Smart Natural-Based Polymers

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biomacromolecules, Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (31 January 2023) | Viewed by 42246

Special Issue Editor

Smart Polymeric Biomaterials - Biomaterials and Tissue Engineering @ Campus Group T Leuven, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
Interests: smart polymers; polysaccharides; biomaterials; pH-responsive systems; temperature- responsive systems; enzyme-responsive systems; toxin-responsive systems; superabsorbent polymers; hydrogels; self-healing; wound healing; tendon repair; dental repair; cardiovascular applications; diabetics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Natural polymers have a range of biomedical applications, including drug delivery, wound healing, tissue engineering, biosensors, etc. Different polysaccharide and protein-based systems have been developed, each with properties that render them useful for certain applications, such as the water solubility of alginate, the thermo-sensitivity of chitosan, the abundance of cellulose and starch, or the cell adhesion and proliferation of gelatin and collagen. The smart use or modification of these natural polymers to introduce additional smart systems is particularly hot in the current state of the art.

This Special Issue will explore the design, synthesis, processing, characterization, and applications of new, smart natural-based polymers. Considering your prominent contributions to this field, I wish to cordially invite you to submit an article to this Special Issue. Full research papers, communications, and review articles will be accepted. I would like to collate a collection of comprehensive articles from leading experts and up-to-date research from notable groups in the community.

Dr. Arn Mignon
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • smart systems
  • polymers
  • polysaccharide
  • protein
  • modification
  • biomedical

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 3503 KiB  
Article
Electron-Beam-Initiated Crosslinking of Methacrylated Alginate and Diacrylated Poly(ethylene glycol) Hydrogels
by Arn Mignon, Joanne Zimmer, Carolina Gutierrez Cisneros, Mathias Kühnert, Elien Derveaux, Olesya Daikos, Tom Scherzer, Peter Adriaensens and Agnes Schulze
Polymers 2023, 15(24), 4685; https://doi.org/10.3390/polym15244685 - 12 Dec 2023
Viewed by 907
Abstract
An ideal wound dressing not only needs to absorb excess exudate but should also allow for a moist wound-healing environment as well as being mechanically strong. Such a dressing can be achieved by combining both a natural (alginate) and synthetic (poly(ethylene glycol) polymer. [...] Read more.
An ideal wound dressing not only needs to absorb excess exudate but should also allow for a moist wound-healing environment as well as being mechanically strong. Such a dressing can be achieved by combining both a natural (alginate) and synthetic (poly(ethylene glycol) polymer. Interestingly, using an electron beam on (meth)acrylated polymers allows their covalent crosslinking without the use of toxic photo-initiators. The goal of this work was to crosslink alginate at different methacrylation degrees (26.1 and 53.5% of the repeating units) with diacrylated poly(ethylene glycol) (PEGDA) using electron-beam irradiation at different doses to create strong, transparent hydrogels. Infrared spectroscopy showed that both polymers were homogeneously distributed within the irradiated hydrogel. Rheology showed that the addition of PEGDA into alginate with a high degree of methacrylation and a polymer concentration of 6 wt/v% improved the storage modulus up to 15,867 ± 1102 Pa. Gel fractions > 90% and swelling ratios ranging from 10 to 250 times its own weight were obtained. It was observed that the higher the storage modulus, the more limited the swelling ratio due to a more crosslinked network. Finally, all species were highly transparent, with transmittance values > 80%. This may be beneficial for the visual inspection of healing progression. Furthermore, these polymers may eventually be used as carriers of photosensitizers, which is favorable in applications such as photodynamic therapy. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

12 pages, 3778 KiB  
Article
Carboxylated Cellulose Nanocrystals Decorated with Varying Molecular Weights of Poly(diallyldimethylammonium chloride) as Sustainable Antibacterial Agents
by Eliskander Rabia, Beza Tuga, José de Ondarza, Saleen M. Ramos, Edmond Lam, Sabahudin Hrapovic, Yali Liu and Rajesh Sunasee
Polymers 2023, 15(4), 865; https://doi.org/10.3390/polym15040865 - 09 Feb 2023
Cited by 2 | Viewed by 1591
Abstract
Cationic nanomaterials are promising candidates for the development of effective antibacterial agents by taking advantage of the nanoscale effects as well as other exceptional physicochemical properties of nanomaterials. In this study, carboxylated cellulose nanocrystals (cCNCs) derived from softwood pulp were coated with cationic [...] Read more.
Cationic nanomaterials are promising candidates for the development of effective antibacterial agents by taking advantage of the nanoscale effects as well as other exceptional physicochemical properties of nanomaterials. In this study, carboxylated cellulose nanocrystals (cCNCs) derived from softwood pulp were coated with cationic poly(diallyldimethylammonium chloride) of varying molecular weights. The resulting cationic carboxylated cellulose nanocrystals coated with poly(diallyldimethylammonium chloride) (cCNCs–PDDA) nanomaterials were characterized for their structural and morphological properties using Fourier transform infrared spectroscopy, dynamic light scattering, zeta potential, elemental analysis, transmission electron microscopy, and thermogravimetric analysis. Cationic cCNCs–PDDA were investigated for their antibacterial properties against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli 23934 and Pseudomonas aeruginosa using a bacterial lawn growth inhibition assay. cCNC–PDDA materials displayed marked antibacterial activity, particularly against Gram-positive Staphylococcus aureus. Overall, our results indicated that cCNCs–PDDA could be a potential candidate for antibacterial applications such as antibacterial surfaces or coatings. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Graphical abstract

13 pages, 7006 KiB  
Article
Physical, Morphological, and Rheological Properties of Agglomerated Milk Protein Isolate Powders: Effect of Binder Type and Concentration
by Yulim Jeong and Byoungseung Yoo
Polymers 2023, 15(2), 411; https://doi.org/10.3390/polym15020411 - 12 Jan 2023
Cited by 4 | Viewed by 1392
Abstract
Milk protein isolate powder (MPIP), a high protein-based powder, is a common dietary ingredient but has poor physical properties due to its cohesive nature. Powder agglomeration is one of the most widely used methods to improve and modify the quality of MPIP structures. [...] Read more.
Milk protein isolate powder (MPIP), a high protein-based powder, is a common dietary ingredient but has poor physical properties due to its cohesive nature. Powder agglomeration is one of the most widely used methods to improve and modify the quality of MPIP structures. In this study, the physical, morphological, and rheological properties of MPIPs agglomerated in a fluidized-bed agglomeration process were investigated as a function of sugar binder type and concentration. The physical properties of MPIP were evaluated by their flowability, cohesiveness, porosity, particle size distribution (PSD), and water-holding properties (wettability, solubility, and water-binding capacity). The density values of the agglomerated MPIPs decreased with increasing the binder concentration, whereas the porosity, wettability, and solubility values increased. Such trends were consistent with SEM observations. The MPIP agglomerated with 10% sorbitol had the largest particle diameter (D50) and showed better physical properties compared to the other sugar binders. The viscosity values (ηa,50) of the MPIPs agglomerated with sugar binders showed lower values than the control (no sugar binder). The agglomeration process enhanced the viscoelasticity of the MPIP, but the viscoelasticity decreased with increasing the sugar binder concentration. These observations suggested that the physical, morphological, and rheological properties of MPIP can be greatly affected by the binder type and concentration in the agglomeration process. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

16 pages, 14675 KiB  
Article
Fabrication of a Dual-Drug-Loaded Smart Niosome-g-Chitosan Polymeric Platform for Lung Cancer Treatment
by Atefeh Zarepour, Abdurrahim Can Egil, Melike Cokol Cakmak, Monireh Esmaeili Rad, Yuksel Cetin, Seyma Aydinlik, Gozde Ozaydin Ince and Ali Zarrabi
Polymers 2023, 15(2), 298; https://doi.org/10.3390/polym15020298 - 06 Jan 2023
Cited by 9 | Viewed by 2619
Abstract
Changes in weather conditions and lifestyle lead to an annual increase in the amount of lung cancer, and therefore it is one of the three most common types of cancer, making it important to find an appropriate treatment method. This research aims to [...] Read more.
Changes in weather conditions and lifestyle lead to an annual increase in the amount of lung cancer, and therefore it is one of the three most common types of cancer, making it important to find an appropriate treatment method. This research aims to introduce a new smart nano-drug delivery system with antibacterial and anticancer capabilities that could be applied for the treatment of lung cancer. It is composed of a niosomal carrier containing curcumin as an anticancer drug and is coated with a chitosan polymeric shell, alongside Rose Bengal (RB) as a photosensitizer with an antibacterial feature. The characterization results confirmed the successful fabrication of lipid-polymeric carriers with a size of nearly 80 nm and encapsulation efficiency of about 97% and 98% for curcumin and RB, respectively. It had the Korsmeyer–Peppas release pattern model with pH and temperature responsivity so that nearly 60% and 35% of RB and curcumin were released at 37 °C and pH 5.5. Moreover, it showed nearly 50% toxicity against lung cancer cells over 72 h and antibacterial activity against Escherichia coli. Accordingly, this nanoformulation could be considered a candidate for the treatment of lung cancer; however, in vivo studies are needed for better confirmation. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

15 pages, 2032 KiB  
Article
Cationic Chitooligosaccharide Derivatives Bearing Pyridinium and Trialkyl Ammonium: Preparation, Characterization and Antimicrobial Activities
by Conghao Lin, Zhanyong Guo, Aili Jiang, Xiaorui Liang and Wenqiang Tan
Polymers 2023, 15(1), 14; https://doi.org/10.3390/polym15010014 - 20 Dec 2022
Cited by 4 | Viewed by 1287
Abstract
In this study, chitooligosaccharide-niacin acid conjugate was designed and synthesized through the reaction of chitooligosaccharide and nicotinic acid with the aid of N,N′-carbonyldiimidazole. Its cationic derivatives were prepared by the further nucleophilic substitution reaction between the chitooligosaccharide-niacin acid conjugate and [...] Read more.
In this study, chitooligosaccharide-niacin acid conjugate was designed and synthesized through the reaction of chitooligosaccharide and nicotinic acid with the aid of N,N′-carbonyldiimidazole. Its cationic derivatives were prepared by the further nucleophilic substitution reaction between the chitooligosaccharide-niacin acid conjugate and bromopropyl trialkyl ammonium bromide with different alkyl chain lengths. The specific structural characterization of all derivatives was identified using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR), and the degree of substitution was obtained using the integral area ratio of the hydrogen signals. Specifically, the antibacterial activities against Escherichia coli, Staphylococcus aureus, Pseudoalteromonas citrea and Vibrio harveyi were evaluated using broth dilution methods. In addition, their antifungal activities, including Botrytis cinerea, Glomerella cingulate and Fusarium oxysporum f. sp. cubense were assayed in vitro using the mycelium growth rate method. Experimental data proved that the samples showed antibacterial activity against four pathogenic bacteria (MIC = 1–0.125 mg/mL, MBC = 8–0.5 mg/mL) and enhanced antifungal activity (50.30–68.48% at 1.0 mg/mL) against Botrytis cinerea. In particular, of all chitooligosaccharide derivatives, the chitooligosaccharide derivative containing pyridinium and tri-n-butylamine showed the strongest antibacterial capacity against all of the test pathogenic bacteria; the MIC against Vibrio harveyi was 0.125 mg/mL and the MBC was 1 mg/mL. The experimental results above showed that the introduction of pyridinium salt and quaternary ammonium salt bearing trialkyl enhanced the antimicrobial activity. In addition, the cytotoxicity against L929 cells of the chitooligosaccharide derivatives was evaluated, and the compounds exhibited slight cytotoxicity. Specifically, the cell viability was greater than 91.80% at all test concentrations. The results suggested that the cationic chitooligosaccharide derivatives bearing pyridinium and trialkyl ammonium possessed better antimicrobial activity than pure chitooligosaccharide, indicating their potential as antimicrobial agents in food, medicine, cosmetics and other fields. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

20 pages, 4568 KiB  
Article
Calcium-Lignosulfonate-Filled Rubber Compounds Based on NBR with Enhanced Physical–Mechanical Characteristics
by Ján Kruželák, Klaudia Hložeková, Andrea Kvasničáková, Michaela Džuganová, Ján Hronkovič, Jozef Preťo and Ivan Hudec
Polymers 2022, 14(24), 5356; https://doi.org/10.3390/polym14245356 - 07 Dec 2022
Cited by 3 | Viewed by 1373
Abstract
Calcium lignosulfonate in the amount 30 phr was incorporated into rubber compounds based on pure NBR and an NBR carbon black batch, in which the content of carbon black was 25 phr. Glycerine, as a cheap and environmentally friendly plasticizer, was applied into [...] Read more.
Calcium lignosulfonate in the amount 30 phr was incorporated into rubber compounds based on pure NBR and an NBR carbon black batch, in which the content of carbon black was 25 phr. Glycerine, as a cheap and environmentally friendly plasticizer, was applied into both types of rubber formulations in a concentration scale ranging from 5 to 20 phr. For the cross-linking of rubber compounds, a sulfur-based curing system was used. The work was aimed at the investigation of glycerine content on the curing process and rheological properties of rubber compounds, cross-link density, morphology and physical–mechanical properties of vulcanizates. The results show that glycerine influences the shapes of curing isotherms and results in a significant decrease between the maximum and minimum torque. This points to the strong plasticizing effect of glycerine on rubber compounds, which was also confirmed from rheological measurements. The application of glycerine resulted in better homogeneity of the rubber compounds and in the better dispersion and distribution of lignosulfonate within the rubber matrix, which was subsequently reflected in the significant improvement of tensile characteristics of vulcanizates. A higher cross-link density as well as better physical–mechanical properties were exhibited by the vulcanizates based on the carbon black batch due to the presence of a reinforcing filler. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

8 pages, 2189 KiB  
Article
Preparation and Phytotoxicity Evaluation of Cellulose Acetate Nanoparticles
by Regiane G. Lima, Maria Maranni, Leandro O. Araujo, Bruno Marinho Maciel, Thalita Canassa, Anderson R. L. Caires and Cícero Cena
Polymers 2022, 14(22), 5022; https://doi.org/10.3390/polym14225022 - 19 Nov 2022
Cited by 1 | Viewed by 1676
Abstract
The use of biocompatible and low-cost polymeric matrices to produce non-phytotoxic nanoparticles for delivery systems is a promising alternative for good practices in agriculture management and biotechnological applications. In this context, there is still a lack of studies devoted to producing low-cost polymeric [...] Read more.
The use of biocompatible and low-cost polymeric matrices to produce non-phytotoxic nanoparticles for delivery systems is a promising alternative for good practices in agriculture management and biotechnological applications. In this context, there is still a lack of studies devoted to producing low-cost polymeric nanoparticles that exhibit non-phytotoxic properties. Among the different polymeric matrices that can be used to produce low-cost nanoparticles, we can highlight the potential application of cellulose acetate, a natural biopolymer with biocompatible and biodegradable properties, which has already been used as fibers, membranes, and films in different agricultural and biotechnological applications. Here, we provided a simple and low-cost route to produce cellulose acetate nanoparticles (CA-NPs), by modified emulsification solvent evaporation technique, with a main diameter of around 200 nm and a spherical and smooth morphology for potential use as agrochemical nanocarriers. The non-phytotoxic properties of the produced cellulose acetate nanoparticles were proved by performing a plant toxic test by Allium cepa assay. The cytotoxicity and genotoxicity tests allowed us to evaluate the mitotic process, chromosomal abnormalities, inhibition/delay in root growth, and micronucleus induction. In summary, the results demonstrated that CA-NPs did not induce phytotoxic, cytotoxic, or genotoxic effects, and they did not promote changes in the root elongation, germination or in the mitotic, chromosomal aberration, and micronucleus indices. Consequently, the present findings indicated that CA-NPs can be potentially used as environmentally friendly nanoparticles. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Graphical abstract

15 pages, 1726 KiB  
Article
Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon sp.) Using Physical and Chemical Treatment
by Herlina Marta, Hana Nur Layalia Hasya, Zahra Indah Lestari, Yana Cahyana, Heni Radiani Arifin and Siti Nurhasanah
Polymers 2022, 14(22), 4845; https://doi.org/10.3390/polym14224845 - 10 Nov 2022
Cited by 10 | Viewed by 1843
Abstract
Sago starch has weaknesses such as low thermal stability and high syneresis. Modifications were made to improve the characteristics of native sago starch. In this study, sago starch was modified by autoclave-heating treatment (AHT), osmotic-pressure treatment (OPT), octenyl-succinic anhydride modification (OSA), and citric [...] Read more.
Sago starch has weaknesses such as low thermal stability and high syneresis. Modifications were made to improve the characteristics of native sago starch. In this study, sago starch was modified by autoclave-heating treatment (AHT), osmotic-pressure treatment (OPT), octenyl-succinic anhydride modification (OSA), and citric acid cross-linking (CA). This study aimed to examine the changes in chemical composition, crystallinity, and functional properties of the native sago starch after physical and chemical modifications. The results show that physical modification caused greater granule damage than chemical modification. All modification treatments did not alter the type of crystallinity but decreased the relative crystallinity of native starch. New functional groups were formed in chemically modified starches at a wavelength of 1700–1725 cm−1. The degree of order (DO) and degree of double helix (DD) of the modified starches were also not significantly different from the native sample, except for AHT and OPT, respectively. Physical modification decreased the swelling volume, while chemical modification increased its value and is inversely proportional to solubility. AHT and OPT starches have the best freeze–thaw stability among others, indicating that both starches have the potential to be applied in frozen food. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

17 pages, 7872 KiB  
Article
Catalytic Reduction of Dyes and Antibacterial Activity of AgNPs@Zn@Alginate Composite Aerogel Beads
by Fadila Benali, Bouhadjar Boukoussa, Nour-El-Houda Benkhedouda, Amina Cheddad, Ismail Issam, Jibran Iqbal, Mohammed Hachemaoui, Mohamed Abboud and Adel Mokhtar
Polymers 2022, 14(22), 4829; https://doi.org/10.3390/polym14224829 - 09 Nov 2022
Cited by 7 | Viewed by 1567
Abstract
This work focuses on the preparation of aerogel composite beads based on Zn(II)-crosslinked alginate and loaded with different percentages of AgNPs using a simple approach. The obtained samples were evaluated in two different applications: the first application consists in their use as catalysts [...] Read more.
This work focuses on the preparation of aerogel composite beads based on Zn(II)-crosslinked alginate and loaded with different percentages of AgNPs using a simple approach. The obtained samples were evaluated in two different applications: the first application consists in their use as catalysts for the reduction of MB, MO, OG and CR dyes in a simple and binary system under the presence of NaBH4. For this, several parameters affecting the catalytic behavior of these catalysts have been investigated and discussed such as the catalyst mass, AgNPs content, dye nature, and the selectivity of the catalyst in a binary system. The second application concerns their antibacterial activities towards two Gram-negative bacteria Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853), and a Gram-positive bacteria Staphylococcus aureus (ATCC 25923). The physico-chemical properties of different samples were characterized by XRD, FTIR, SEM/EDS, and TGA analysis. The obtained results confirmed the presence of AgNPs on a highly porous alginate structure. The dispersion of a high percentage of AgNPs leads to the formation of nanoparticles on the outer surface of the alginate which led to their leaching after the catalytic test, while the composite having a low percentage of AgNPs showed good results through all dyes without leaching of AgNPs. For the antibacterial application of the different samples, it was shown that a composite with a higher percentage of AgNPs was the most effective against all bacteria. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Graphical abstract

10 pages, 1285 KiB  
Article
Chitosan Nanoparticles as Bioactive Vehicles for Textile Dyeing: A Proof of Concept
by Eduardo M. Costa, Sara Silva, Manuela Machado, Sérgio C. Sousa, Freni K. Tavaria and Manuela Pintado
Polymers 2022, 14(22), 4821; https://doi.org/10.3390/polym14224821 - 09 Nov 2022
Cited by 1 | Viewed by 1310
Abstract
In recent years bioactive textiles have risen to the forefront of consumers perception due to their potential protection against virus, fungi and bacteria. However, traditional textile staining is an eco-damaging process that and current methods of textile functionalization are expensive, complicated and with [...] Read more.
In recent years bioactive textiles have risen to the forefront of consumers perception due to their potential protection against virus, fungi and bacteria. However, traditional textile staining is an eco-damaging process that and current methods of textile functionalization are expensive, complicated and with great environmental impact. With that in mind, this work sought to show a possible solution for this problematic through the usage of a novel one step textile dyeing and functionalization method based upon nanoencapsulated textile dyes (NTDs). To do so navy blue everzol NTDs were produced with chitosan, cotton dyed, characterized through FTIR and SEM and biological potential evaluated through biocompatibility screening and antimicrobial activity against skin pathogens. The data obtained showed that NTDs effectively dyed the target textile through a coating of the cotton fibre and that NTDs formed hydrogen bonds with the cellulose fibre via electrostatic interactions of the chitosan amino groups with cotton sulphate groups. From a biocompatibility perspective NTDs dyed cotton had no deleterious effects upon a skin cell line, as it promoted cellular metabolism of HaCat cells, while traditionally died cotton reduced it by 10%. Last but not least, NTDs dyed cotton showed significant antimicrobial activity as it reduced viable counts of MRSA, MSSA and A. baumannii between 1 and 2 log of CFU while traditional dyed cotton had no antimicrobial activity. Considering these results the novel method proposed shows is a viable and ecological alternative for the development of antimicrobial textiles with potential biomedical applications. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

17 pages, 4191 KiB  
Article
Effect of Latex Purification and Accelerator Types on Rubber Allergens Prevalent in Sulphur Prevulcanized Natural Rubber Latex: Potential Application for Allergy-Free Natural Rubber Gloves
by Porntip Rojruthai, Jitladda Sakdapipanich, Jinjutha Wiriyanantawong, Chee-Cheong Ho and Naesinee Chaiear
Polymers 2022, 14(21), 4679; https://doi.org/10.3390/polym14214679 - 02 Nov 2022
Cited by 6 | Viewed by 3431
Abstract
Natural rubber (NR) gloves manufactured from NR latex are widely utilized in various applications as a personal protective device due to their exceptional barrier characteristics in infection control. However, the use of NR gloves was associated with concerns on NR protein allergy. With [...] Read more.
Natural rubber (NR) gloves manufactured from NR latex are widely utilized in various applications as a personal protective device due to their exceptional barrier characteristics in infection control. However, the use of NR gloves was associated with concerns on NR protein allergy. With comprehensive leaching procedures now a common practice in NR latex glove factories to eliminate latent rubber proteins and chemical allergens, occurrences and complaints of protein allergy from medical glove users have decreased drastically over the past two decades. The present work aims to eliminate further the residual rubber allergens in NR latex through effective purification of the NR latex and compounding the thus purified latex with an established formulation for allergy-free NR for glove applications. NR latex was purified by deproteinization and saponification, respectively. Several analytical techniques were used to verify rubber allergens eliminated in the purified latexes. Saponified NR (SPNR) latex was the purified NR latex of choice since it is devoid of allergenic proteins and poses the lowest risk of Type I allergy. The purified NR latex was compounded with zinc diethyldithiocarbamate (ZDEC), zinc dibutyldithiocarbamate (ZDBC), and zinc 2-mercaptobenzothiazole (ZMBT), respectively, for glove dipping. Among the investigated accelerators, only ZDBC was not detected in the artificial sweat that came into contact with the dipped articles. Thus, it is deduced that ZDBC poses the lowest risk of Type IV allergy to consumers. Additionally, the morphological and physical properties of dipped articles were assessed. It was revealed that the dipped film from the SPNR latex compounded with ZDBC provided thinner and less yellow products with a more uniform internal structure and a tensile strength comparable to those of commercial NR gloves. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

12 pages, 2687 KiB  
Article
Influence of Type and Concentration of Biopolymer on β-Carotene Encapsulation Efficiency in Nanoemulsions Based on Linseed Oil
by Jenifer Santos, Luis A. Trujillo-Cayado, Marina Barquero and Nuria Calero
Polymers 2022, 14(21), 4640; https://doi.org/10.3390/polym14214640 - 31 Oct 2022
Cited by 3 | Viewed by 1094
Abstract
Many lipophilic active substances, such as β-carotene, are sensitive to chemical oxidation. A strategy to protect these ingredients is encapsulation using nanoemulsions. This work analyzes the relationship between the physical stability and encapsulation efficiency of nanoemulsions based on linseed oil. The role of [...] Read more.
Many lipophilic active substances, such as β-carotene, are sensitive to chemical oxidation. A strategy to protect these ingredients is encapsulation using nanoemulsions. This work analyzes the relationship between the physical stability and encapsulation efficiency of nanoemulsions based on linseed oil. The role of two different polysaccharides, Advanced Performance xanthan gum (APXG) or guar gum (GG) as stabilizers at different concentrations were studied to reach the required physical stability of these systems. This was investigated by means of droplet size distributions, steady-state flow curves, small amplitude oscillatory shear tests, multiple light scattering, and electronic microscopy. The overall results obtained reveal a depletion flocculation mechanism in all the APXG nanoemulsions, regardless of the concentration, and above 0.3 wt.% for GG nanoemulsions. Moreover, it has been demonstrated that enhanced physical stability is directly related to higher values of encapsulation efficiency. Thus, the nanoemulsion formulated with 0.2 wt.% GG, which presented the lowest creaming degree conditioned by depletion flocculation, showed a relative β-carotene concentration even above 80% at 21 days of aging time. In conclusion, the adequate selection of polysaccharide type and its concentration is a key point for the application of stable nanoemulsions as vehicles for active ingredients. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

17 pages, 4548 KiB  
Article
Gelation and the Self-Healing Behavior of the Chitosan–Catechol Hydrogel
by Yu-Ting Lan, Qian-Pu Cheng, Junpeng Xu, Shih-Ho Lin, Jhih-Min Lin and Shan-hui Hsu
Polymers 2022, 14(21), 4614; https://doi.org/10.3390/polym14214614 - 30 Oct 2022
Cited by 3 | Viewed by 2615
Abstract
Mussel-inspired adhesive hydrogels have been developed in biomedical fields due to their strong adhesive property, cohesive capability, biocompatibility, and hemostatic ability. Catechol-functionalized chitosan is a potential polymer used to prepare adhesive hydrogels. However, the unique gelation mechanism and self-healing properties of catechol-grafted chitosan [...] Read more.
Mussel-inspired adhesive hydrogels have been developed in biomedical fields due to their strong adhesive property, cohesive capability, biocompatibility, and hemostatic ability. Catechol-functionalized chitosan is a potential polymer used to prepare adhesive hydrogels. However, the unique gelation mechanism and self-healing properties of catechol-grafted chitosan alone have not yet been explored. Herein, catechol-grafted chitosan (CC) was synthesized and further concentrated to obtain the self-healing CC hydrogels. The gelation mechanism of CC hydrogels may be attributed to the formation of hydrogen bonding, cation–π interactions, Michael addition, or Schiff base reactions during concentration phases. Rheological studies showed that the CC hydrogel owned self-healing properties in repeated damage–healing cycles. Coherent small-angle X-ray scattering (SAXS) analyses revealed the formation of a mesoscale structure (~9 nm) as the solid content of the hydrogel increased. In situ SAXS combined with rheometry verified the strain-dependent behavior of the CC hydrogel. The CC hydrogel displayed the osmotic-responsive behavior and enhanced adhesive strength (0.38 N/cm2) after immersion in the physiological saline. The CC scaffold prepared by lyophilizing the CC hydrogel revealed a macroporous structure (~200 µm), a high swelling ratio (9656%), good compressibility, and durability. This work provides an insight into the design of using chitosan–catechol alone to produce hydrogels or scaffolds with tunable mechanical properties for further applications in biomedical fields. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Graphical abstract

17 pages, 3143 KiB  
Article
Clay-Alginate Beads Loaded with Ionic Liquids: Potential Adsorbents for the Efficient Extraction of Oil from Produced Water
by Shehzad Liaqat, Taleb H. Ibrahim, Mustafa I. Khamis, Paul Nancarrow and Mohamed Yehia Abouleish
Polymers 2022, 14(20), 4440; https://doi.org/10.3390/polym14204440 - 20 Oct 2022
Cited by 1 | Viewed by 1412
Abstract
Produced water (PW) generated from the petroleum industry, during the extraction of oil and gas, has harmful impacts on human health and aquatic life, due to its complex nature. Therefore, it is necessary to treat it before discharging it into the environment in [...] Read more.
Produced water (PW) generated from the petroleum industry, during the extraction of oil and gas, has harmful impacts on human health and aquatic life, due to its complex nature. Therefore, it is necessary to treat it before discharging it into the environment in order to avoid serious environmental concerns. In this research, oil adsorption from PW was investigated using clay-alginate beads loaded with ionic liquids (ILs), as the adsorbent material. The effects of several process parameters, such as the initial concentration of oil, contact time, pH, and temperature on the removal efficiency of the beads, were analyzed and optimized. Different characterization methods, such as the Fourier transform infrared spectrophotometer (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and thermal gravimetric analysis (TGA), were used to investigate the surface morphology, the chemical bond structure and functional group, and the thermal stability of the ILs-based beads. The results revealed that the clay-alginate-ILs beads indicated a removal efficiency of 71.8% at the optimum conditions (600 ppm initial oil concentration, 70 min contact time, 10 pH, and at room temperature) with an adsorption capacity of 431 mg/g. The FTIR analysis confirmed the successful chemical bond interaction of the oil with the beads. The SEM analysis verified that the beads have a porous and rough surface, which is appropriate for the adsorption of oil onto the bead’s surface. The TGA analysis provides the thermal degradation profile for the clay-alginate-ILs. The beads used in the adsorption process were regenerated and used for up to four cycles. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

18 pages, 3201 KiB  
Article
Rheological Method for Determining the Molecular Weight of Collagen Gels by Using a Machine Learning Technique
by Karina C. Núñez Carrero, Cristian Velasco-Merino, María Asensio, Julia Guerrero and Juan Carlos Merino
Polymers 2022, 14(17), 3683; https://doi.org/10.3390/polym14173683 - 05 Sep 2022
Viewed by 2514
Abstract
This article presents, for the first time, the results of applying the rheological technique to measure the molecular weights (Mw) and their distributions (MwD) of highly hierarchical biomolecules, such as non-hydrolyzed collagen gels. Due to the high viscosity of the studied gels, the [...] Read more.
This article presents, for the first time, the results of applying the rheological technique to measure the molecular weights (Mw) and their distributions (MwD) of highly hierarchical biomolecules, such as non-hydrolyzed collagen gels. Due to the high viscosity of the studied gels, the effect of the concentrations on the rheological tests was investigated. In addition, because these materials are highly sensitive to denaturation and degradation under mechanical stress and temperatures close to 40 °C, when frequency sweeps were applied, a mathematical adjustment of the data by machine learning techniques (artificial intelligence tools) was designed and implemented. Using the proposed method, collagen fibers of Mw close to 600 kDa were identified. To validate the proposed method, lower Mw species were obtained and characterized by both the proposed rheological method and traditional measurement techniques, such as chromatography and electrophoresis. The results of the tests confirmed the validity of the proposed method. It is a simple technique for obtaining more microstructural information on these biomolecules and, in turn, facilitating the design of new structural biomaterials with greater added value. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

15 pages, 3931 KiB  
Article
A Fast and Easy Probe Based on CMC/Eu (Ⅲ) Nanocomposites to Detect Acrylamide in Different Food Simulants Migrating from Food-Contacting Paper Materials
by Jiawen Chen, Jun Ye, Mingming Zhang and Jian Xiong
Polymers 2022, 14(17), 3578; https://doi.org/10.3390/polym14173578 - 30 Aug 2022
Cited by 3 | Viewed by 1513
Abstract
The residual acrylamide in food paper packaging can be transferred into water and food, which will cause harmful effects on human beings. In this paper, a rapid and easily available fluorescent probe based on carboxymethyl cellulose (CMC)/Eu (Ⅲ) nanocomposites was designed to detect [...] Read more.
The residual acrylamide in food paper packaging can be transferred into water and food, which will cause harmful effects on human beings. In this paper, a rapid and easily available fluorescent probe based on carboxymethyl cellulose (CMC)/Eu (Ⅲ) nanocomposites was designed to detect the residue acrylamide with high sensibility. The probe could respond in 1 min. The concentration of acrylamide was linearly correlated to the fluorescence intensity of the probe at the emission wavelength of 615 nm in the concentration range of 0.1–100 μmol/L. The limit of detection (LOD) of the probe was 0.085 μg/L, which is lower than the guideline value of the European Union, the U.S. EPA, and the WHO. An experiment was performed to simulate the acrylamide migrating from food-contacting paper materials to different foods, including waterborne food, alcohol beverage, acidic food, and greasy food. The recoveries and RSDs of acrylamide in all samples indicated that the CMC/Eu (Ⅲ) fluorescent probe was efficient for acrylamide detection. The possible mechanism of the probe for acrylamide detection involved both dynamically quenching and static quenching by forming of non-fluorescent substances. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

18 pages, 2993 KiB  
Article
Effect of the Application of a Coating Native Potato Starch/Nopal Mucilage/Pectin on Physicochemical and Physiological Properties during Storage of Fuerte and Hass Avocado (Persea americana)
by David Choque-Quispe, Yasmine Diaz-Barrera, Aydeé M. Solano-Reynoso, Yudith Choque-Quispe, Betsy S. Ramos-Pacheco, Carlos A. Ligarda-Samanez, Diego E. Peralta-Guevara, Edgar L. Martínez-Huamán, John Peter Aguirre Landa, Odilon Correa-Cuba, Henrry W. Agreda Cerna, Mery Luz Masco-Arriola, Washington Julio Lechuga-Canal, Julio C. Loayza-Céspedes and Genaro Julio Álvarez-López
Polymers 2022, 14(16), 3421; https://doi.org/10.3390/polym14163421 - 21 Aug 2022
Cited by 4 | Viewed by 2766
Abstract
The avocado fruit is an agro-industrial product with high export demand in Peru due to its sensory and nutritional qualities, which can be affected during storage. The study aimed to evaluate the effect of the application of a coating formulated with potato starch [...] Read more.
The avocado fruit is an agro-industrial product with high export demand in Peru due to its sensory and nutritional qualities, which can be affected during storage. The study aimed to evaluate the effect of the application of a coating formulated with potato starch (Solanum tuberosum ssp andigena), nopal mucilage (Opuntia ficus indica), and pectin on the physicochemical and physiological properties during the storage of Fuerte and Hass avocados. Samples were taken in their harvest state from the plantation in “Occobamba”, which is cultivated by the Avocado Producers Association in Chincheros, Apurímac, Peru. Physicochemical properties (titratable acidity, pH, total soluble solids) and physiological properties (weight loss, firmness, and color L* a* b*) were determined during 20 days of storage at 20 °C. The elaborated films present high transparency and low aw values. In the coated avocado of the Hass and Fuerte varieties, acidity and total soluble solids decreased significantly (p-value < 0.05) during the storage time. Weight loss and firmness of coated fruits decrease to a lesser extent. Luminosity L*, color index, and color variation showed better attributes for the coated samples. The use of coatings made with potato starch, nopal mucilage, and pectin allows the physicochemical and physiological properties of avocado fruits to be maintained for a longer time during storage. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

15 pages, 3185 KiB  
Article
Production of Low Molecular Weight Chitosan Using a Combination of Weak Acid and Ultrasonication Methods
by Suryani Suryani, Anis Yohana Chaerunisaa, I. Made Joni, Ruslin Ruslin, La Ode Ahmad Nur Ramadhan, Yoga Windhu Wardhana and Sitti Hadijah Sabarwati
Polymers 2022, 14(16), 3417; https://doi.org/10.3390/polym14163417 - 21 Aug 2022
Cited by 8 | Viewed by 2541
Abstract
Low molecular weight chitosan (LMWC) has higher solubility and lower viscosity allowing for a wider pharmaceutical application compared to high molecular weight chitosan. LMWC chitosan can be obtained through a chitosan depolymerization process. This research aimed to produce LWMC using the combination of [...] Read more.
Low molecular weight chitosan (LMWC) has higher solubility and lower viscosity allowing for a wider pharmaceutical application compared to high molecular weight chitosan. LMWC chitosan can be obtained through a chitosan depolymerization process. This research aimed to produce LWMC using the combination of formic acid and ultrasonication method with the optimal condition of the depolymerization process. The chitosan depolymerization method was performed by combining formic acid and ultrasonication. The optimum conditions of the depolymerization process were obtained using the Box–Behnken design. The LMWC obtained from depolymerization was characterized to identify its yield, degree of deacetylation, the molecular weight, structure, morphology, thermal behavior, and crystallinity index. Results: The characterization results of LWMC obtained from the depolymerization process using the optimum conditions showed that the yield was 89.398%; the degree of deacetylation was 98.076%; the molecular weight was 32.814 kDa; there was no change in the chemical structure, LWMC had disorganized shape, there was no change in the thermal behavior, and LWMC had a more amorphous shape compared to native chitosan. Conclusion: The production of LWMC involving depolymerization in the presence of weak acid and ultrasonication can be developed by using the optimal condition of the depolymerization process. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

14 pages, 2228 KiB  
Article
Influence of Centrifugation Cycles of Natural Rubber Latex on Final Properties of Uncrosslinked Deproteinized Natural Rubber
by Nabil Hayeemasae, Sitisaiyidah Saiwari, Siriwat Soontaranon and Abdulhakim Masa
Polymers 2022, 14(13), 2713; https://doi.org/10.3390/polym14132713 - 02 Jul 2022
Cited by 7 | Viewed by 2381
Abstract
Natural rubber latex (NRL) is a polymer (blend) extracted from the milky sap of para rubber trees. Due to being a natural biopolymer, NRL contains various proteins that may be allergenic to humans when in skin contact. Attempts have been made to use [...] Read more.
Natural rubber latex (NRL) is a polymer (blend) extracted from the milky sap of para rubber trees. Due to being a natural biopolymer, NRL contains various proteins that may be allergenic to humans when in skin contact. Attempts have been made to use deproteinized natural rubber (DPNR) instead of impure NRL, and the final properties of these two types of rubber tend to differ. Thus, the correlations between their chemistry and properties are of focal interest in this work. DPNR was prepared by incubating NRL with urea, followed by aqueous washing/centrifugation. The physical, mechanical, and dynamic properties of incubated NRL before and after washing/centrifugation were examined to distinguish its influences from those of incubation with urea. According to the findings, the proteins, phospholipids, and chain entanglements were responsible for natural polymer networks formed in the NR. Although the proteins were largely removed from the latex by incubation, the properties of high ammonia natural rubber (HANR) were still maintained in its DPNR form, showing that other network linkages dominated over those contributed by the proteins. In the incubated latex, the naturally occurring linkages were consistently reduced with the number of wash cycles. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 4315 KiB  
Review
Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications
by Abdulrahman A. B. A. Mohammed, Zaimah Hasan, Abdoulhdi A. Borhana Omran, V.Vinod Kumar, Abdulhafid M. Elfaghi, R. A. Ilyas and S. M. Sapuan
Polymers 2022, 14(20), 4396; https://doi.org/10.3390/polym14204396 - 18 Oct 2022
Cited by 11 | Viewed by 5095
Abstract
Biocomposite materials have a significant function in saving the environment by replacing artificial plastic materials with natural substances. They have been enrolled in many applications, such as housing, automotive engine components, aerospace and military products, electronic and circuit board components, and oil and [...] Read more.
Biocomposite materials have a significant function in saving the environment by replacing artificial plastic materials with natural substances. They have been enrolled in many applications, such as housing, automotive engine components, aerospace and military products, electronic and circuit board components, and oil and gas equipment. Therefore, continuous studies have been employed to improve their mechanical, thermal, physical properties. In this research, we conduct a comprehensive review about corn fiber and corn starch-based biocomposite. The results gained from previous studies were compared and discussed. Firstly, the chemical, thermal, and mechanical properties of cornstarch-based composite were discussed. Then, the effects of various types of plasticizers on the flexibility of the cornstarch-based composite were addressed. The effects of chemical treatments on the properties of biocomposite using different cross-linking agents were discussed. The corn fiber surface treatment to enhance interfacial adhesion between natural fiber and polymeric matrix also were addressed. Finally, morphological characterization, crystallinity degree, and measurement of vapor permeability, degradation, and uptake of water were discussed. The mechanical, thermal, and water resistance properties of corn starch and fibers-based biopolymers show a significant improvement through plasticizing, chemical treatment, grafting, and cross-linker agent procedures, which expands their potential applications. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Figure 1

Back to TopTop