2023
Cited by 4 | Viewed by 2001
Abstract
This work aimed to use the electrospinning technique to obtain PBAT/PLA polymer fibers, with the semiconductors rutile titanium dioxide (TiO2-R) and magnetite iron oxide (Fe3O4), in order to promote the photocatalytic degradation of environmental contaminants. The parameters [...] Read more.
This work aimed to use the electrospinning technique to obtain PBAT/PLA polymer fibers, with the semiconductors rutile titanium dioxide (TiO2-R) and magnetite iron oxide (Fe3O4), in order to promote the photocatalytic degradation of environmental contaminants. The parameters used in the electrospinning process to obtain the fibers were distance from the needle to the collecting target of 12 cm, flow of 1 mL h−1 and voltage of 14 kV. The best mass ratio of semiconductors in the polymeric fiber was defined from a 22 experimental design, and the values obtained were 10% TiO2-R, 1% Fe3O4 at pH 7.0. Polymer fibers were characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Fourier Transform Infrared (FTIR) techniques. SEM measurements indicated a reduction in fiber diameter after the incorporation of semiconductors; for the PBAT/PLA fiber, the average diameter was 0.9466 ± 0.2490 µm, and for the fiber with TiO2-R and Fe3O4 was 0.6706 ± 0.1447 µm. In the DSC, DRX, TGA and FTIR analyses, it was possible to identify the presence of TiO2-R and Fe3O4 in the fibers, as well as their interactions with polymers, demonstrating changes in the crystallinity and degradation temperature of the material. These fibers were tested against Reactive Red 195 dye, showing an efficiency of 64.0% within 24 h, showing promise for photocatalytic degradation of environmental contaminants. Full article
Show Figures

Figure 1

13 pages, 3948 KiB  
Article
4th Generation Biomaterials Based on PVDF-Hydroxyapatite Composites Produced by Electrospinning: Processing and Characterization
by Gabriel Grube dos Santos, Milena Schroeder Malherbi, Natália Silva de Souza, Gabriel Batista César, Tania Toyomi Tominaga, Ricardo Yoshimitsu Miyahara, Patrícia de Souza Bonfim de Mendonça, Daniela Renata Faria, Jaciele Márcia Rosso, Valdirlei Fernandes Freitas, Wilson Ricardo Weinand, Gustavo Sanguino Dias, Ivair Aparecido Santos, Luiz Fernando Cotica and Taiana Gabriela Moretti Bonadio
Polymers 2022, 14(19), 4190; https://doi.org/10.3390/polym14194190 - 06 Oct 2022
Cited by 8 | Viewed by 2133
Abstract
Biomaterials that effectively act in biological systems, as in treatment and healing of damaged or lost tissues, must be able to mimic the properties of the body’s natural tissues in its various aspects (chemical, physical, mechanical and surface). These characteristics influence cell adhesion [...] Read more.
Biomaterials that effectively act in biological systems, as in treatment and healing of damaged or lost tissues, must be able to mimic the properties of the body’s natural tissues in its various aspects (chemical, physical, mechanical and surface). These characteristics influence cell adhesion and proliferation and are crucial for the success of the treatment for which a biomaterial will be required. In this context, the electrospinning process has gained prominence in obtaining fibers of micro- and nanometric sizes from polymeric solutions aiming to produce scaffolds for tissue engineering. In this manuscript, poly(vinylidene fluoride) (PVDF) was used as a polymeric matrix for the manufacture of piezoelectric scaffolds, exploring the formation of the β-PVDF piezoelectric phase. Micro- and nanometric hydroxyapatite (HA) particles were incorporated as a dispersed phase in this matrix, aiming to produce multifunctional composite membranes also with bioactive properties. The results show that it is possible to produce membranes containing micro- and nanofibers of the composite by the electrospinning process. The HA particles show good dispersion in the polymer matrix and predominance of β-PVDF phase. Also, the composite showed apatite growth on its surface after 21 days of immersion in simulated body fluid (SBF). Tests performed on human fibroblasts culture revealed that the electrospun membranes have low cytotoxicity attesting that the composite shows great potential to be used in biomedical applications as bone substitutions and wound healing. Full article
Show Figures

Graphical abstract

27 pages, 5256 KiB  
Article
Mesoporous Magnetic Cysteine Functionalized Chitosan Nanocomposite for Selective Uranyl Ions Sorption: Experimental, Structural Characterization, and Mechanistic Studies
by Ahmed A. Al-Ghamdi, Ahmed A. Galhoum, Ahmed Alshahrie, Yusuf A. Al-Turki, Amal M. Al-Amri and S. Wageh
Polymers 2022, 14(13), 2568; https://doi.org/10.3390/polym14132568 - 24 Jun 2022
Cited by 21 | Viewed by 1867
Abstract
Nuclear power facilities are being expanded to satisfy expanding worldwide energy demand. Thus, uranium recovery from secondary resources has become a hot topic in terms of environmental protection and nuclear fuel conservation. Herein, a mesoporous biosorbent of a hybrid magnetic–chitosan nanocomposite functionalized with [...] Read more.
Nuclear power facilities are being expanded to satisfy expanding worldwide energy demand. Thus, uranium recovery from secondary resources has become a hot topic in terms of environmental protection and nuclear fuel conservation. Herein, a mesoporous biosorbent of a hybrid magnetic–chitosan nanocomposite functionalized with cysteine (Cys) was synthesized via subsequent heterogeneous nucleation for selectively enhanced uranyl ion (UO22+) sorption. Various analytical tools were used to confirm the mesoporous nanocomposite structural characteristics and confirm the synthetic route. The characteristics of the synthesized nanocomposite were as follows: superparamagnetic with saturation magnetization (MS: 25.81 emu/g), a specific surface area (SBET: 42.56 m2/g) with a unipore mesoporous structure, an amine content of ~2.43 mmol N/g, and a density of ~17.19/nm2. The experimental results showed that the sorption was highly efficient: for the isotherm fitted by the Langmuir equation, the maximum capacity was about 0.575 mmol U/g at pH range 3.5–5.0, and Temperature (25 ± 1 °C); further, there was excellent selectivity for UO22+, likely due to the chemical valent difference. The sorption process was fast (~50 min), simulated with the pseudo-second-order equation, and the sorption half-time (t1/2) was 3.86 min. The sophisticated spectroscopic studies (FTIR and XPS) revealed that the sorption mechanism was linked to complexation and ion exchange by interaction with S/N/O multiple functional groups. The sorption was exothermic, spontaneous, and governed by entropy change. Desorption and regeneration were carried out using an acidified urea solution (0.25 M) that was recycled for a minimum of six cycles, resulting in a sorption and desorption efficiency of over 91%. The as-synthesized nanocomposite’s high stability, durability, and chemical resistivity were confirmed over multiple cycles using FTIR and leachability. Finally, the sorbent was efficiently tested for selective uranium sorption from multicomponent acidic simulated nuclear solution. Owing to such excellent performance, the Cys nanocomposite is greatly promising in the uranium recovery field. Full article
Show Figures

Figure 1

13 pages, 2501 KiB  
Article
Electrospun Coaxial Fibers to Optimize the Release of Poorly Water-Soluble Drug
by Yubo Liu, Xiaohong Chen, Yuyang Liu, Yuhang Gao and Ping Liu
Polymers 2022, 14(3), 469; https://doi.org/10.3390/polym14030469 - 24 Jan 2022
Cited by 38 | Viewed by 3796
Abstract
In a drug delivery system, the physicochemical properties of the polymeric matrix have a positive impact on the bioavailability of poorly water-soluble drugs. In this work, monolithic F1 fibers and coaxial F2 fibers were successfully prepared using polyvinylpyrrolidone as the main polymer matrix [...] Read more.
In a drug delivery system, the physicochemical properties of the polymeric matrix have a positive impact on the bioavailability of poorly water-soluble drugs. In this work, monolithic F1 fibers and coaxial F2 fibers were successfully prepared using polyvinylpyrrolidone as the main polymer matrix for drug loading and the poorly water-soluble curcumin (Cur) as a model drug. The hydrophobic poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) was designed as a blank layer to change the hydrophilicity of the fiber and restrain the drug dissolution rate. The curved linear morphology without beads of F1 fibers and the straight linear morphology with few spindles of F2 fibers were characterized using field-emission environmental scanning electron microscopy. The amorphous forms of the drug and its good compatibility with polymeric matrix were verified by X-ray diffraction and attenuated total reflectance Fourier transformed infrared spectroscopy. Surface wettability and drug dissolution data showed that the weaker hydrophilicity F2 fibers (31.42° ± 3.07°) had 24 h for Cur dissolution, which was much longer than the better hydrophilic F1 fibers (15.31° ± 2.79°) that dissolved the drug in 4 h. Full article
Show Figures

Figure 1

Review

Jump to: Research

33 pages, 8245 KiB  
Review
Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing
by Chang Huang, Xizi Xu, Junhao Fu, Deng-Guang Yu and Yanbo Liu
Polymers 2022, 14(16), 3266; https://doi.org/10.3390/polym14163266 - 11 Aug 2022
Cited by 41 | Viewed by 5164
Abstract
Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge [...] Read more.
Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge role in it. Electrospinning technology is simple to operate. Electrospun nanofibers have a high specific surface area, high porosity, high oxygen permeability, and excellent mechanical properties, which show great utilization value in the manufacture of wound dressings. As one of the most popular reactive and functional synthetic polymers, polyacrylonitrile (PAN) is frequently explored to create nanofibers for a wide variety of applications. In recent years, researchers have invested in the application of PAN nanofibers in wound dressings. Research on spun nanofibers is reviewed, and future development directions and prospects of electrospun PAN nanofibers for wound dressings are proposed. Full article
Show Figures

Graphical abstract

Back to TopTop