remotesensing-logo

Journal Browser

Journal Browser

Real-time GNSS Precise Positioning Service and its Augmentation Technology

A special issue of Remote Sensing (ISSN 2072-4292).

Deadline for manuscript submissions: closed (1 September 2020) | Viewed by 108338

Special Issue Editors


E-Mail Website
Guest Editor
1. Faculty of Architecture, Civil, and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
2. The Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology, Beijing 100124, China
Interests: structural health monitoring; remote sensing; smart city
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
Interests: GNSS precise data processing; navigation; timing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Instrument Science and Engineering, Southeast University, No.2 Sipailou, Nanjing 210096, China
Interests: ground-based augmentation systems and services; navigation and positioning; land survey; GIS and resource management; smart cities and intelligent transportation systems

E-Mail Website
Guest Editor
Nottingham Geospatial Institute, The University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK
Interests: GNSS data processing methods; high-precision GNSS applications in SHM; GNSS time series analysis; GNSS-IR

Special Issue Information

Dear Colleagues,

With the continuously increasing demand of real-time positioning and timing applications, including surveying and mapping, smart cities, connected and autonomous vehicles (CAVs), environmental monitoring, geological disaster monitoring, structural health monitoring (SHM), etc., real-time Global Navigation Satellite System (GNSS) precise positioning and services have drawn increasing attention in recent years. To promote real-time GNSS data processing and related applications, the International GNSS Service (IGS) established the Real-Time Working Group (RTWG) in 2002 and initiated the Real-Time Pilot Project (RTPP) in 2007. In 2013, it officially launched the Real-Time Service (RTS) to provide precise orbit and clock corrections via Radio Technical Commission for Maritime Services (RTCM) protocol for GPS and GLONASS. Presently, there are several agencies providing real-time state-space-representative (SSR) orbit and clock corrections. The rapid development of real-time orbit and clock products makes real-time positioning services possible. At present, the current GNSS constellations, including GPS, GLONASS, Galileo, BeiDou, QZSS, and IRNSS, consist of almost over 100 spacecraft, and the Multi-GNSS Experiment (MGEX) was established by the IGS to track, collate, and analyze all available GNSS signals, which undoubtedly enhances the capabilities of the real-time GNSS precise positioning service.

GNSS augmentation is a method to improve the accuracy, reliability, availability, and continuity of Positioning, Navigation and Timing (PNT) services through the integration of external information into the calculation process. the ground based augmentation systems (GBASs) and satellite-based augmentation systems (SBASs) services were established mainly to provide integrity assurance for submeter-level Differential-GNSS (DGNSS) for location-based services (LBSs), maritime users, and many other applications. These augmentation services have significantly improved GNSS PNT capability over the past several decades. Other augmentation methods have also been developed, such as integrated GNSS and inertial navigation systems (INSs), integrated GNSS and ground-based pseudolites, integrated GNSS and 3D laser scanning, integrated GNSS and vision systems, etc.

In this Special Issue, we invite original research and case studies focusing on recent developments in real-time GNSS precise positioning theories, algorithms, applications, and other augmentation services. We encourage submissions that may include but are not limited to:

  • Precise real-time GNSS positioning, navigation, timing, and relevant algorithms;
  • High-precision orbit determination and clock estimation;
  • Real-time retrieving of troposphere and ionosphere delay using GNSS observations;
  • Identification of GNSS error sources and mitigation mechanisms;
  • Earthquake and tsunami early warning using real-time GNSS;
  • Real-time GNSS positioning application in smart cities, UAV, CAV, etc.;
  • Structural health monitoring of large infrastructure using real-time GNSS;
  • Volcano, earthquake, subsidence, and landslide monitoring using GNSS;
  • GNSS PNT applications using augmentation systems;
  • GNSS reflectometry for ocean and land applications;
  • Technologies of integrated GNSS with pseudolites, INS, 3D laser scanning, vision systems, and space- and terrestrial-based Earth Observation.

Prof. Dr. Xiaolin Meng
Prof. Dr. Qing Wang
Prof. Dr. Chuang Shi
Dr. Ruijie Xi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • real-time GNSS positioning service
  • satellite orbit and clock determination
  • RTCM and SSR
  • GNSS meteorology
  • real-time earthquake, tsunami, and SHM monitoring
  • space- and ground-based GNSS augmentation systems
  • integrated GNSS with pseudolites, INS, 3D laser scanning, remote sensing, and vision systems

Published Papers (32 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

15 pages, 5236 KiB  
Article
Improved Ultra-Rapid UT1-UTC Determination and Its Preliminary Impact on GNSS Satellite Ultra-Rapid Orbit Determination
by Fei Ye, Yunbin Yuan and Zhiguo Deng
Remote Sens. 2020, 12(21), 3584; https://doi.org/10.3390/rs12213584 - 31 Oct 2020
Cited by 8 | Viewed by 1944
Abstract
Errors in ultra-rapid UT1-UTC primarily affect the overall rotation of spatial datum expressed by GNSS (Global Navigation Satellite System) satellite ultra-rapid orbit. In terms of existing errors of traditional strategy, e.g., piecewise linear functions, for ultra-rapid UT1-UTC determination, and the requirement to improve [...] Read more.
Errors in ultra-rapid UT1-UTC primarily affect the overall rotation of spatial datum expressed by GNSS (Global Navigation Satellite System) satellite ultra-rapid orbit. In terms of existing errors of traditional strategy, e.g., piecewise linear functions, for ultra-rapid UT1-UTC determination, and the requirement to improve the accuracy and consistency of ultra-rapid UT1-UTC, the potential to improve the performance of ultra-rapid UT1-UTC determination based on an LS (Least Square) + AR (Autoregressive) combination model is explored. In this contribution, based on the LS+AR combination model and by making joint post-processing/rapid UT1-UTC observation data, we propose a new strategy for ultra-rapid UT1-UTC determination. The performance of the new strategy is subsequently evaluated using data provided by IGS (International GNSS Services), iGMAS (international GNSS Monitoring and Assessment System), and IERS (International Earth Rotation and Reference Systems Service). Compared to the traditional strategy, the numerical results over more than 1 month show that the new strategy improved ultra-rapid UT1-UTC determination by 29–43%. The new strategy can provide a reference for GNSS data processing to improve the performance of ultra-rapid products. Full article
Show Figures

Graphical abstract

18 pages, 3684 KiB  
Article
A Novel Ambiguity Parameter Estimation and Elimination Strategy for GNSS/INS Tightly Coupled Integration
by Chun Ma, Qiuzhao Zhang, Xiaolin Meng, Nanshan Zheng and Shuguo Pan
Remote Sens. 2020, 12(21), 3514; https://doi.org/10.3390/rs12213514 - 26 Oct 2020
Cited by 4 | Viewed by 2035
Abstract
The estimation of ambiguity in the global navigation satellite system/inertial navigation system (GNSS/INS) tightly coupled system is a key issue for GNSS/INS precise navigation positioning. Only when the ambiguity is solved correctly can the integrated navigation system obtain high-precision positioning results. Aiming at [...] Read more.
The estimation of ambiguity in the global navigation satellite system/inertial navigation system (GNSS/INS) tightly coupled system is a key issue for GNSS/INS precise navigation positioning. Only when the ambiguity is solved correctly can the integrated navigation system obtain high-precision positioning results. Aiming at the problem of ambiguity parameter estimation in GNSS/INS tightly coupled system, a new strategy for ambiguity parameter estimation and elimination is proposed in this paper. Here, the ambiguity parameter is first added to the state equations of GNSS/INS in the estimation process. Then, the strategy of eliminating the parameter is used to improve efficiency. A residual test is carried out based on introducing the ambiguity parameter, thereby reducing or avoiding its influence on the filtering estimation process. Two groups of experiments were carried out and compared with GNSS positioning results. The results showed that, in the open sky observation environment, the positioning accuracy of the GNSS/INS tightly coupled method proposed in this paper was within 5 cm, and the ambiguity fixed rate was more than 97%, which is basically consistent. In a GNSS-denied environment, the positioning accuracy of the GNSS/INS tightly coupled method proposed in this paper was obviously better than that of GNSS, and the positioning accuracy in X, Y, and Z directions was improved by 82.46%, 78.87%, and 79.67%, respectively. The fixed rate of ambiguity increased from 73% to 78.57%. Therefore, in a GNSS-challenged environment, the novel strategy of the GNSS/INS tightly coupled system has higher ambiguity fixed rate and significantly improves positioning accuracy and continuity. Full article
Show Figures

Figure 1

25 pages, 12455 KiB  
Article
Robust Statistical Detection of GNSS Multipath Using Inter-Frequency C/N0 Differences
by Yan Xia, Shuguo Pan, Xiaolin Meng, Wang Gao and He Wen
Remote Sens. 2020, 12(20), 3388; https://doi.org/10.3390/rs12203388 - 16 Oct 2020
Cited by 3 | Viewed by 2061
Abstract
Multipath detection and mitigation are crucial issues for global navigation satellite system (GNSS) high-precision positioning. The multi-frequency carrier power-to-noise density ratio (C/N0)-based multipath detection technique has achieved good results in real-time static and low-dynamic applications, and shown better practicability because of [...] Read more.
Multipath detection and mitigation are crucial issues for global navigation satellite system (GNSS) high-precision positioning. The multi-frequency carrier power-to-noise density ratio (C/N0)-based multipath detection technique has achieved good results in real-time static and low-dynamic applications, and shown better practicability because of the low computational load and the requirement for little additional hardware. However, the classic multipath detection method based on inter-frequency C/N0 differences directly employs the 3σ rule to determine the threshold without considering the distribution of detection statistics and their variation characteristics with elevation angle, and ignores the interference of outliers to the reference functions. A robust multipath detection method is proposed in this paper. The reference functions of C/N0 differences are fitted using least absolute deviation (LAD) to obtain more accurate nominal values. According to the skew characteristics of the detection statistics, a medcouple (MC)-based adjusted boxplot is employed to determine the threshold. The performance of the new detection method is verified in the multipath environments. The experimental results show that compared with the classic method, the new multipath detector has strong robustness and can respond more accurately to large changes in multipath (MP) combination values at most elevation angles. It is sensitive to short-delay multipath and diffraction, and is an important supplement to multipath detection techniques. Full article
Show Figures

Graphical abstract

19 pages, 8671 KiB  
Article
A Refinement Method of Real-Time Ionospheric Model for China
by Yang Wang, Yibin Yao, Liang Zhang and Mingshan Fang
Remote Sens. 2020, 12(20), 3354; https://doi.org/10.3390/rs12203354 - 14 Oct 2020
Cited by 1 | Viewed by 2047
Abstract
Ionospheric delay is a crucial error source and determines the source of single-frequency precise point positioning (SF-PPP) accuracy. To meet the demands of real-time SF-PPP (RT-SF-PPP), several international global navigation satellite systems (GNSS) service (IGS) analysis centers provide real-time global ionospheric vertical total [...] Read more.
Ionospheric delay is a crucial error source and determines the source of single-frequency precise point positioning (SF-PPP) accuracy. To meet the demands of real-time SF-PPP (RT-SF-PPP), several international global navigation satellite systems (GNSS) service (IGS) analysis centers provide real-time global ionospheric vertical total electron content (VTEC) products. However, the accuracy distribution of VTEC products is nonuniform. Proposing a refinement method is a convenient means to obtain a more accuracy and consistent VTEC product. In this study, we proposed a refinement method of a real-time ionospheric VTEC model for China and carried out experiments to validate the model effectiveness. First, based on the refinement method and the Centre National d’Études Spatiales (CNES) VTEC products, three refined real-time global ionospheric models (RRTGIMs) with one, three, and six stations in China were built via GNSS observations. Second, the slant total electron content (STEC) and Jason-3 VTEC were used as references to evaluate VTEC accuracy. Third, RT-SF-PPP was used to evaluate the accuracy in the positioning domain. Results showed that even if using only one station to refine the global ionospheric model, the refined model achieved a better performance than CNES and the Center for Orbit Determination in Europe (CODE). The refinement model with six stations was found to be the best of the three refinement models. Full article
Show Figures

Graphical abstract

19 pages, 13601 KiB  
Article
Assessing the Performance of Multi-GNSS PPP-RTK in the Local Area
by Hongyang Ma, Qile Zhao, Sandra Verhagen, Dimitrios Psychas and Xianglin Liu
Remote Sens. 2020, 12(20), 3343; https://doi.org/10.3390/rs12203343 - 13 Oct 2020
Cited by 35 | Viewed by 3816
Abstract
The benefits of an increased number of global navigation satellite systems (GNSS) in space have been confirmed for the robustness and convergence time of standard precise point positioning (PPP) solutions, as well as improved accuracy when (most of) the ambiguities are fixed. Yet, [...] Read more.
The benefits of an increased number of global navigation satellite systems (GNSS) in space have been confirmed for the robustness and convergence time of standard precise point positioning (PPP) solutions, as well as improved accuracy when (most of) the ambiguities are fixed. Yet, it is still worthwhile to investigate fast and high-precision GNSS parameter estimation to meet user needs. This contribution focuses on integer ambiguity resolution-enabled Precise Point Positioning (PPP-RTK) in the use of the observations from four global navigation systems, i.e., GPS (Global Positioning System), Galileo (European Global Navigation Satellite System), BDS (Chinese BeiDou Navigation Satellite System), and GLONASS (Global’naya Navigatsionnaya Sputnikova Sistema). An undifferenced and uncombined PPP-RTK model is implemented for which the satellite clock and phase bias corrections are computed from the data processing of a group of stations in a network and then provided to users to help them achieve integer ambiguity resolution on a single receiver by calibrating the satellite phase biases. The dataset is recorded in a local area of the GNSS network of the Netherlands, in which 12 stations are regarded as the reference to generate the corresponding corrections and 21 as the users to assess the performance of the multi-GNSS PPP-RTK in both kinematic and static positioning mode. The results show that the root-mean-square (RMS) errors of the ambiguity float solutions can achieve the same accuracy level of the ambiguity fixed solutions after convergence. The combined GNSS cases, on the contrary, reduce the horizontal RMS of GPS alone with 2 cm level to GPS + Galileo/GPS + Galileo + BDS/GPS + Galileo + BDS + GLONASS with 1 cm level. The convergence time benefits from both multi-GNSS and fixing ambiguities, and the performances of the ambiguity fixed solution are comparable to those of the multi-GNSS ambiguity float solutions. For instance, the convergence time of GPS alone ambiguity fixed solutions to achieve 10 cm three-dimensional (3D) positioning accuracy is 39.5 min, while it is 37 min for GPS + Galileo ambiguity float solutions; moreover, with the same criterion, the convergence time of GE ambiguity fixed solutions is 19 min, which is better than GPS + Galileo + BDS + GLONASS ambiguity float solutions with 28.5 min. The experiments indicate that GPS alone occasionally suffers from a wrong fixing problem; however, this problem does not exist in the combined systems. Finally, integer ambiguity resolution is still necessary for multi-GNSS in the case of fast achieving very-high-accuracy positioning, e.g., sub-centimeter level. Full article
Show Figures

Graphical abstract

17 pages, 8679 KiB  
Article
Precise Orbit Determination of the China Seismo-Electromagnetic Satellite (CSES) Using Onboard GPS and BDS Observations
by Yun Qing, Jian Lin, Yang Liu, Xiaolei Dai, Yidong Lou and Shengfeng Gu
Remote Sens. 2020, 12(19), 3234; https://doi.org/10.3390/rs12193234 - 04 Oct 2020
Cited by 8 | Viewed by 2770
Abstract
The Global Navigation Satellite System (GNSS) occultation receiver onboard the China Seismo-Electromagnetic Satellite (CSES) can provide dual-frequency observations for both GPS and BDS-2 satellites. In this study, the data quality and orbit determination performance of the CSES are assessed. Severe data loss of [...] Read more.
The Global Navigation Satellite System (GNSS) occultation receiver onboard the China Seismo-Electromagnetic Satellite (CSES) can provide dual-frequency observations for both GPS and BDS-2 satellites. In this study, the data quality and orbit determination performance of the CSES are assessed. Severe data loss of about 30% is observed in GPS P2/L2 data, resulting in only 11% of epochs possessing six to eight useful GPS satellites. Due to fewer channels being allocated for BDS signals, less than 5% of epochs have more than three useful BDS satellites. Precise orbit determination (POD) of CSES is firstly carried out using GPS data. The results indicate that the orbit overlap differences improved from 3.65 cm to 2.8 cm in 3D root mean square (RMS) by antenna phase center correction. CSES orbits are then derived from the BDS only, and combined GPS and BDS data. BDS-based POD indicates that adding BDS geostationary Earth orbit (GEO) satellites could dramatically degrade the orbit accuracy. When excluding BDS GEO satellites, the orbit overlap differences of BDS-based and combined POD are 23.68 cm and 2.73 cm in 3D, respectively, while the differences compared with GPS-based POD are 14.83 cm and 1.05 cm, respectively. The results suggest that the obtained orbit can satisfy centimeter-level requirements. Given that large GPS tracking losses occurred and few channels are allocated for BDS signals, it is expected that POD performance can be further improved by increasing the number of dual-frequency observations. Full article
Show Figures

Graphical abstract

19 pages, 5841 KiB  
Article
GPS/BDS RTK Positioning Based on Equivalence Principle Using Multiple Reference Stations
by Jian Wang, Tianhe Xu, Wenfeng Nie and Guochang Xu
Remote Sens. 2020, 12(19), 3178; https://doi.org/10.3390/rs12193178 - 28 Sep 2020
Cited by 5 | Viewed by 3208
Abstract
Reliable real-time kinematic (RTK) is crucially important for emerging global navigation satellite systems (GNSSs) applications, such as drones and unmanned vehicles. The performance of conventional single baseline RTK (SBRTK) with one reference station degrades greatly in dense, urban environments, due to signal blockage [...] Read more.
Reliable real-time kinematic (RTK) is crucially important for emerging global navigation satellite systems (GNSSs) applications, such as drones and unmanned vehicles. The performance of conventional single baseline RTK (SBRTK) with one reference station degrades greatly in dense, urban environments, due to signal blockage and multipath error. The increasing use of multiple reference stations for kinematic positioning can improve RTK positioning accuracy and availability in urban areas. This paper proposes a new algorithm for multi-baseline RTK (MBRTK) positioning based on the equivalence principle. The advantages of the solution are to keep observation independent and increase the redundancy to estimate the unknown parameters. The equivalent double-differenced (DD) observation equations for multiple reference stations are firstly developed through the equivalent transform. A modified Kalman filter with parameter constraints is proposed, as well as a partial ambiguity resolution (PAR) strategy is developed to determine an ambiguity subset. Finally, the static and kinematic experiments are carried out to validate the proposed algorithm. The results demonstrate that, compared with single global positioning system (GPS) and Beidou navigation system (BDS) RTK positioning, the GPS/BDS positioning for MBRTK can enhance the positioning accuracy with improvement by approximately (45%, 35%, and 27%) and (12%, 6%, and 19%) in the North (N), East (E), and Up (U) components, as well as the availability with improvement by about 33% and 10%, respectively. Moreover, the MBRTK model with two and three reference receivers can significantly increase the redundancy and provide smaller ambiguity dilution of precision (ADOP) values. Compared with the scheme-one and scheme-two for SBRTK, the MBRTK with multiple reference receivers have a positioning accuracy improvement by about (9%, 0%, and 6%) and (9%, 16%, and 16%) in N, E, and U components, as well as the availability improvement by approximately 10%. Therefore, compared with the conventional SBRTK, the MBRTK can enhance the strength of the kinematic positioning model as well as improve the positioning accuracy and availability. Full article
Show Figures

Graphical abstract

20 pages, 3803 KiB  
Article
A Multi-GNSS Differential Phase Kinematic Post-Processing Method
by Ruijie Xi, Qusen Chen, Xiaolin Meng, Weiping Jiang, Xiangdong An and Qiyi He
Remote Sens. 2020, 12(17), 2727; https://doi.org/10.3390/rs12172727 - 24 Aug 2020
Cited by 2 | Viewed by 2791
Abstract
We propose a multiple global navigation satellite system (multi-GNSS) differential phase kinematic post-processing method, expand the current Track ability, and finely tune processing parameters to achieve the best results for research purposes. The double-difference (DD) phase formulas of GLONASS are especially formulated, and [...] Read more.
We propose a multiple global navigation satellite system (multi-GNSS) differential phase kinematic post-processing method, expand the current Track ability, and finely tune processing parameters to achieve the best results for research purposes. The double-difference (DD) phase formulas of GLONASS are especially formulated, and the method of arc ambiguity resolution (AR) in post-processing is developed. To verify the feasibility of this AR method, a group of static baselines with ranges from 8 m to 100 km and two kinematic tests were used. The results imply that 100% of ambiguities in short baselines and over 90% in long baselines can be fixed with the proposed ambiguity resolution method. Better than a 10-mm positioning precision was achieved for all the horizonal components of those selected baselines and the vertical components of the short baselines, and the vertical precision for long baselines is around 20 to 40 mm. In the posterior residual analysis, the means of the residual root-mean-squares (RMSs) of different systems are better than 10 mm for short baselines and at the range of 10–20 mm for baselines longer than 80 km. Mostly, the residuals satisfy the standard normal distribution. It proves that the new method could be applied in bridge displacement and vibration monitoring and for UAV photogrammetry. Full article
Show Figures

Figure 1

18 pages, 2517 KiB  
Article
Evaluation of BDS-3 Orbit Determination Strategies Using Ground-Tracking and Inter-Satellite Link Observation
by Yifei Lv, Tao Geng, Qile Zhao, Xin Xie, Feng Zhang and Xing Wang
Remote Sens. 2020, 12(16), 2647; https://doi.org/10.3390/rs12162647 - 17 Aug 2020
Cited by 12 | Viewed by 3066
Abstract
Dual one-way inter-satellite link (ISL) pseudoranges of BDS-3 satellites can be introduced as an additional measurement along with L-band pseudoranges and phases to improve the accuracy of precise orbit determination (POD). In the existing research, although the clock-free or geometry-free ISL observables are [...] Read more.
Dual one-way inter-satellite link (ISL) pseudoranges of BDS-3 satellites can be introduced as an additional measurement along with L-band pseudoranges and phases to improve the accuracy of precise orbit determination (POD). In the existing research, although the clock-free or geometry-free ISL observables are derived from the raw two one-way pseudoranges, only the clock-free observables are adopted for the ISL joint POD (Joint 1 POD) without considering the geometric-free observables. An improved joint (Joint 2 POD) strategy making full use of the clock-free and geometry-free observables is applied in this contribution. The orbits of ground-only POD, ISL-only POD, Joint 1 POD, and Joint 2 POD are comprehensively compared by the orbit overlapping differences, the Satellite Laser Ranging (SLR) residuals, and the characteristics of the satellite clock offsets estimated simultaneously. The comparisons prove that the performance of the Joint 2 POD strategy is better than that of the other three POD strategies regardless of the types of satellites. Moreover, this paper discusses ISL’s contribution to the station selection strategy in terms of the number and distribution. The experimental results show that, when there are more than 20 stations, each additional 10 stations contributes to a maximum of 7.5%, 3.9%, and 2.8% improvement on MEO, IGSO, and GEO satellites 3D accuracy, respectively. When the number of stations reaches 50, the precise orbits achieve similar accuracy to the results using 80 stations. In addition, after adding ISL data, the orbits estimated using 10 regional stations and 10 global stations are greatly improved, and the accuracy between them is only 0.9 cm in 3D errors. Full article
Show Figures

Graphical abstract

27 pages, 11453 KiB  
Article
Single-Frequency GPS/BDS RTK and INS Ambiguity Resolution and Positioning Performance Enhanced with Positional Polynomial Fitting Constraint
by Hang Yu, Houzeng Han, Jian Wang, Haiping Xiao and Chuanyang Wang
Remote Sens. 2020, 12(15), 2374; https://doi.org/10.3390/rs12152374 - 23 Jul 2020
Cited by 10 | Viewed by 2690
Abstract
Single-frequency GPS/BeiDou navigation satellite system (BDS) real-time kinematic (RTK) and inertial navigation system (INS) integration has wide range of application prospects due to the global deployment of GPS along with the rapid development of BDS. The instantaneous single-frequency ambiguity resolution will be significantly [...] Read more.
Single-frequency GPS/BeiDou navigation satellite system (BDS) real-time kinematic (RTK) and inertial navigation system (INS) integration has wide range of application prospects due to the global deployment of GPS along with the rapid development of BDS. The instantaneous single-frequency ambiguity resolution will be significantly improved by the combined GPS/BDS and INS configuration. Owing to road conditions and an inertial measurement unit (IMU) on the carrier not being rigidly mounted, biased measurements in the IMU will occasionally emerge, leading to biased INS predictions. However, bias or inaccuracy from INS-predicted position can prevent the successful resolution of the whole set of ambiguities. This paper proposes the use of a positional polynomial fitting (PPF) constraint to compensate for the epochs with abnormal INS predictions. The aid from PPF is provided at two levels, i.e., at the ambiguity resolution (AR) level and at the solution level. In order to further increase the availability of ambiguity-fixed positioning solutions, a partial ambiguity resolution (PAR) strategy is introduced when full ambiguity resolution (FAR) fails. A field vehicular experiment was performed to show the validity of the proposed PPF-aided method by comparing different schemes regarding different INS-aided satellite system configurations, different AR strategies, and whether the PPF-aided method was adopted. The results show that the most attractive scheme is to combine the PAR with the PPF-aided dual-constellation and INS integration. Full article
Show Figures

Graphical abstract

18 pages, 2995 KiB  
Article
Triple-Frequency GPS Un-Differenced and Uncombined PPP Ambiguity Resolution Using Observable-Specific Satellite Signal Biases
by Gen Liu, Fei Guo, Jian Wang, Mingyi Du and Lizhong Qu
Remote Sens. 2020, 12(14), 2310; https://doi.org/10.3390/rs12142310 - 18 Jul 2020
Cited by 18 | Viewed by 2943
Abstract
The new generations of global navigation satellite system (GNSS) space vehicles can transmit three or more frequency signals. Multi-frequency observations bring a significant improvement to precise point positioning ambiguity resolution (PPP AR). However, the multi-frequency satellite code and phase biases need to be [...] Read more.
The new generations of global navigation satellite system (GNSS) space vehicles can transmit three or more frequency signals. Multi-frequency observations bring a significant improvement to precise point positioning ambiguity resolution (PPP AR). However, the multi-frequency satellite code and phase biases need to be properly handled before conducting PPP AR. The traditional satellite bias correction methods, for example, the commonly used differential code biases (DCB), are limited to the dual-frequency ionosphere-free (IF) case and become more and more difficult to extend to multi-GNSS and multi-frequency cases. In this contribution, we propose the observable-specific signal bias (OSB) correction method for un-differenced and uncombined (UDUC) PPP AR. The OSB correction method, which includes observable-specific satellite code and phase bias correction, can directly apply kinds of OSBs to GNSS original observation data, thus, it is more appropriate for multi-GNSS and multi-frequency cases. In order to verify the performance of multi-frequency UDUC-PPP AR based on the OSB correction method, triple-frequency GPS observation data provided by 142 Multi-GNSS Experiment (MGEX) stations were used to estimate observable-specific satellite phase biases at the PPP service end and some of them were also used to conduct AR at the PPP user end. The experiment results showed: the averaged time-to-first-fix (TTFF) of triple-frequency GPS kinematic UDUC-PPP AR with observable-specific satellite code bias (SCB) corrections could reach about 22 min with about 29% improvement, compared with that without observable-specific SCB corrections; TTFF of triple-frequency static UDUC-PPP AR with observable-specific phase-specific time-variant inter-frequency clock bias (IFCB) corrections took about 15.6 min with about 64.3% improvement, compared with that without observable-specific IFCB corrections. Full article
Show Figures

Figure 1

26 pages, 20028 KiB  
Article
Analysis and Assessment of BDS-2 and BDS-3 Broadcast Ephemeris: Accuracy, the Datum of Broadcast Clocks and Its Impact on Single Point Positioning
by Guoqiang Jiao, Shuli Song, Yangyang Liu, Ke Su, Na Cheng and Shengli Wang
Remote Sens. 2020, 12(13), 2081; https://doi.org/10.3390/rs12132081 - 29 Jun 2020
Cited by 20 | Viewed by 3062
Abstract
For the global ordinary users, the broadcast ephemeris plays important roles in positioning, navigation and timing (PNT) services. With the construction of a new generation of the BeiDou navigation satellite system (BDS), the development of BDS has entered the era of globalization. It [...] Read more.
For the global ordinary users, the broadcast ephemeris plays important roles in positioning, navigation and timing (PNT) services. With the construction of a new generation of the BeiDou navigation satellite system (BDS), the development of BDS has entered the era of globalization. It is meaningful for global users to analyze and assess the BDS-2 and BDS-3 broadcast ephemeris. Therefore, the satellite orbits and clock offsets calculated by broadcast ephemeris are compared with the precise orbit and clock offset products provided by three analysis centers (i.e., Helmholtz Centre Potsdam German Research Center for Geosciences (GFZ), Wuhan University (WHU) and Shanghai Astronomical Observatory (SHA)), and the corresponding signal-in-space range error (SISRE) and the orbit-only SISRE are analyzed to assess the accuracy of BDS broadcast ephemeris. Due to the upgrade of BDS-3 satellite hardware technology and inter-satellite links payload and the development of satellite orbit determination algorithm, the accuracy of broadcast orbit and clock offsets has been greatly improved. The root mean square (RMS) of BDS-3 broadcast orbit errors is improved by 86.30%, 89.47% and 76.86%, and the standard deviation (STD) is improved by 79.41%, 77.00% and 76.78% compared with BDS-2 in the radial, along-track and cross-track directions. The corresponding RMS and STD of all BDS-3 satellite clock offsets are improved by 40.34% and 52.49% than that of BDS-2, respectively. Meanwhile, the mean RMS and STD are 1.78 m and 0.40 m for BDS-2 SISRE, 1.72 m and 0.34 m for BDS-2 orbit-only SISRE, 0.50 m and 0.14 m for BDS-3 SISRE, and 0.17 m and 0.04 m for BDS-3 orbit-only SISRE. It is noteworthy that the average broadcast-minus-precise (BMP) clock values of BDS-2 and BDS-3 are inconsistent, which can indirectly prove that the datum of broadcast clock offsets for BDS-2 and BDS-3 are inconsistent. The inconsistency of the datum of satellite clock offsets and receiver hardware delay bias between BDS-2 and BDS-3 will result in the inter-system bias (ISB) on the receiver segment. For JAVAD TRE_3 receivers, the ISB is relatively small and thus can be ignored. However, for the TRIMBLE ALLOY, SEPT POLARX5, CETC-54-GMR-4016, CETC-54-GMR-4011, GNSS-GGR and UB4B0-13478 receivers, estimating ISB can improve the positioning accuracy of single point positioning (SPP) by 20.15%, 19.81% and 12.76% in north, east and up directions, respectively. Full article
Show Figures

Graphical abstract

17 pages, 7066 KiB  
Article
Centimeter-Level Precise Orbit Determination for the Luojia-1A Satellite Using BeiDou Observations
by Lei Wang, Beizhen Xu, Wenju Fu, Ruizhi Chen, Tao Li, Yi Han and Haitao Zhou
Remote Sens. 2020, 12(12), 2063; https://doi.org/10.3390/rs12122063 - 26 Jun 2020
Cited by 20 | Viewed by 3013
Abstract
Luojia-1A is a scientific experimental satellite operated by Wuhan University, which is the first low earth orbiter (LEO) navigation signal augmentation experimental satellite. The precise orbit is the prerequisite of augmenting existing Global Navigation Satellite System (GNSS) performance and improves users’ positioning accuracy. [...] Read more.
Luojia-1A is a scientific experimental satellite operated by Wuhan University, which is the first low earth orbiter (LEO) navigation signal augmentation experimental satellite. The precise orbit is the prerequisite of augmenting existing Global Navigation Satellite System (GNSS) performance and improves users’ positioning accuracy. Meanwhile, LEO precise orbit determination (POD) with BeiDou-2 observations is particularly challenging since it only provides regional service. In this study, we investigated the method of precise orbit determination (POD) for Luojia-1A satellite with the onboard BeiDou observation to establish the high-precision spatial datum for the LEO navigation augmentation (LEO-NA) system. The multipath characteristic of the BeiDou System (BDS) observations from Luojia-1A satellite is analyzed, and the elevation-dependent BeiDou code bias is estimated with the LEO onboard observations. A weight reduction strategy is adopted to mitigate the negative effect of poor BeiDou-2 geostationary earth orbit (GEO) satellites orbit quality, and the Luojia-1A orbit precision can be improved from 6.3 cm to 2.3 cm with the GEO weighting strategy. The precision improvement of the radial direction, along-track, and out-of-plane directions are 53.47%, 47.29%, and 76.2%, respectively. Besides, tuning the pseudo-stochastic parameters is also beneficial for improving orbit precision. The experiment results indicate that about 2 cm overlapping orbit accuracy are achievable with BeiDou observations from Luojia-1A satellite if proper data processing strategies are applied. Full article
Show Figures

Figure 1

18 pages, 6056 KiB  
Article
Real-Time Estimation of Low Earth Orbit (LEO) Satellite Clock Based on Ground Tracking Stations
by Zhixin Yang, Hui Liu, Chuang Qian, Bao Shu, Linjie Zhang, Xintong Xu, Yi Zhang and Yidong Lou
Remote Sens. 2020, 12(12), 2050; https://doi.org/10.3390/rs12122050 - 25 Jun 2020
Cited by 16 | Viewed by 6422
Abstract
The rapid movement of low Earth orbit (LEO) satellite can improve geometric diversity, which contributes to the rapid convergence of Global Navigation Satellite System (GNSS) precise point positioning (PPP). However, the LEO onboard receiver clock cannot be used directly by PPP users as [...] Read more.
The rapid movement of low Earth orbit (LEO) satellite can improve geometric diversity, which contributes to the rapid convergence of Global Navigation Satellite System (GNSS) precise point positioning (PPP). However, the LEO onboard receiver clock cannot be used directly by PPP users as the LEO satellite clock because the LEO onboard receiver clock and LEO satellite clock absorb different code delays when receiving and transmitting signals. In this study, a real-time estimation approach for the LEO satellite clock based on ground tracking stations was proposed for the first time. The feasibility for the rapid convergence of the LEO satellite clock was analyzed using the satellite time dilution of precision (TDOP) that one satellite is relative to multiple ground tracking stations. The LEO constellation of 168 satellites and observations for 15 ground tracking stations were simulated to verify the proposed method. The experiment results showed that the average convergence time was 31.21 min for the Global Positioning System (GPS) satellite clock, whereas the value for the LEO satellite clock was only 2.86 min. The average root mean square (RMS) and standard deviation (STD) values after convergence were 0.71 and 0.39 ns for the LEO satellite clock, whereas the values were 0.31 and 0.13 ns for the GPS satellite clock. The average weekly satellite TDOP for the LEO satellite was much smaller than that for the GPS satellite. The average satellite TDOPs for all LEO and GPS satellites were 19.13 and 1294.70, respectively. However, the average delta TDOPs caused by satellite motion for all LEO and GPS satellites were both 0.10. Therefore, the rapid convergence of the LEO satellite clock resulted from the better geometric distribution of the LEO satellite relative to ground stations. Despite errors and the convergence time of the LEO satellite clock, the convergence time and positioning accuracy for LEO-augmented GPS and BeiDou Navigation Satellite System (BDS) PPP with the real-time estimated LEO satellite clock can still reach 10.63 min, 1.94 cm, 1.44 cm, and 4.18 cm in the east, north, and up components, respectively. The improvements caused by LEO satellite for GPS/BDS PPP were 59%, 30%, 31%, and 33%, respectively. Full article
Show Figures

Figure 1

15 pages, 3335 KiB  
Article
Position-Domain Non-Gaussian Error Overbounding for ARAIM
by Lin Zhao, Jie Zhang, Liang Li, Fuxin Yang and Xiaosong Liu
Remote Sens. 2020, 12(12), 1992; https://doi.org/10.3390/rs12121992 - 21 Jun 2020
Cited by 16 | Viewed by 2673
Abstract
The non-Gaussian observation error is a threat for advanced receiver autonomous integrity monitoring (ARAIM), because the protection level of ARAIM based on the Gaussian distribution assumption is insufficient to envelope the positioning error (PE), and the probability of hazardously misleading information (PHMI) is [...] Read more.
The non-Gaussian observation error is a threat for advanced receiver autonomous integrity monitoring (ARAIM), because the protection level of ARAIM based on the Gaussian distribution assumption is insufficient to envelope the positioning error (PE), and the probability of hazardously misleading information (PHMI) is difficult to be satisfied. The traditional non-Gaussian overbounding method is limited by the correlation among observation errors, and the deteriorated continuity risk resulting from the conservative inflation factor for overbounding, simultaneously. We propose an enhanced ARAIM method by position-domain non-Gaussian error overbounding. Furthermore, the upper bound of the inflation factor is imposed to release the conservativeness of overbounding. The simulation and the real-world data are utilized to test the proposed method. The simulation experiment has shown that the global worldwide availability level can be increased to 99.99% by using the proposed method. The real-word data experiment reveals that the proposed method can simultaneously satisfy the integrity risk and continuity risk with the boundary of the inflation factor. Full article
Show Figures

Graphical abstract

21 pages, 13075 KiB  
Article
GPS/BDS-2/Galileo Precise Point Positioning Ambiguity Resolution Based on the Uncombined Model
by Jin Wang, Guanwen Huang, Qin Zhang, Yang Gao, Yuting Gao and Yiran Luo
Remote Sens. 2020, 12(11), 1853; https://doi.org/10.3390/rs12111853 - 08 Jun 2020
Cited by 11 | Viewed by 3143
Abstract
In this study, an uncombined precise point positioning (PPP) model was established and was used for estimating fractional cycle bias (FCB) products and for achieving ambiguity resolution (AR), using GPS, BDS-2, and Galileo raw observations. The uncombined PPP model is flexible and efficient [...] Read more.
In this study, an uncombined precise point positioning (PPP) model was established and was used for estimating fractional cycle bias (FCB) products and for achieving ambiguity resolution (AR), using GPS, BDS-2, and Galileo raw observations. The uncombined PPP model is flexible and efficient for positioning services and generating FCB. The FCBs for GPS, BDS-2, and Galileo were estimated using the uncombined PPP model with observations from the Multi-GNSS Experiment (MGEX) stations. The root mean squares (RMSs) of the float ambiguity a posteriori residuals associated with all of the three GNSS constellations, i.e., GPS, BDS-2, and Galileo, are less than 0.1 cycles for both narrow-lane (NL) and wide-lane (WL) combinations. The standard deviation (STD) of the WL combination FCB series is 0.015, 0.013, and 0.006 cycles for GPS, BDS-2, and Galileo, respectively, and the counterpart for the NL combination FCB series is 0.030 and 0.0184 cycles for GPS and Galileo, respectively. For the BDS-2 NL combination FCB series, the STD of the inclined geosynchronous orbit (IGSO) satellites is 0.0156 cycles, while the value for the medium Earth orbit (MEO) satellites is 0.073 cycles. The AR solutions produced by the uncombined multi-GNSS PPP model were evaluated from the positioning biases and the success fixing rate of ambiguity. The experimental results demonstrate that the growth of the amount of available satellites significantly improves the PPP performance. The three-dimensional (3D) positioning accuracies associated with the PPP ambiguity-fixed solutions for the respective only-GPS, GPS/BDS-2, GPS/Galileo, and GPS/BDS-2/Galileo models are 1.34, 1.19, 1.21, and 1.14 cm, respectively, and more than a 30% improvement is achieved when compared to the results related to the ambiguity-float solutions. Additionally, the convergence time based on the GPS/BDS-2/Galileo observations is only 7.5 min for the ambiguity-fixed solutions, and the results exhibit a 53% improvement in comparison to the ambiguity-float solutions. The values of convergence time based on the only-GPS observations are estimated as 22 and 10.5 min for the ambiguity-float and ambiguity-fixed solutions, respectively. Lastly, the success fixing rate of ambiguity is also dramatically raised for the multi-GNSS PPP AR. For example, the percentage is approximately 99% for the GPS/BDS-2/Galileo solution over a 10 min processing period. In addition, the inter-system bias (ISB) between GPS, BDS-2, and Galileo, which is carefully considered in the uncombined multi-GNSS PPP method, is modeled as a white noise process. The differences of the ISB series between BDS-2 and Galileo indicate that the clock datum bias of the satellite clock offset estimation accounts for the variation of the ISB series. Full article
Show Figures

Graphical abstract

21 pages, 9898 KiB  
Article
Optimal Walker Constellation Design of LEO-Based Global Navigation and Augmentation System
by Meiqian Guan, Tianhe Xu, Fan Gao, Wenfeng Nie and Honglei Yang
Remote Sens. 2020, 12(11), 1845; https://doi.org/10.3390/rs12111845 - 06 Jun 2020
Cited by 53 | Viewed by 10968
Abstract
Low Earth orbit (LEO) satellites located at altitudes of 500 km~1500 km can carry much stronger signals and move faster than medium Earth orbit (MEO) satellites at about a 20,000 km altitude. Taking advantage of these features, LEO satellites promise to make contributions [...] Read more.
Low Earth orbit (LEO) satellites located at altitudes of 500 km~1500 km can carry much stronger signals and move faster than medium Earth orbit (MEO) satellites at about a 20,000 km altitude. Taking advantage of these features, LEO satellites promise to make contributions to navigation and positioning where global navigation satellite system (GNSS) signals are blocked as well as the rapid convergence of precise point positioning (PPP). In this paper, LEO-based optimal global navigation and augmentation constellations are designed by a non-dominated sorting genetic algorithm III (NSGA-III) and genetic algorithm (GA), respectively. Additionally, a LEO augmentation constellation with GNSS satellites included is designed using the NSGA-III. For global navigation constellations, the results demonstrate that the optimal constellations with a near-polar Walker configuration need 264, 240, 210, 210, 200, 190 and 180 satellites with altitudes of 900, 1000, 1100, 1200, 1300, 1400 and 1500 km, respectively. For global augmentation constellations at an altitude of 900 km, for instance, 72, 91, and 108 satellites are required in order to achieve a global average of four, five and six visible satellites for an elevation angle above 7 degrees with one Walker constellation. To achieve a more even coverage, a hybrid constellation with two Walker constellations is also presented. On this basis, the GDOPs (geometric dilution of precision) of the GNSS with and without an LEO constellation are compared. In addition, we prove that the computation efficiency of the constellation design can be considerably improved by using master–slave parallel computing. Full article
Show Figures

Graphical abstract

20 pages, 10488 KiB  
Article
Refining GPS/GLONASS Satellite Clock Offset Estimation in the Presence of Pseudo-Range Inter-Channel Biases
by Qingsong Ai, Yunbin Yuan, Baocheng Zhang, Tianhe Xu and Yongchang Chen
Remote Sens. 2020, 12(11), 1821; https://doi.org/10.3390/rs12111821 - 04 Jun 2020
Cited by 5 | Viewed by 2488
Abstract
Because of the frequency division multiple access (FDMA) technique, Russian global navigation satellite system (GLONASS) observations suffer from pseudo-range inter-channel biases (ICBs), which adversely affect satellite clock offset estimation. In this study, the GLONASS pseudo-range ICB is treated in four different ways: as [...] Read more.
Because of the frequency division multiple access (FDMA) technique, Russian global navigation satellite system (GLONASS) observations suffer from pseudo-range inter-channel biases (ICBs), which adversely affect satellite clock offset estimation. In this study, the GLONASS pseudo-range ICB is treated in four different ways: as ignorable parameters (ICB-NONE), polynomial functions of frequency (ICB-FPOL), frequency-specific parameters (ICB-RF), and satellite-specific parameters (ICB-RS). Data from 110 international global navigation satellite system (GNSS) service stations were chosen to obtain the ICBs and were used for satellite clock offset estimation. The ICBs from the different schemes varied from −20 ns to 80 ns. The ICB-RS model yielded the best results, improving the clock offset accuracy from 300 ps to about 100 ps; it could improve the GLONASS precise point positioning (PPP) accuracy and the converging time by approximately 50% and 30%, respectively. Along similar lines, we introduced the GPS-ICB parameters in the process of GPS satellite clock estimation and GPS/GLONASS PPP, as ICBs may exist for GPS because of different chip shape distortions among GPS satellites. This possibility was found to be the case. Further, the GPS-ICB magnitude ranged from −2 ns to 2 ns, and the estimated satellite clock offsets could improve the accuracy of the GPS and combined GPS/GLONASS PPP by 10%; it also accelerated the converging time by more than 15% thanks to the GPS-ICB calibration. Full article
Show Figures

Graphical abstract

20 pages, 3603 KiB  
Article
A Novel Dynamical Filter Based on Multi-Epochs Least-Squares to Integrate the Carrier Phase and Pseudorange Observation for GNSS Measurement
by Fangchao Li, Jingxiang Gao, Panos Psimoulis, Xiaolin Meng and Fuyang Ke
Remote Sens. 2020, 12(11), 1762; https://doi.org/10.3390/rs12111762 - 29 May 2020
Cited by 4 | Viewed by 2052
Abstract
The high noise of pseudorange and the ambiguity of carrier phase observation restrain the GNSS (Global Navigation Satellite System) application in military, industrial, and agricultural, to name a few. Thus, it is crucial for GNSS technology to integrate the pseudorange and carrier phase [...] Read more.
The high noise of pseudorange and the ambiguity of carrier phase observation restrain the GNSS (Global Navigation Satellite System) application in military, industrial, and agricultural, to name a few. Thus, it is crucial for GNSS technology to integrate the pseudorange and carrier phase observations. However, the traditional method proposed by Hatch has obtained only a low convergence speed and precision. For higher convergence speed and precision of the smoothed pseudorange, aiming to improve positioning accuracy and expand the application of GNSS, we introduced a new method named MELS (Multi-Epochs Least-Squares) that considered the cross-correlation of the estimating parameters inspired by DELS (Double-Epochs Least-Square). In this study, the ionospheric delay was compensated, and so its impact was limited to the performance of the filters, and then exploited the various filters to integrate carrier phase observation and pseudorange. We compared the various types of Hatch’s filter and LS (Least-Square) methods using simulation datasets, which confirmed that the types of LS method provided a smaller residual error and a faster convergence speed than Hatch’s method under various precisions of raw pseudorange. The experimental results from the measured GNSS data showed that LS methods provided better performance than Hatch’s methods at E and U directions and a lower accuracy at N direction. Nevertheless, the types of LS method and Hatch’s methods improved about 12% and 9–10% at the 3D direction, respectively, which illustrated the accumulating improvement at the enhanced directions was more than the decreased direction, proving that the types of LS method resulted to better performance than the Hatch’s filters. Additionally, the curve of residual and precision based on various LS methods illustrated that the MELS only provided a millimeter accuracy difference compared with DELS, which was proved by the simulated and measured GNSS datasets. Full article
Show Figures

Figure 1

19 pages, 5257 KiB  
Article
A Refined Regional Model for Estimating Pressure, Temperature, and Water Vapor Pressure for Geodetic Applications in China
by Junyu Li, Bao Zhang, Yibin Yao, Lilong Liu, Zhangyu Sun and Xiao Yan
Remote Sens. 2020, 12(11), 1713; https://doi.org/10.3390/rs12111713 - 27 May 2020
Cited by 20 | Viewed by 2840
Abstract
Pressure, temperature, and water vapor pressure are basic meteorological parameters that are frequently required in Global Navigation Satellite System (GNSS) positioning/navigation and GNSS meteorology. Although models like Global Pressure and Temperature (GPT) and Global Pressure and Temperature 2 wet (GPT2w) were developed for [...] Read more.
Pressure, temperature, and water vapor pressure are basic meteorological parameters that are frequently required in Global Navigation Satellite System (GNSS) positioning/navigation and GNSS meteorology. Although models like Global Pressure and Temperature (GPT) and Global Pressure and Temperature 2 wet (GPT2w) were developed for these demands, their spatial resolutions are lower than 0.75° and temporal resolutions are below 6 h, which limits their achievement. The publication of European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 hourly 0.25° × 0.25° data offers the opportunity to lift this limitation. In this work, the ERA5 surface data are used to evaluate the temporal variabilities of pressure, temperature, and water vapor pressure in the area of China. We characterize their diurnal variations using hourly data and take into account their geographical variations by 0.25° × 0.25° grids. In addition, we improve the height corrections for the three parameters employing the ERA5 pressure level data. Through these efforts, we build a new regional model named Chinese pressure, temperature, and water vapor pressure (CPTw), which has the advanced resolution of 0.25° × 0.25° and temporal resolution of 1 h. We evaluate the performance using ERA5 data and radiosonde data compared with the approved GPT2w model. Results demonstrate that the accuracies of the new model are superior to the GPT2w model in all meteorological parameters. The validation with the radiosonde data shows RMS for pressure, temperature, and water vapor pressure of the CPTw model is reduced by 14.1%, 25.8%, and 4.8%, compared with that of the GPT2w model. The new model catches especially well the diurnal changes in pressure, temperature, and water vapor pressure, which have never been realized before. Since the CPTw model can provide accurate empirical pressure, temperature, and water vapor pressure for any time and location in China and its surrounding areas, it can not only meet the need of empirical meteorological parameters in real-time geodetic applications like GNSS positioning and navigation, but it is also useful for GNSS meteorology. Full article
Show Figures

Figure 1

15 pages, 2706 KiB  
Article
RAIM-NET: A Deep Neural Network for Receiver Autonomous Integrity Monitoring
by Yuan Sun
Remote Sens. 2020, 12(9), 1503; https://doi.org/10.3390/rs12091503 - 08 May 2020
Cited by 20 | Viewed by 3814
Abstract
With the continuous popularization of Global Navigation Satellite System (GNSS) in various applications, the performance requirement for integrity is also increasing, especially in the field of safety-of-life. Although the existing Receiver Autonomous Integrity Monitoring (RAIM) algorithm has been embedded in the GNSS receiver [...] Read more.
With the continuous popularization of Global Navigation Satellite System (GNSS) in various applications, the performance requirement for integrity is also increasing, especially in the field of safety-of-life. Although the existing Receiver Autonomous Integrity Monitoring (RAIM) algorithm has been embedded in the GNSS receiver as a standard method, it might still suffer from small fault detection and delay alarm problem for time series fault models. In an effort to solve this problem, a Deep Neural Network (DNN) for RAIM, named RAIM-NET, is investigated in this paper. The main idea of RAIM-NET is to propose a combination of feature vector extraction and DNN model to improve the performance of integrity monitoring, with a problem specifically designed for loss function, obtaining the model parameters. Inspired by the powerful advantages of Recurrent Neural Network (RNN) in time series data processing, a multilayer RNN is applied to build the DNN model structure and improve the detection rate for small faults and reduce the alarm delay for the time series fault event. Finally, real GNSS data experiments are designed to verify the performance of RAIM-NET in fault detection and time delay for integrity monitoring. Full article
Show Figures

Graphical abstract

17 pages, 5389 KiB  
Article
On the Choice of the Third-Frequency Galileo Signals in Accelerating PPP Ambiguity Resolution in Case of Receiver Antenna Phase Center Errors
by Shaoming Xin, Jianghui Geng, Jiang Guo and Xiaolin Meng
Remote Sens. 2020, 12(8), 1315; https://doi.org/10.3390/rs12081315 - 22 Apr 2020
Cited by 17 | Viewed by 2363
Abstract
Rapid precise point positioning ambiguity resolution (PPP-AR) is of great importance to improving precise positioning efficiency. There is an expectation that Galileo multi-frequency (three or more frequencies) data processing will offer a promising way to accelerate PPP-AR. However, the performance of different combination [...] Read more.
Rapid precise point positioning ambiguity resolution (PPP-AR) is of great importance to improving precise positioning efficiency. There is an expectation that Galileo multi-frequency (three or more frequencies) data processing will offer a promising way to accelerate PPP-AR. However, the performance of different combination observables out of raw Galileo multi-frequency data is still unclear, and the adverse impacts of missing receiver antenna phase center corrections have not been quantified in detail. We therefore studied uncombined Galileo PPP-AR by contrasting three typical triple-frequency combinations, which are E1/E5a/E5b, E1/E5a/E6, and E1/E5/E6 signals, using 30 days of data from 15 stations across Australia. We carried out triple-frequency PPP-AR by separately applying the official GPS receiver antenna phase centers, as currently employed in most relevant literatures, as well as the pilot Galileo receiver antenna phase centers preliminarily measured by the International GNSS Service. We found that, compared to dual-frequency (E1/E5a) PPP-AR, triple-frequency PPP-AR based on E1/E5a/E5b signals shortened the convergence time by only 7.6%, while those based on E1/E5a/E6 and E1/E5/E6 increased unexpectedly the convergence time by 17.6% and 12.7%, respectively, if the GPS receiver antenna corrections were presumed for Galileo signals. However, after using the pilot Galileo phase center corrections, triple-frequency PPP-AR based on E1/E5a/E5b, E1/E5a/E6, and E1/E5/E6 signals could speed up the convergence on average by about 16.2%, 30.3%, and 17.7%, respectively. Therefore, we demonstrate the critical impact of correct Galileo receiver antenna phase centers on multi-frequency PPP-AR convergences. Moreover, the triple-frequency signal combination E1/E5a/E6 is advantageous over others in achieving rapid triple-frequency Galileo PPP-AR. Full article
Show Figures

Graphical abstract

16 pages, 5068 KiB  
Article
Assessment and Comparison of Broadcast Ionospheric Models: NTCM-BC, BDGIM, and Klobuchar
by Chao Yang, Jing Guo, Tao Geng, Qile Zhao, Kecai Jiang, Xin Xie and Yifei Lv
Remote Sens. 2020, 12(7), 1215; https://doi.org/10.3390/rs12071215 - 09 Apr 2020
Cited by 15 | Viewed by 3994
Abstract
For single-frequency Global Navigation Satellite Systems (GNSSs) users, ionospheric delay is the main error source affecting the accuracy of positioning. Applying a broadcast ionospheric correction model to mitigate the ionospheric delay is essential for meter-to-decimeter-level accuracy positioning. To provide support for real-time single-frequency [...] Read more.
For single-frequency Global Navigation Satellite Systems (GNSSs) users, ionospheric delay is the main error source affecting the accuracy of positioning. Applying a broadcast ionospheric correction model to mitigate the ionospheric delay is essential for meter-to-decimeter-level accuracy positioning. To provide support for real-time single-frequency operations, particularly in the China area, we assessed the performance of three broadcast ionospheric correction models, namely, the Neustrelitz total electron content (TEC) broadcast model (NTCM-BC), the BeiDou global broadcast ionospheric delay correction model (BDGIM), and the Klobuchar model. In this study, the broadcast coefficients of Klobuchar and BDGIM are obtained from the navigation data files directly. Two sets of coefficients of NTCM-BC for China and global areas are estimated. The slant total electron contents (STEC) data from more than 80 validation stations and the final vertical TEC (VTEC) data of the Center for Orbit Determination in Europe (CODE) are used as independent benchmarks for comparison. Compared to GPS STEC during the period of Day of Year (DOY) 101~199, 2019, the ionospheric correction ratio of NTCM-BC, BDGIM, and Klobuchar are 79.4%, 64.9%, and 57.7% in China, respectively. For the global area, the root-mean-square (RMS) errors of these three models are 3.67 TECU (1 TECU = 1016 electrons/m2), 5.48 TECU, and 8.92 TECU, respectively. Compared to CODE VTEC in the same period, NTCM-BC, BDGIM, and Klobuchar can correct 72.6%, 69.8%, and 61.7% of ionospheric delay, respectively. Hence, NTCM-BC is recommended for use as the broadcast ionospheric model for the new-generation BeiDou satellite navigation system (BDS) and its satellite-based augmentation system. Full article
Show Figures

Graphical abstract

26 pages, 8673 KiB  
Article
Anomaly Detection for Urban Vehicle GNSS Observation with a Hybrid Machine Learning System
by Yan Xia, Shuguo Pan, Xiaolin Meng, Wang Gao, Fei Ye, Qing Zhao and Xingwang Zhao
Remote Sens. 2020, 12(6), 971; https://doi.org/10.3390/rs12060971 - 17 Mar 2020
Cited by 15 | Viewed by 4527
Abstract
In urban areas, the accuracy and reliability of global navigation satellite systems (GNSS) vehicle positioning decline due to substantial non-line-of-sight (NLOS) signals and multipath effects. Recently, positioning enhancement approaches with supervised GNSS signal type classification based on 3D building model-aided labelling have received [...] Read more.
In urban areas, the accuracy and reliability of global navigation satellite systems (GNSS) vehicle positioning decline due to substantial non-line-of-sight (NLOS) signals and multipath effects. Recently, positioning enhancement approaches with supervised GNSS signal type classification based on 3D building model-aided labelling have received widespread attention. Despite the reduced computing costs and improved real-time performance, the strict requirements of 3D building models on accuracy and timeliness limit the popularization of the technology to some extent. Meanwhile, the diversity of anomalous observation sources is beyond the reach of NLOS/multipath detection methods. This paper attempts to construct an alternative framework for quality identification of GNSS observations combining clustering-based anomaly detection and supervised classification, in which the hierarchical density-based spatial clustering of applications with noise (HDBSCAN) algorithm is used to label the offline dataset as normal and anomalous observations without the aid of 3D building models, and the supervised classifier in the online system learns the classification rule for real-time anomaly detection. The experimental results based on the measured vehicle GPS/BeiDou data show that after excluding anomalous observations the single point positioning accuracy of the offline dataset is improved by 87.0%, 45.9%, and 69.6% in the east, north, and up directions, respectively, and the positioning accuracy of two online datasets is improved by 48.4%/45.7%, 39.6%/63.3%, and 49.6%/49.1% in the three directions. Through a large number of comparative experiments and discussion on key issues, it is certified that the proposed method is highly feasible and has great potential in the practical application of urban GNSS vehicle positioning. Full article
Show Figures

Graphical abstract

18 pages, 4669 KiB  
Article
Detecting and Repairing Inter-system Bias Jumps with Satellite Clock Preprocessing
by Nan Jiang, Tianhe Xu, Yan Xu, Guochang Xu and Harald Schuh
Remote Sens. 2020, 12(5), 850; https://doi.org/10.3390/rs12050850 - 06 Mar 2020
Cited by 2 | Viewed by 2432
Abstract
The key to performing successful multi-GNSS (Global Navigation Satellite System) precise point positioning is calibrating ISB (inter-system bias) in different systems. We can use the method of modeling to eliminate the ISB error. However, the ISB series are commonly discontinuous, as they contain [...] Read more.
The key to performing successful multi-GNSS (Global Navigation Satellite System) precise point positioning is calibrating ISB (inter-system bias) in different systems. We can use the method of modeling to eliminate the ISB error. However, the ISB series are commonly discontinuous, as they contain jumps and outliers caused by day boundaries, gaps, or outliers in the precise clock products, which will break the ability of modeling. Thus, before modeling the ISB, we must remove outliers and repair jumps to improve the ISB continuity and achieve a continuous and smooth ISB series. Preprocessing on precise clock products is focused on in this study for the detection of ISB jumps and their repair. From the results, a positive correlation is revealed within the residuals of satellite clock offset and ISB differences between adjacent days. This finding implies ISB continuity can be improved through the preprocessing of precise clock products. It is also found that the exact reason for the occurrence of ISB jumps is the presence of extrema (i.e., maximum or minimum points) in the frequency domain. From the clock data in the frequency domain, larger extrema are identified directly. Meanwhile, for the detection of smaller extrema, a robust estimation method based on the median filter was applied. Then, all smaller extrema were classified into three types. Different preprocessing methods were applied for every type. After that, a new preprocessed precise clock product was obtained. With this preprocessed satellite clock product, the ISB continuity was substantially improved, and the improvement in the ISB continuity can reach 85.1%, on the average. These results indicate that for detecting and repairing ISB jumps, the proposed preprocessing method on satellite clock products is very effective. Full article
Show Figures

Graphical abstract

22 pages, 10956 KiB  
Article
Differential Kalman Filter Design for GNSS Open Loop Tracking
by Tian Jin, Heliang Yuan, Keck-Voon Ling, Honglei Qin and Jianrong Kang
Remote Sens. 2020, 12(5), 812; https://doi.org/10.3390/rs12050812 - 03 Mar 2020
Cited by 4 | Viewed by 3093
Abstract
Global navigation satellite system (GNSS) positioning in an urban environment is in need for accurate, reliable and robust positioning. Unfortunately, conventional closed-loop tracking fails to meet the demand. The open loop tracking shows improved robustness, however, the precision is unsatisfactory. We propose a [...] Read more.
Global navigation satellite system (GNSS) positioning in an urban environment is in need for accurate, reliable and robust positioning. Unfortunately, conventional closed-loop tracking fails to meet the demand. The open loop tracking shows improved robustness, however, the precision is unsatisfactory. We propose a differential Kalman filter for open loop, of which the measurement vector contains the differential values of open loop navigation results between adjacent epochs. The differential Kalman filter makes use of the satellite geometry (i.e., spatial domain) and motion relationship (i.e., temporal domain) to filter frequency and code phase estimations of conventional open loop tracking. The improved performances of this architecture have been analyzed theoretically and demonstrated by road tests in an urban environment. The proposed architecture shows more than 50% accuracy improvement than the conventional open-loop tracking architecture. Full article
Show Figures

Graphical abstract

17 pages, 3483 KiB  
Article
BDS Satellite-Based Augmentation Service Correction Parameters and Performance Assessment
by Junping Chen, Ahao Wang, Yize Zhang, Jianhua Zhou and Chao Yu
Remote Sens. 2020, 12(5), 766; https://doi.org/10.3390/rs12050766 - 27 Feb 2020
Cited by 15 | Viewed by 2576
Abstract
BDS (Beidou Navigation Satellite System) integrates the legacy PNT (Positioning, Navigation, Timing) service and the authorized SBAS (Satellite-Based Augmentation Services) service. To support the requirement of decimeter-level positioning, four types of differential corrections are developed in the BDS SBAS, including the State Space [...] Read more.
BDS (Beidou Navigation Satellite System) integrates the legacy PNT (Positioning, Navigation, Timing) service and the authorized SBAS (Satellite-Based Augmentation Services) service. To support the requirement of decimeter-level positioning, four types of differential corrections are developed in the BDS SBAS, including the State Space Representation (SSR)-based satellite orbit/clock corrections, the Observation Space Representation (OSR)-based ionospheric grid corrections, and the partition comprehensive corrections. In this study, we summarize the features of these differential corrections, including their definition and usages. The function model of precise point positioning (PPP) for dual- and single-frequency users using the four types of BDS SBAS corrections are proposed. Datasets are collected from 34 stations over one month in 2019, and PPP is performed for all the datasets. Results show that the root mean square (RMS) of the positioning errors for static/kinematic dual-frequency (DF) PPP are of 12 cm/16 cm in horizontal and 18 cm/20 cm in vertical component, while for single-frequency (SF) PPP are of 14 cm/32 cm and 22 cm/40 cm, respectively. With regard to the convergence performance, the horizontal and vertical positioning errors of kinematic DF-PPP can converge to 0.5 m in less than 15 min and 20 min, respectively. As for the kinematic SF-PPP, it could converge to 0.8 m in horizontal and 1.0 m in vertical within 30 min, where the ionosphere-constrained PPP performs better than the UofC PPP approach, owing to the contribution of the ionospheric grid corrections. Full article
Show Figures

Graphical abstract

18 pages, 11511 KiB  
Article
A Novel GNSS Attitude Determination Method Based on Primary Baseline Switching for A Multi-Antenna Platform
by Peng Zhang, Yinzhi Zhao, Huan Lin, Jingui Zou, Xinzhe Wang and Fei Yang
Remote Sens. 2020, 12(5), 747; https://doi.org/10.3390/rs12050747 - 25 Feb 2020
Cited by 19 | Viewed by 3439
Abstract
The global navigation satellite system (GNSS)-based attitude determination system has attracted more and more attention with the advantages of having simplified algorithms, a low price and errors that do not accumulate over time. However, GNSS signals may have poor quality or lose lock [...] Read more.
The global navigation satellite system (GNSS)-based attitude determination system has attracted more and more attention with the advantages of having simplified algorithms, a low price and errors that do not accumulate over time. However, GNSS signals may have poor quality or lose lock in some epochs with the influence of signal fading and the multipath effect. When the direct attitude determination method is applied, the primary baseline may not be available (ambiguity is not fixed), leading to the inability of attitude determination. With the gradual popularization of low-cost receivers, making full use of spatial redundancy information of multiple antennas brings new ideas to the GNSS-based attitude determination method. In this paper, an attitude angle conversion algorithm, selecting an arbitrary baseline as the primary baseline, is derived. A multi-antenna attitude determination method based on primary baseline switching is proposed, which is performed on a self-designed embedded software and hardware platform. The proposed method can increase the valid epoch proportion and attitude information. In the land vehicle test, reference results output from a high-accuracy integrated navigation system were used to evaluate the accuracy and reliability. The results indicate that the proposed method is correct and feasible. The valid epoch proportion is increased by 16.2%, which can effectively improve the availability of attitude determination. The RMS of the heading, pitch and roll angles are 0.52°, 1.25° and 1.16°. Full article
Show Figures

Graphical abstract

22 pages, 7309 KiB  
Article
GNSS/INS Integration with Integrity Monitoring for UAV No-fly Zone Management
by Rui Sun, Wenyu Zhang, Jiazhu Zheng and Washington Yotto Ochieng
Remote Sens. 2020, 12(3), 524; https://doi.org/10.3390/rs12030524 - 06 Feb 2020
Cited by 24 | Viewed by 4962
Abstract
The rapidly increasing use of unmanned aerial vehicles pose a significant challenge to no-fly zone management. The vehicle state in flight should be available for the whole mission, enabling an alert to be issued to the relevant users and entities at an appropriate [...] Read more.
The rapidly increasing use of unmanned aerial vehicles pose a significant challenge to no-fly zone management. The vehicle state in flight should be available for the whole mission, enabling an alert to be issued to the relevant users and entities at an appropriate time and location before intrusion into a no-fly zone. In addition to spatial databases and other control mechanisms, the navigation system used must have the required accuracy, integrity, continuity, and availability. In this paper, the accuracy and integrity requirements, and the positioning system for no-fly zone unmanned aerial vehicle management are specified. The proposed positioning system integrates global navigation satellite systems (GNSS) and inertial navigation system (INS) in the measurement domain. An integrity monitoring layer is incorporated for fault detection and exclusion as well as real-time horizontal protection level computation functions. Experimental results show that the algorithm proposed is capable of delivering accuracy and integrity requirements for unmanned aerial vehicle (UAV) no-fly zone management. Full article
Show Figures

Graphical abstract

19 pages, 14928 KiB  
Article
Modelling Global Ionosphere Based on Multi-Frequency, Multi-Constellation GNSS Observations and IRI Model
by Xiangdong An, Xiaolin Meng, Hua Chen, Weiping Jiang, Ruijie Xi and Qusen Chen
Remote Sens. 2020, 12(3), 439; https://doi.org/10.3390/rs12030439 - 31 Jan 2020
Cited by 10 | Viewed by 3166
Abstract
With the emergence of BeiDou and Galileo as well as the modernization of GPS and GLONASS, more available satellites and signals enhance the capability of Global Navigation Satellite Systems (GNSS) to monitor the ionosphere. However, currently the International GNSS Service (IGS) Ionosphere Associate [...] Read more.
With the emergence of BeiDou and Galileo as well as the modernization of GPS and GLONASS, more available satellites and signals enhance the capability of Global Navigation Satellite Systems (GNSS) to monitor the ionosphere. However, currently the International GNSS Service (IGS) Ionosphere Associate Analysis Centers (IAACs) just use GPS and GLONASS dual-frequency observations in ionosphere estimation. To better determine the global ionosphere, we used multi-frequency, multi-constellation GNSS observations and a priori International Reference Ionosphere (IRI) to model the ionosphere. The newly estimated ionosphere was represented by a spherical harmonic expansion function with degree and order of 15 in a solar-geomagnetic frame. By collecting more than 300 stations with a global distribution, we processed and analysed two years of data. The estimated ionospheric results were compared with those of IAACs, and the averaged Root Mean Squares (RMS) of Total Electron Content (TEC) differences for different solutions did not exceed 3 TEC Unit (TECU). Through validation by satellite altimetry, it was suggested that the newly established ionosphere had a higher precision than the IGS products. Moreover, compared with IGS ionospheric products, the newly established ionosphere showed a more accurate response to the ionosphere disturbances during the geomagnetic storms. Full article
Show Figures

Graphical abstract

Other

Jump to: Research

16 pages, 23813 KiB  
Technical Note
Integrated Multi-Sensor Real Time Pile Positioning Model and Its Application for Sea Piling
by Yilin Xie, Qing Wang, Lianbi Yao, Xiaolin Meng and Yusong Yang
Remote Sens. 2020, 12(19), 3227; https://doi.org/10.3390/rs12193227 - 03 Oct 2020
Cited by 3 | Viewed by 2945
Abstract
The traditional pile positioning method for offshore piling uses the intersection of lines of sight with two or three theodolites. This method has certain limits, including using post-mission pile positioning, being time-consuming and lacking position accuracy. A novel pile positioning model using four [...] Read more.
The traditional pile positioning method for offshore piling uses the intersection of lines of sight with two or three theodolites. This method has certain limits, including using post-mission pile positioning, being time-consuming and lacking position accuracy. A novel pile positioning model using four kinds of sensors (GNSS—Global Navigation Satellite System receivers, tiltmeters, laser rangefinders and calibrated CCD cameras) for sea piling was developed. Firstly, with Real Time Kinematics (RTK) GNSS and tiltmeter data, the piling ship’s position and attitude was achieved in real time, and then the coordinates of the pile center in the Ship Fixed Coordinate System (SFCS) were calculated by a laser rangefinder and a CCD camera data. Finally, using the coordinate transformation, the coordinates of the pile center construction were figured out and used to guide the pile movement to the right place in real time. Because of the poor RTK GNSS vertical accuracy (normally 2–3 cm) and complex piling ship structure, it is difficult to get the accurate penetration value per hammering, which is a very important parameter for structural engineers. A Scale Invariant Feature Transform (SIFT) algorithm was created to get the pixel difference between the two pile images captured before and after one hammering, respectively, which was then used to calculate the penetration. A case study on the piling ship named “YangShanHao” with the sensors and algorithms was also described and discussed in the paper. The results showed the high accuracy of the proposed position model and the pile sinking distance of the pixel, thanks to the SIFT algorithm. Full article
Show Figures

Graphical abstract

14 pages, 9759 KiB  
Technical Note
Measurement of Quasi-Static and Dynamic Displacements of Footbridges Using the Composite Instrument of a Smartstation and an Accelerometer: Case Studies
by Jiayong Yu, Zhen Fang, Xiaolin Meng, Yilin Xie and Qian Fan
Remote Sens. 2020, 12(16), 2635; https://doi.org/10.3390/rs12162635 - 15 Aug 2020
Cited by 5 | Viewed by 2872
Abstract
Monitoring the dynamic responses of bridge structures has received considerable attention. It is important to synchronously measure both the quasi-static and dynamic displacements of bridge structures. However, the traditional accelerometer method cannot capture the quasi-static displacement component, although it can detect the dynamic [...] Read more.
Monitoring the dynamic responses of bridge structures has received considerable attention. It is important to synchronously measure both the quasi-static and dynamic displacements of bridge structures. However, the traditional accelerometer method cannot capture the quasi-static displacement component, although it can detect the dynamic displacement component. To this end, a novel composite instrument of a smartstation was proposed to monitor vibration displacements of footbridges. Full-scale experiments were conducted on a footbridge to validate the feasibility of the composite instrument-based monitoring method. A Chebyshev filter and wavelet algorithms were developed to process the composite instrument measurements. It was concluded that the measurement noise of the composite instrument was mainly distributed in a frequency range of 0–0.1 Hz. In two case studies with displacement peaks of 5.7–10.0 mm and 1.3– 2.5 mm, the composite instrument accurately identified the quasi-static and dynamic displacements. The composite instrument will be a potential tool for monitoring structural dynamics because of its enhanced overall performance. Full article
Show Figures

Figure 1

Back to TopTop