sensors-logo

Journal Browser

Journal Browser

Design and Application of Sensors Based on Nanomaterials in Clinical, Food and Environmental Analysis

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Physical Sensors".

Deadline for manuscript submissions: 20 July 2024 | Viewed by 2248

Special Issue Editor

Special Issue Information

Dear Colleagues,

In the last few decades, numerous strategies and technologies for the analysis of different matrices have been proposed because of their importance for the global environment and public health. In this context, the use of sensors has rapidly grown through the development of nanotechnologies, and the increasing need for fast, widespread, on-site, and real time quantification of analytes. It is to be underlined that sensors based on nanomaterials have attracted increasing attention and allow researchers to explore new principles to improve analytical performances. The functionalized nanomaterials are used as catalytic technologies, platforms for immobilization, or optical or electroactive labels to improve the sensing performances with better accuracy, reliability, and selectiveness.

Consequently, the topic of this Special Issue is devoted to the recent advances of the sensors based on nanomaterials in clinical, food, and environmental analysis. In order to give an update of the recent progress in this sensing area in terms of devices, materials, and target molecules, you are invited to submit original research articles, short communications, as well as review-type articles (e.g., comprehensive and critical literature reviews or review studies based on your recent research experience).

Prof. Dr. Antonella Curulli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food safety
  • environmental analysis
  • clinical analysis
  • healthcare
  • nanomaterials
  • nanotechnologies
  • optical sensor
  • electrochemical sensors
  • biosensors
  • chemosensors

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3975 KiB  
Article
Electrochemical Detection of Bisphenol A Based on Gold Nanoparticles/Multi-Walled Carbon Nanotubes: Applications on Glassy Carbon and Screen Printed Electrodes
by Maximina Luis-Sunga, Soledad Carinelli, Gonzalo García, José Luis González-Mora and Pedro A. Salazar-Carballo
Sensors 2024, 24(8), 2570; https://doi.org/10.3390/s24082570 - 17 Apr 2024
Viewed by 376
Abstract
Bisphenol A (BPA) has been classified as an endocrine-disrupting substance that may cause adverse effects on human health and the environment. The development of simple and sensitive electrochemical biosensors is crucial for the rapid and effective quantitative determination of BPA. This work presents [...] Read more.
Bisphenol A (BPA) has been classified as an endocrine-disrupting substance that may cause adverse effects on human health and the environment. The development of simple and sensitive electrochemical biosensors is crucial for the rapid and effective quantitative determination of BPA. This work presents a study on electrochemical sensors utilizing gold nanoparticle-modified multi-walled carbon nanotubes (CNT/AuNPs). Glassy carbon electrodes (GCEs) and screen-printed electrodes (SPEs) were conveniently modified and used for BPA detection. AuNPs were electrodeposited onto the CNT-modified electrodes using the galvanostatic method. The electrodes were properly modified and characterized by using Raman spectroscopy, cyclic voltammetry (CV), and electrochemical impedance analysis (EIS). The electrochemical response of the sensors was studied using differential pulse voltammetry (DPV) and constant potential amperometry (CPA) for modified GCE and SPE electrodes, respectively, and the main analytical parameters were studied and optimized. Problems encountered with the use of GCEs, such as sensor degradation and high limit of detection (LOD), were overcome by using modified SPEs and a flow injection device for the measurements. Under this approach, an LOD as low as 5 nM (S/N = 3) was achieved and presented a linear range up to 20 μM. Finally, our investigation addressed interference, reproducibility, and reusability aspects, successfully identifying BPA in both spiked and authentic samples, including commercial and tap waters. These findings underscore the practical applicability of our method for accurate BPA detection in real-world scenarios. Notably, the integration of SPEs and a flow injection device facilitated simplified automation, offering an exceptionally efficient and reliable solution for precise BPA detection in water analysis laboratories. Full article
Show Figures

Figure 1

13 pages, 1828 KiB  
Article
Microfluidic Paper-Based Device Incorporated with Silica Nanoparticles for Iodide Quantification in Marine Source Dietary Supplements
by Mafalda G. Pereira, Ana Machado, Andreia Leite, Maria Rangel, Adriano Bordalo, António O. S. S. Rangel and Raquel B. R. Mesquita
Sensors 2024, 24(3), 1024; https://doi.org/10.3390/s24031024 - 05 Feb 2024
Viewed by 665
Abstract
Iodine is an essential micronutrient for humans due to its fundamental role in the biosynthesis of thyroid hormones. As a key parameter to assess health conditions, iodine intake needs to be monitored to ascertain and prevent iodine deficiency. Iodine is available from various [...] Read more.
Iodine is an essential micronutrient for humans due to its fundamental role in the biosynthesis of thyroid hormones. As a key parameter to assess health conditions, iodine intake needs to be monitored to ascertain and prevent iodine deficiency. Iodine is available from various food sources (such as seaweed, fish, and seafood, among others) and dietary supplements (multivitamins or mineral supplements). In this work, a microfluidic paper-based analytical device (μPAD) to quantify iodide in seaweed and dietary supplements is described. The developed μPAD is a small microfluidic device that emerges as quite relevant in terms of its analytical capacity. The quantification of iodide is based on the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by hydrogen peroxide in the presence of iodine, which acts as the catalyst to produce the blue form of TMB. Additionally, powder silica was used to intensify and uniformize the colour of the obtained product. Following optimization, the developed μPAD enabled iodide quantification within the range of 10–100 µM, with a detection limit of 3 µM, and was successfully applied to seaweeds and dietary supplements. The device represents a valuable tool for point-of-care analysis, can be used by untrained personnel at home, and is easily disposable, low-cost, and user-friendly. Full article
Show Figures

Figure 1

17 pages, 3650 KiB  
Article
Stereoselective Voltammetric Biosensor for Myo-Inositol and D-Chiro-Inositol Recognition
by Cristina Tortolini, Valeria Gigli, Flavio Rizzo, Andrea Lenzi, Mariano Bizzarri, Antonio Angeloni and Riccarda Antiochia
Sensors 2023, 23(22), 9211; https://doi.org/10.3390/s23229211 - 16 Nov 2023
Cited by 1 | Viewed by 732
Abstract
This paper describes the development of a simple voltammetric biosensor for the stereoselective discrimination of myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) by means of bovine serum albumin (BSA) adsorption onto a multi-walled carbon nanotube (MWCNT) graphite screen-printed electrode (MWCNT-GSPE), previously functionalized by the electropolymerization [...] Read more.
This paper describes the development of a simple voltammetric biosensor for the stereoselective discrimination of myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) by means of bovine serum albumin (BSA) adsorption onto a multi-walled carbon nanotube (MWCNT) graphite screen-printed electrode (MWCNT-GSPE), previously functionalized by the electropolymerization of methylene blue (MB). After a morphological characterization, the enantioselective biosensor platform was electrochemically characterized after each modification step by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The results show that the binding affinity between myo-Ins and BSA was higher than that between D-chiro-Ins and BSA, confirming the different interactions exhibited by the novel BSA/MB/MWCNT/GSPE platform towards the two diastereoisomers. The biosensor showed a linear response towards both stereoisomers in the range of 2–100 μM, with LODs of 0.5 and 1 μM for myo-Ins and D-chiro-Ins, respectively. Moreover, a stereoselectivity coefficient α of 1.6 was found, with association constants of 0.90 and 0.79, for the two stereoisomers, respectively. Lastly, the proposed biosensor allowed for the determination of the stereoisomeric composition of myo-/D-chiro-Ins mixtures in commercial pharmaceutical preparations, and thus, it is expected to be successfully applied in the chiral analysis of pharmaceuticals and illicit drugs of forensic interest. Full article
Show Figures

Figure 1

Back to TopTop