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Abstract: The Global Navigation Satellite System (GNSS) occultation receiver onboard the China
Seismo-Electromagnetic Satellite (CSES) can provide dual-frequency observations for both GPS and
BDS-2 satellites. In this study, the data quality and orbit determination performance of the CSES are
assessed. Severe data loss of about 30% is observed in GPS P2/L2 data, resulting in only 11% of epochs
possessing six to eight useful GPS satellites. Due to fewer channels being allocated for BDS signals,
less than 5% of epochs have more than three useful BDS satellites. Precise orbit determination (POD)
of CSES is firstly carried out using GPS data. The results indicate that the orbit overlap differences
improved from 3.65 cm to 2.8 cm in 3D root mean square (RMS) by antenna phase center correction.
CSES orbits are then derived from the BDS only, and combined GPS and BDS data. BDS-based POD
indicates that adding BDS geostationary Earth orbit (GEO) satellites could dramatically degrade the
orbit accuracy. When excluding BDS GEO satellites, the orbit overlap differences of BDS-based and
combined POD are 23.68 cm and 2.73 cm in 3D, respectively, while the differences compared with
GPS-based POD are 14.83 cm and 1.05 cm, respectively. The results suggest that the obtained orbit
can satisfy centimeter-level requirements. Given that large GPS tracking losses occurred and few
channels are allocated for BDS signals, it is expected that POD performance can be further improved
by increasing the number of dual-frequency observations.

Keywords: China Seismo-Electromagnetic Satellite; BDS; GPS; low Earth orbit; precise
orbit determination

1. Introduction

The China Seismo-Electromagnetic Satellite (CSES), also known as ZhangHeng-1, was launched
on 2 February 2018. It is currently located in a 507 km sun-synchronous orbit with a nominal lifetime of
5 years. This satellite is China’s first spaceborne platform dedicated to geophysical field measurement
and earthquake monitoring by detecting electromagnetic variations in space [1]. The CSES focuses
on the modelling of the global geomagnetic field, ionosphere and gravity field. As part of the CSES
scientific application, ionospheric research and neutral atmospheric inversion require orbit accuracy at
centimeter-level. On the other hand, China plans to carry out more low Earth orbit (LEO) scientific
missions on a geophysical field for monitoring earthquakes, sensing the atmosphere or determining
the Earth’s gravity field. Among them, the inversion of the Earth’s gravity field also requires an orbit
accuracy at centimeter-level.
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There are eight scientific payloads carried on the CSES (Figure 1): a high-precision magnetometer
(HPM) to measure the magnetic field [2]; a high energetic particle package (HEPP) and a high energetic
particle detector (HEPD) to measure the energetic electron and proton spectrum [3]; an electric
field detector (EFD) [4] and a search coil magnetometer (SCM) [5] to measure the electromagnetic
waves; a plasma analyzer package (PAP) and a Langmuir probe (LAP) to measure the in situ plasma
parameters [6]; a Global Navigation Satellite System (GNSS) occultation receiver (GOR) [7] and a
tri-band beacon [8] to measure the electron density profiles. The GNSS occultation receiver can track
both GPS and BDS-2 signals and can record dual-frequency code and carrier phase observations,
which can be used for precise orbit determination (POD) and onboard navigation. These valuable GPS
and BDS observations can provide opportunities for evaluating the onboard data quality as well as the
POD performances using these data. The relevant conclusions are also referable for follow-up LEO
scientific missions.
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Figure 1. China Seismo-Electromagnetic Satellite (CSES) platform.

In the early 1990s, the TOPEX/POSEIDON [9] was the first low Earth orbit (LEO) satellite equipped
with a dual-frequency GPS receiver, which could track up to six GPS satellites. Using onboard GPS
data, the orbit accuracy obtained in the radial component was within 4 cm, which is significantly
better than the expected accuracy of 13 cm. Following the successful application of GPS-based POD
on the TOPEX/POSEIDON satellite and the breakthrough of highly dynamic satellite-borne receiver
technology, numerous other LEO satellites/spacecrafts with high position accuracy requirements
have used onboard GPS techniques for POD purposes. TheBlackJack receiver of Jet Propulsion
Laboratory (JPL) could track as many as 16 GPS satellites [10]. It was applied successfully on GRACE
satellites [11,12] and could reach centimeter-level POD accuracy, thus meeting the requirements of
gravity recovery research missions.

The above overview indicates a great application potential of onboard GNSS technology based
on other systems, such as BDS. In the early stages, GNSS receivers onboard LEO satellites could not
track BDS signals. Liu et al. [13] simulated the onboard receiver of BDS-2 observations to evaluate
the influence of BDS on POD of LEO satellites. The resultant POD accuracy was 30 cm in 3D root
mean square (RMS). In recent years, China has begun to launch LEO satellites that can track BDS
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signals. Li et al. [14] performed POD for the Chinese meteorological satellite Fengyun-3C based on
GPS and BDS data. The results showed an orbit consistency with GPS data of approximately 2.73 cm
in 3D. Both BDS-only and combined GPS and BDS results indicated that including BDS geostationary
Earth orbit (GEO) satellites could significantly degrade accuracy. For combined POD, for instance,
orbit consistency improved from around 3.4 cm to 2.73 cm in 3D when BDS GEO satellites were
excluded, reaching an accuracy comparable to the GPS-only solution. Xiong et al. [15] also analyzed
the POD results of the Fengyun-3C and found an orbit consistency of 3.8 cm with GPS data and 22 cm
with BDS data. Further analysis showed that the orbit accuracy could improve to 3.45 cm for combined
POD using Helmert variance component estimation [16].

In this study, we analyze the POD of the CSES based on GPS and BDS data. In the following
sections, the CSES platform is introduced and the quality of onboard GPS and BDS data is assessed.
Antenna phase center correction is then conducted based on GPS data to improve POD performance.
Subsequently, CSES orbits are derived via GPS-based, BDS-based, as well as combined GPS and
BDS-based POD. POD performance is evaluated using orbit consistency considerations, in the form
of residual analysis and orbit overlap comparisons. Furthermore, the estimated orbits obtained via
GPS-based POD are used as a reference to evaluate the accuracy of BDS-based POD and combined
POD. Finally, the conclusions of the study are provided.

2. Materials and Methods

2.1. CSES Platform Description

The CSES structure is composed of a hexahedron and three solar panels. The satellite body-fixed
(SBF) frame (Figure 1) is defined as follows: the origin is the center of mass, the +Z axis is opposite to
the satellite radial direction, the +X axis points to the velocity direction of the satellite and the Y-axis is
perpendicular to the Z-axis and the X-axis, completing the right-hand coordinate system. The solar
panels are located on the +Y side of the satellite with an offset angle of 12◦ and rotate around the
Y-axis [17]. The total mass of the satellite is 719 kg, including 42 kg of fuel. The CSES carries a GNSS
occultation receiver for POD and onboard navigation purposes.

The GNSS occultation sounder instrument onboard the CSES can track the dual-frequency signals
of both GPS and BDS satellites. Four antennas, i.e., the positioning antenna and three sets of occultation
antennas, were installed on this instrument. The GNSS receiver allocates eight channels to receive GPS
signals and six for BDS signals coming from the positioning antenna. It should be noted that when
the occultation antennas can receive more than five satellite signals, at least two BDS channels for the
positioning antenna are allocated to receive signals from the occultation antenna. This implies that
only four BDS channels are normally available for positioning, which could degrade the performance
of BDS-based POD. The phase center offset (PCO), i.e., the deviation between the positioning antenna
and the center of the satellite mass in the SBF coordinate system, is measured as (−6.1, 118.4, −932.67)
mm for L1 frequency signal and (−6.1, 118.4, −927.67) mm for L2 frequency signal.

2.2. Data Collection and Quality Analysis

To generate an orbit solution for the CSES, one-month onboard GPS and BDS data from day of
year (DOY) 201 to 231, 2018, were collected. The data were recorded at 1-s sampling rate, including GPS
L1/L2 frequency and BDS B1/B2 frequency data.

Figure 2 displays sky-plots of Signal to Noise Ratio (SNR) variation with elevation and azimuth in
the antenna reference frame (ARF). It is evident that in all cases, the SNR becomes weaker at lower
elevations. For GPS, the SNR is higher for L1 than for L2 frequencies. Further tracking losses in L2 data
can be observed when the elevation drops below 20◦. Unlike the GPS case, the SNR of BDS B1 is lower
than that of B2, which may be due to the different signal modulation method and transmission power
of B1 and B2. The horizontal distribution of BDS B1 and B2 is similar. Figure 3 shows the number
of GPS and BDS observations on DOY 202, 2018. Note that there are no observations for G04 during
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the study period. It can be seen that there are approximately 30% fewer GPS P2/L2 observations than
GPS CA/L1 observations. This is mainly due to the lower transmitting power of L2, which leads to a
weaker signal more prone to losses, especially at low elevations (Figure 2). For BDS, the number of B1
and B2 observations is comparable. In general, the conclusions drawn from Figure 3 are consistent
with those in Figure 2.
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Figure 2. Sky-plots of Signal to Noise Ratio (SNR) (unit: dB-Hz) of GPS and BDS observations on date
of year (DOY) 202, 2018. The (a1) and (a2) panels show the SNR of GPS L1 (S1) and L2 (S2); the (b1)
and (b2) panels show the SNR of BDS B1 (S1) and B2 (S2).
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Figure 3. Number of GPS and BDS observations on DOY 202, 2018. The left panel shows the number
of GPS C/A, P2, L1 and L2 observations. The right panel shows BDS B1 code, B2 code, B1 carrier and
B2 carrier phase observations.
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Dual-frequency ionosphere-free linear combinations of GPS and BDS data are used for POD of the
CSES. Due to tracking losses at one frequency, there are more tracked observations than dual-frequency
observations. Furthermore, short arcs and epochs with large residuals will be excluded from the orbit
solution. Therefore, there are less useful observations than dual-frequency observations. Figure 4
shows the average percentage of all tracked (blue), dual-frequency (red) and useful (yellow) GPS and
BDS satellites per epoch during the experiment. The largest number of tracked GPS satellites is seven,
however, it is reduced to five for dual-frequency satellites and four for useful satellites. Only 11% of
epochs possess from six to eight useful satellites. The statistics of BDS are quite different from that of
GPS; the composition of dual-frequency data is similar to that of tracking data, which is consistent
with Figure 2. As for the useful satellites, about 27% of epochs have zero satellites and less than 5% of
epochs have more than three satellites. Compared to the Fengyun-3C satellite, the average number of
useful GPS and BDS satellites tracked by the CSES is approximately two fewer per epoch [14,18].
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Figure 4. Average percentage of all tracked, dual-frequency and useful satellites per epoch of one-month
data for GPS (top panel) and BDS (bottom panel). Blue bars represent the percentage of all tracked
satellites; red bars indicate the percentage of satellites that have been tracked for dual-frequency data;
yellow bars represent the percentage of useful satellites.

The revisit period for the CSES is five days [17]. The useful number of GPS and BDS satellites
along the CSES ground tracks of the five-day arc from DOY 202 to DOY 206, 2018 are shown in
Figure 5. It is obvious that the number of useful GPS satellites is evenly distributed across the
globe. However, the observed useful BDS satellites are mainly distributed in the Eastern Hemisphere,
while most of the Western Hemisphere has only zero to two satellites available. This is because
the BDS-2 constellation is mainly distributed in the Asia–Pacific Ocean region. Only few epochs
have six usable satellites, reaching the maximum number of BDS channels allocated for positioning
antenna, because in most cases, at least two of the channels receiving BDS signals are allocated for
occultation antennas.
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2.3. POD Strategy

The Positioning and Navigation Data Analyst (PANDA) software [19] developed by the GNSS
Research Centre of Wuhan University was adapted for this study. High-precision GPS and BDS orbit
and clock products are required for CSES POD. The final GPS orbits of the International GNSS Service
(IGS) are adopted. Since the CSES POD has a 30-s sampling rate, 30 s clock products were adopted in
this study to avoid the precision loss caused by interpolation. A GPS-assisted two-step POD method
was used to generate the BDS orbit and 30 s clock products using PANDA software. There are about
110 stations of the IGS Multi-GNSS Experiment (MGEX) that were used for BDS orbit determination.
Among all MGEX (Multi-GNSS Experiment) Analysis Centers, only GFZ (GeoForschungsZentrum,
Potsdam, German) has 30 s clock products of all BDS satellite types. Thus, the BDS products calculated
by us using PANDA and those provided by GFZ are adopted separately to analyze their respective
impacts on POD of the CSES.

The precision orbit and 30 s clock products of GPS and BDS used for POD were obtained as
explained above. Existing research shows that orbit comparisons in 3D RMS of different analysis centers
are approximately 0.1–0.2 m for BDS Medium Earth Orbit (MEO) satellites, 0.2–0.3 m for BDS Inclined
Geosynchronous Satellite Orbit (IGSO) satellites, and several meters for BDS GEO satellites [20]. Table 1
gives the orbit differences of BDS orbits calculated by PANDA and provided by GFZ during the study
period. It shows that the 3D orbit differences reach several meters for BDS GEO satellites but are within
0.2 m for BDS IGSO and MEO satellites.
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Table 1. Orbit differences of BDS orbits calculated by the Positioning and Navigation Data Analyst
(PANDA) and provided by GeoForschungsZentrum (GFZ).

Sat. Type A (cm) C (cm) R (cm) 3D (cm)

GEO 175.4 311.1 27.2 378.5
IGSO 7.2 15.0 4.6 17.7
MEO 8.7 7.5 2.8 12.1

In the POD data processing, some issues on the dynamic model and the observation model need
to be considered. The Earth gravity model of Earth EIGEN-6C [21] was used. The EIGEN-6C model
includes a static part and a temporal part. The box-wing model [22] is used to calculate the solar
radiation pressure (SRP) on the satellite. The SRP of the satellite’s solar panels are not considered yet as
a detailed rotation model of these is not available. Another important issue is the type and estimation
interval of piecewise dynamics parameters (atmospheric drag coefficients and empirical accelerations)
used to compensate for dynamic errors. These parameters are often estimated empirically for each orbit
revolution, as the mismodelled or un-modelled forces acting on satellites usually vary according to the
orbital period. In this study, the drag coefficients were estimated every four cycles, i.e., every 360 min.
The piecewise periodic empirical accelerations in the along-track, cross-track and radial direction were
estimated every 90 min for both GPS-based POD and combined GPS and BDS POD. For the BDS-only
solution, because of the small number and uneven distribution (Figure 5) of observations, the 1CPR
empirical accelerations were estimated every 360 min to ensure sufficient observations for each set
of parameters.

The antenna phase center offsets (PCOs) and antenna phase center variations (PCVs) for GPS
satellites were corrected with IGS values. For BDS satellites, the PCOs were corrected with IGS MGEX,
while the PCVs were not considered. As for the CSES, the PCO was first corrected using the ground
calibration values provided in the section of CSES platform description. The Z component of the PCO
was then estimated based on the GPS-only solution. The corresponding phase residuals are modelled
as a PCV map. The estimated PCO Z component and PCV map were further applied in BDS-based
POD and combined POD. The detailed POD strategy is given in Table 2.

Table 2. Precise orbit determination (POD) strategy for CSES.

Item Contents

Reference frame J2000.0

Gravity model EIGEN-6C. Static part of EIGEN-6C up to degree and order 120; temporal part of
EIGEN-6C up to degree and order 50 [21]

N-body JPL DE405 [23]
Solid earth tide IERS Conventions 2010 [24]

Pole tide IERS Conventions 2010 [24]
Ocean tide FES2004 [25]

Solar radiation Pressure Box-wing
Attitude Nominal

Atmospheric drag DTM94 [26]. Piecewise constant drag coefficients estimated

Empirical forces Piecewise periodical terms in along-track, cross-track and radial direction
(a priori sigma 10 nm/s2)

Basic observables Un-differenced BDS B1/B2 and GPS L1/L2 ionosphere-free linear combination of
code (a priori sigma 10 m) and phase (a priori sigma 1 cm)

GPS orbits and clocks IGS final products
BDS orbits and clocks Recomputed products/GFZ products

Sampling rate 30 s
GPS antenna phase center PCOs and PCVs from IGS
BDS antenna phase center Only PCO from IGS MGEX

CSES PCO Corrected using default values, estimated Z component based on GPS-only POD
CSES PCV PCV map modeling based on the phase residuals of GPS-only POD

Earth rotation parameters IERS C04 [27]
Relativistic effects IERS Conventions 2010 [24]
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Table 2. Cont.

Item Contents

Ambiguities Float value for each ambiguity pass
Receiver clock One per epoch as process noise

Drag coefficient One per 360 min for both GPS and BDS

Empirical accelerations GPS: One per 90 min for GPS
BDS: One per 360 min for BDS

Cutoff elevation 10◦

Based on previous experiences with LEO POD [14,28], a 30-h arc length was used for CSES POD,
i.e., from 21:00 of the first day to 3:00 of the third day. The middle 24 h arc (from 24:00 of the first day
to 24:00 of the second day) was used as a precision orbit product. Figure 6 shows the percentage of lost
epochs for each arc, which can be considered an indicator of data loss. For GPS observations, the data
loss rate is consistently less than 5% except for a 9.8% loss on DOY 201. By contrast, the BDS data loss
percentage reaches up to 25% for most of the arcs. The high BDS data loss rate will affect the accuracy
of BDS-only POD for the CSES.
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3. Results

In this section, PCO estimation and PCV modelling are carried out based on GPS observations.
PCO and PCV corrections are then applied for GPS-based, BDS-based and combined POD.
Orbit consistency is used to evaluate POD performance, including residual analysis and orbit overlap
comparison. Further, the estimated orbits of GPS-based POD are used as a reference to evaluate the
orbit accuracy of BDS-based and combined POD.

3.1. Antenna Phase Center Modelling Based on GPS Data

Phase center correction of the positioning antenna is important for GNSS-based POD of LEO
satellites. Empirical PCOs of the CSES GNSS positioning antenna are provided prior to launch, while the
PCVs are not provided. Moreover, PCO calibration before launch cannot reflect the actual space
environment. Therefore, PCOs and PCVs need to be modelled further. Due to the high precision
of GPS orbits, GPS data were adopted for antenna phase center correction research in this study.
The aforementioned corrections were then also applied in BDS-based and combined POD.

Choi [29] demonstrated on the Jason-1 satellite that the X and Y components of PCO cannot
be separated from the along-track and cross-track empirical parameters. The Z component of PCO,
however, can be determined when there is no empirical constant radial acceleration. Thus, only the Z
component of PCO was estimated in the current study. Figure 7 shows the estimated values of each
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orbit arc during the one-month study period. It can be seen that the estimated Z component value
fluctuates from −10 mm to 0 mm with a linear slope. The average value of Z component estimation
is −3.4 mm and the standard deviation is 2.2 mm. The trend of the results will be more reliable and
accurate if the data series covers one year.
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the antenna reference frame (ARF).

The phase residuals can be used to measure the consistency between the calculated orbit
and the tracking data. During POD calculation, some of the unmodelled errors will be absorbed
by the parameters to be estimated, while the remaining errors will be contained in the residuals.
Thus, the post-fit residual provides an indication of model accuracy. In reduced dynamic orbit
determination, the phase residuals exhibit significant variations with azimuth and elevation [12].
PCV is the difference between the instantaneous phase center and the average phase center of the
antenna and is related to the azimuth and elevation. Based on the premise that PCV errors can be
absorbed by the phase residuals, PCV modelling was performed on a 5◦ × 2◦ grid in azimuth and
elevation using the residuals of the ionospheric-free combination of GPS-based POD. The 1-month
residuals were adopted.

Figure 8 displays the phase residuals of CSES POD solutions obtained using PCO ground
calibration-only (Figure 8a), estimated PCO (Figure 8b) and the estimated PCO and PCV map
(Figure 8c). The azimuth-elevation diagram of the PCV map is also plotted (Figure 8d). Due to the
small estimated value of the Z PCO component, the residual distribution of solutions with (Figure 8b)
and without (Figure 8a) estimated PCO is almost the same, and the residual varies significantly with
elevation. With PCV corrections, the residuals are nearly uniformly distributed. Table 3 gives the
residual RMS of the above solutions. For the PCO ground calibration case, the residual RMS is 5.63 mm.
After PCO and PCV correction, the residuals improved significantly to 4.11 mm.

The orbit quality of the above solutions is also assessed. Because there are no external measurements
for the CSES, only orbit consistency can be evaluated. Thus, orbit overlap differences are used as
a performance metric. Specifically, the 6-h orbit overlap differences between two consecutive orbit
solutions are assessed. Because of the edge effect, the central 5-h overlap differences are also used as a
metric. Figure 9 demonstrates the specific evaluation method.
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the residuals of the POD solution with estimated PCO; figure (c) shows the residuals of the POD
solution with estimated PCO and PCV map; figure (d) shows the PCV map.
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Table 3 summarizes the RMS of the orbit overlap differences. When only PCO ground calibration
was used, the 3D RMS is 3.65 cm. The solution improved slightly where the PCO was estimated.
Adding PCV correction led to a significant improvement, with 3D RMS values of 2.80 cm. The statistics
of the central 5-h orbit overlap differences are also summarized in Table 3. Due to the reduction in edge
effect, the 3D RMS value of 1.86 cm was obtained for the solution with both PCO and PCV corrections.
Figure 10 shows the daily RMS of the full 6-h orbit overlap differences. After PCV correction, the orbit
overlap differences of each arc were improved. In the following section, the PCO and PCV corrections
estimated in this section will be applied.
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Table 3. Phase residuals and orbit overlap differences of GPS-only solutions in the along-track,
cross-track, radial direction and 3D.

Solutions Residuals
(mm)

Full 6-h Overlap (cm) Central 5-h Overlap (cm)

A C R 3D A C R 3D

+PCO ground calib. 5.63 2.94 0.85 1.83 3.65 1.93 0.63 0.92 2.28
+Estimated PCO 5.61 2.86 0.87 1.81 3.56 1.81 0.66 0.90 2.17

+Estimated PCO&PCV 4.11 2.18 0.72 1.50 2.80 1.51 0.52 0.81 1.86
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Figure 10. Root mean square (RMS) of full 6-h orbit overlap differences in the along-track, cross-track,
radial directions and in 3D for GPS-only solutions. The top, middle and bottom panels show the results
obtained with only PCO ground calibration, with PCO estimation, and with both estimated PCO and
PCV map, respectively.

3.2. POD Results Based on BDS Data

This section discusses the BDS-based POD. Although about 27% of epochs have zero useful
BDS satellites and less than 5% of epochs have more than useful three BDS satellites (Figure 4), it is
interesting to access the performance of BDS-only POD under this stringent situation. In view of the
uneven distribution of the BDS-2 constellation, the correlation between orbit accuracy and geographical
distribution is worth studying. In addition, considering that the orbit differences between BDS GEO
satellites calculated by PANDA and provided by GFZ reach several meters, both of these two products
are adopted to analyze their impact on CSES POD. In turn, the performance of GEO satellite orbits of
these two products can be accessed. As seen in Table 1, the BDS GEO orbit differences between PANDA
and GFZ reach several meters. To analyze the impact of GEO satellites on CSES POD, the same a priori
information is used for BDS GEO, IGSO and MEO in BDS-only POD. To avoid contamination of the
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POD by low-precision GEO satellites, we will analyze the BDS-based orbit determination for two cases,
i.e., with GEO satellites and without GEO satellites.

Low-precision GEO satellites cause a large RMS on the post-fit residuals of CSES POD.
Hence, the total residual RMS of all satellites is unable to reflect the model errors for each satellite type
(GEO/IGSO/MEO) effectively. Therefore, observation residuals were considered for each satellite type,
for both of the two cases mentioned above (with and without GEO satellites). Figure 11 plots the daily
residuals and Table 4 summaries the RMS statistics. Evidently, the residuals of BDS IGSO and MEO
satellites are considerably deteriorated by the addition of BDS GEO satellites. When GEO satellites are
excluded (red dotted line), the residuals of BDS IGSO/MEO satellites obtained using GFZ and PANDA
products are comparable and are stable within 5 mm for each POD arc. The results indicate that the
observations of BDS IGSO and MEO satellites can be accurately modelled. However, when GEO
satellites are included (blue dotted line), the residuals of all types of satellites are much larger
and fluctuate more for each POD when GFZ BDS products are used than when PANDA ones are.
The average RMS of GEO satellites is approximately 33.7 mm when using GFZ products and reduces
to 17.8 mm when using PANDA products. This suggests that the orbit accuracy of GFZ GEO satellites
is lower and less stable than that of PANDA. It may be due to the different SRP model and satellite
attitude adopted by PANDA and GFZ for BDS GEO satellites, resulting in orbit comparison reaching
several meters (Table 1).
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Figure 11. Post-fit residual RMS of BDS carrier phase of each POD arc. The left panels show the
residuals based on PANDA BDS products; the right panels show the residuals based on GFZ BDS
products. In both plots, the blue dots represent the approach with GEO satellites and the red line is the
approach without GEO satellites.
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Table 4. RMS statistics of phase residuals of BDS-based POD.

PANDA (mm) GFZ (mm)

With GEOs W/o GEOs With GEOs W/o GEOs

GEO 17.8 / 33.7 /
IGSO 9.7 3.0 14.8 3.2
MEO 8.9 3.2 16.3 3.5

The CSES orbit accuracy calculated using PANDA and GFZ BDS products is also considered.
Orbit overlap difference and orbit comparison with GPS-derived orbits are adopted as assessment
instruments. To check for systematic differences between GPS-based and BDS-based POD, we used the
Helmert transformation. Table 5 summaries the statistical values. After the Helmert transformation,
the differences between GPS-based and BDS-based POD improved, suggesting that systematic
differences existed. Thus, the differences with Helmert transformation are used for further analysis.

Table 5. Statistics of orbit overlap differences of BDS-based POD as well as orbit differences between
BDS-based POD and GPS-based POD in the along-track, cross-track, radial direction and 3D.

GNSS
Products

Methods
With GEOs (cm) Without GEOs (cm)

A C R 3D A C R 3D

PANDA

Full 6-h overlap 37.49 18.76 14.56 45.43 19.80 8.02 8.25 23.68
Central 5-h overlap 31.72 17.15 13.50 39.54 17.77 7.4 7.89 21.50

Comparison w/o
Helmert trans. 31.62 14.12 12.58 37.24 14.50 5.25 6.06 16.75

Comparison with
Helmert trans. 25.60 14.73 10.90 31.75 12.56 5.10 5.78 14.83

GFZ

Full 6-h overlap 69.14 35.2 26.6 83.91 21.62 8.78 8.95 25.83
Central 5-h overlap 63.16 32.57 24.76 77.2 19.31 8.07 8.56 23.39

Comparison w/o
Helmert trans. 51.46 31.76 19.78 64.11 15.27 5.55 6.35 17.68

Comparison with
Helmert trans. 44.14 26.40 18.48 55.07 13.25 5.50 6.10 15.72

When GEO satellites are included, the orbit overlap differences are much larger for results obtained
using GFZ products than PANDA products (i.e., the 3D RMS changes from 83.91 to 45.43 cm), so do
the orbit differences with respect to the GPS-based POD (i.e., the 3D RMS changes from 55.07 to
31.75 cm). When GEO satellites are excluded, both the orbit overlap differences and the orbit differences,
with respect to the GPS-based POD, are comparable for both BDS products. These results are consistent
with the residual analysis.

For POD based on PANDA products, excluding GEO satellites led to an improvement in both
average orbit overlap difference (from 45.43 cm to 23.68 cm 3D RMS) and in the comparison to
GPS-based POD (from 31.75 cm to 14.83 cm RMS), showing significant improvements in all three
directions. The RMS values of the central 5-h orbit overlap differences are summarized in Table 5. It is
notable that the edge effect is less obvious than in GPS-based POD because of the low precision of
BDS orbits. Given the uneven distribution of the BDS-2 constellation, we checked whether there are
geographical correlations for BDS-only POD. Because POD is significantly contaminated by BDS GEO
satellites, the solution without GEO is discussed. Figure 12 shows the 3D orbit differences between
BDS-based POD (obtained using PANDA products) and GPS-based POD along the CSES satellite
ground tracks from DOY 202 to DOY 206, 2018. The differences in the Asia Pacific region are smaller,
which can be explained by the larger number of useful satellites in this region (see bottom panel of
Figure 5). To quantify the geographic correlations, the average 3D orbit differences of the Eastern
and the Western Hemispheres were calculated, which are 9.11 cm and 11.05 cm, respectively. Due to
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the larger number of useful satellites in the Asia Pacific region, the orbit accuracy of the Eastern
Hemisphere is better than that of the Western Hemisphere. It should be noted that the statistical results
are better than the values in Table 5. This is because the whole 30-h arc is accessed in Table 5, while only
the middle 24-h arc is accessed in Figure 12, which is less affected by the edge effect.
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Figure 12. 3D orbit difference (cm) between BDS-based POD (without BDS GEOs) and GPS-based
POD along CSES satellite ground tracks from DOY 202 to DOY 206, 2018. BDS products are calculated
using PANDA.

3.3. POD Results Based on Combined GPS and BDS Data

From the previous discussion, it is clear that the introduction of BDS GEO satellites can lead
to a significant decrease in the orbit accuracy of BDS-based POD. Therefore, BDS GEO satellites are
excluded in this section. Moreover, BDS IGSO/MEO products calculated by PANDA are adopted
for the results discussed. As shown previously in Table 1, for BDS IGSO/MEO satellites, the orbit
difference between PANDA and GFZ is 10.2 cm and 6.9 cm in 1D RMS, respectively. The GPS orbit
accuracy of IGS is within 2.5 cm in 1D RMS [30]. Thus, to optimize the observations, the relative prior
weight of GPS, BDS IGSO and BDS MEO was set to 1/0.25/0.36 according to the orbit accuracy of GPS
and BDS. Table 6 shows the residuals of the combined POD. The residuals of BDS IGSO/MEO results
are larger than the residuals of the BDS-only POD, due to the weaker constraint of BDS observations in
the combined POD.

Table 6. Statistics of phase residuals, orbit overlap RMS of combined POD as well as orbit difference
RMS between combined POD and GPS-based POD in the along-track, cross-track, radial direction
and 3D.

Residuals (mm) Full 6-h Overlap (cm) Central 5-h Overlap
(cm) Orbit Comparison (cm)

GPS BDS
IGSO

BDS
MEO A C R 3D A C R 3D A C R 3D

4.2 8.9 8.2 2.15 0.63 1.46 2.73 1.48 0.44 0.78 1.76 0.92 0.30 0.32 1.05

Orbit overlap difference and orbit comparison with the GPS-derived orbits were used to evaluate
orbit quality (Figure 13). The statistics are summarized in Table 6. Due to the introduction of BDS IGSO
and MEO, the orbit overlap difference is slightly improved, with values of 2.15 cm, 0.63 cm, 1.46 cm in
the along-track, cross-track and radial directions and of 2.73 cm in 3D. The overlap difference of the
central 5 h is smaller than that of the full 6 h orbit overlaps due to edge effects.
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In the orbit differences between combined POD and GPS-based POD, a large discrepancy can be
observed on DOY 201. This may be due to the 9.8% GPS data loss shown in Figure 6, which includes
data gaps from 13:56 to 15:30, from 18:40 to 19:10 and from 20:15 to 20:50 on DOY 201, resulting in an
exceptionally inaccurate estimation of the piecewise dynamic parameters during this period. In general,
the 3D RMS of orbit differences with respect to GPS-based POD is within 1 cm.

4. Discussion

For the PCO/PCV corrections, it should be noted that the BDS-2 frequencies are different from
GPS, and the signal modulation method is different, which may lead to different antenna phase
center corrections. Thus, the GPS-derived PCO/PCV may not be perfect for BDS-2. However, we can
ignore its impact regarding current decimeter-level CSES orbit precision derived by BDS-2 and
millimeter-level phase center difference. BDS-3 functions on a completely different frequency plan
than BDS-2. BDS-3 B1C overlaps with GPS L1, and BDS-3 B2a coincides with GPS L5. In this case,
the GPS-derived PCO/PCV may be more suitable for BDS-3 signals, but this needs further verification
due to the different signal modulation methods.

In general, the CSES orbit consistency can reach up to 3 cm in 3D RMS, which can satisfy
centimeter-level requirements of the scientific application. Although BDS-3 B1C overlaps with the GPS
L1 frequency, and BDS-3 B2a coincides with GPS L5, the GOR onboard CSES is not capable of collecting
the B1 and B2 signals from BDS-3 satellites due to different signal modulation method. For the BDS-only
POD of the CSES, further improvements can be achieved if more channels are allocated for BDS-2
signals. Alternatively, it could also be enhanced through better observation models—for instance,
by improving the BDS orbits or fixing ambiguity parameters. On the other hand, with the completion
of the globally distributed BDS-3 constellation, the BDS-only POD performance of the LEO satellite
that can track BDS-3 signals is very promising in the future.

5. Conclusions

This paper discussed the CSES POD based on GPS and BDS observations. First, the onboard data
availability of both GPS and BDS was analyzed, then antenna phase center correction was conducted
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based on GPS data. Subsequently, CSES orbits derived from GPS data, BDS data, and combined GPS
and BDS data were evaluated. As there are no external measurements, post-fit residuals and orbit
overlap differences were used to evaluate the orbit consistency. Furthermore, orbits derived from GPS
data were used as a reference to evaluate the orbit accuracy of BDS-based and combined POD.

The results of data quality showed that due to the lower transmitting power of GPS L2,
more tracking losses are observed in L2 data when the elevation drops below 20◦, resulting in
about 30% fewer P2/L2 observations than CA/L1 observations. Regarding the dual-frequency available
satellites, about 76.1% of epochs possess four to eight GPS satellites. Meanwhile, for BDS, only 3.8% of
epochs have more than three satellites and about 27% of epochs have no useful satellites. This is mainly
because there are fewer channels allocated for BDS signals and fewer BDS satellites can be observed.

The antenna phase center correction results show that PCO estimation can only marginally
improve orbit consistency. After additional PCV correction, however, a considerable improvement is
observed, with orbit overlap differences for GPS-based POD improving from 3.65 cm to 2.8 cm in 3D
RMS. The results of the BDS-based POD show that orbit consistency significantly deteriorates with the
inclusion of BDS GEO satellites. When BDS GEO satellites are excluded, the orbit overlap difference of
BDS-based POD is 23.68 cm in 3D, and is 2.73 cm for combined POD, which is slightly better than that
of GPS-based POD.
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