Nanotechnology Applied in Prevention, Diagnosis and Treatment of Infectious Diseases

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: closed (20 July 2022) | Viewed by 33345

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
Interests: cancer; infectious diseases; nanoencapsulation; nanomedicine; nanoparticles; new drug delivery systems; polymersome; theragnosis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The worst pandemic in history was indubitably the Black Death, which killed a third of the European population in the Middle Ages. Other pandemics included the Spanish flu in 1918, the Asian flu in 1957, the Hong Kong flu in 1968, and influenza A (H1N1), also called the swine flu in 2009. None of these pandemics of the last two centuries, however, have been as devastating as COVID-19, which was declared a pandemic by the World Health Organization (WHO) 11 years after the last one.

Despite the development of diagnosis, treatment, and vaccines for infectious diseases around the world, overseas movement of people and animals is becoming easier, and the occurrence of emerging, newly emerging, and exotic malignant contagious infectious diseases is increasing due to urban development, environmental destruction, and so on.

Artificial nanostructures do not only have physical properties with a high surface area, but also various physicochemical properties (conductivity, catalytic activity, enzyme activity, optical properties, etc.), and they can support vaccines and therapeutic agents. Since the formation of various nanostructures can be used for prevention, diagnosis, and treatment, the convergence of nano- and biotechnology is especially important.

Therefore, there is a need to solve the problem of prevention, early diagnosis, and treatment of emerging, newly emerging, exotic malignant contagious infectious diseases with nano- and biotechnology convergence technology.

Prof. Dr. Hyun-ouk Kim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Adjuvants
  • Diagnosis
  • Drug
  • Infectious diseases
  • Nanomedicine
  • Vaccine

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

25 pages, 9722 KiB  
Article
Therapeutic Intervention for Various Hospital Setting Strains of Biofilm Forming Candida auris with Multiple Drug Resistance Mutations Using Nanomaterial Ag-Silicalite-1 Zeolite
by Hanan A. Aldossary, Suriya Rehman, B. Rabindran Jermy, Reem AlJindan, Afra Aldayel, Sayed AbdulAzeez, Sultan Akhtar, Firdos Alam Khan, J. Francis Borgio and Ebtesam Abdullah Al-Suhaimi
Pharmaceutics 2022, 14(10), 2251; https://doi.org/10.3390/pharmaceutics14102251 - 21 Oct 2022
Cited by 4 | Viewed by 1993
Abstract
Candida auris (C. auris), an emerging multidrug-resistant microorganism, with limited therapeutical options, is one of the leading causes of nosocomial infections. The current study includes 19 C. auris strains collected from King Fahd Hospital of the University and King Fahad Specialist [...] Read more.
Candida auris (C. auris), an emerging multidrug-resistant microorganism, with limited therapeutical options, is one of the leading causes of nosocomial infections. The current study includes 19 C. auris strains collected from King Fahd Hospital of the University and King Fahad Specialist Hospital in Dammam, identified by 18S rRNA gene and ITS region sequencing. Drug-resistance-associated mutations in ERG11, TAC1B and FUR1 genes were screened to gain insight into the pattern of drug resistance. Molecular identification was successfully achieved using 18S rRNA gene and ITS region and 5 drug-resistance-associated missense variants identified in the ERG11 (F132Y and K143R) and TAC1B (H608Y, P611S and A640V) genes of C. auris strains, grouped into 3 clades. The prophylactic and therapeutic application of hydrothermally synthesized Ag-silicalite-1 (Si/Ag ratio 25) nanomaterial was tested against the 3 clades of clinical C. auris strains. 4wt%Ag/TiZSM-5 prepared using conventional impregnation technique was used for comparative study, and nano formulations were characterized using different techniques. The antibiofilm activity of nanomaterials was tested by cell kill assay, scanning electron microscopy (SEM) and light microscopy. Across all the clades of C. auris strains, 4 wt%Ag/TiZSM-5 and Ag-silicalite-1 demonstrated a significant (p = 1.1102 × 10−16) inhibitory effect on the biofilm’s survival rate: the lowest inhibition value was (10%) with Ag-silicalite-1 at 24 and 48 h incubation. A profound change in morphogenesis in addition to the reduction in the number of C.auris cells was shown by SEM and light microscopy. The presence of a high surface area and the uniform dispersion of nanosized Ag species displays enhanced anti-Candida activity, and therefore it has great potential against the emerging multidrug-resistant C. auris. Full article
Show Figures

Figure 1

18 pages, 7662 KiB  
Article
Nanoformulation Composed of Ellagic Acid and Functionalized Zinc Oxide Nanoparticles Inactivates DNA and RNA Viruses
by Khaled AbouAitah, Abdou K. Allayh, Jacek Wojnarowicz, Yasser M. Shaker, Anna Swiderska-Sroda and Witold Lojkowski
Pharmaceutics 2021, 13(12), 2174; https://doi.org/10.3390/pharmaceutics13122174 - 16 Dec 2021
Cited by 22 | Viewed by 3123
Abstract
The COVID-19 pandemic has strongly impacted daily life across the globe and caused millions of infections and deaths. No drug therapy has yet been approved for the clinic. In the current study, we provide a novel nanoformulation against DNA and RNA viruses that [...] Read more.
The COVID-19 pandemic has strongly impacted daily life across the globe and caused millions of infections and deaths. No drug therapy has yet been approved for the clinic. In the current study, we provide a novel nanoformulation against DNA and RNA viruses that also has a potential for implementation against COVID-19. The inorganic–organic hybrid nanoformulation is composed of zinc oxide nanoparticles (ZnO NPs) functionalized with triptycene organic molecules (TRP) via EDC/NHS coupling chemistry and impregnated with a natural agent, ellagic acid (ELG), via non-covalent interactions. The physicochemical properties of prepared materials were identified with several techniques. The hybrid nanoformulation contained 9.5 wt.% TRP and was loaded with up to 33.3 wt.% ELG. ELG alone exhibited higher cytotoxicity than both the ZnO NPs and nanoformulation against host cells. The nanoformulation efficiently inhibited viruses, compared to ZnO NPs or ELG alone. For H1N1 and HCoV-229E (RNA viruses), the nanoformulation had a therapeutic index of 77.3 and 75.7, respectively. For HSV-2 and Ad-7 (DNA viruses), the nanoformulation had a therapeutic index of 57.5 and 51.7, respectively. In addition, the nanoformulation showed direct inactivation of HCoV-229E via a virucidal mechanism. The inhibition by this mechanism was > 60%. Thus, the nanoformulation is a potentially safe and low-cost hybrid agent that can be explored as a new alternative therapeutic strategy for COVID-19. Full article
Show Figures

Figure 1

20 pages, 5527 KiB  
Article
Anticandidal Potential of Two Cyanobacteria-Synthesized Silver Nanoparticles: Effects on Growth, Cell Morphology, and Key Virulence Attributes of Candida albicans
by Reham Samir Hamida, Mohamed Abdelaal Ali, Doaa A. Goda and Alya Redhwan
Pharmaceutics 2021, 13(10), 1688; https://doi.org/10.3390/pharmaceutics13101688 - 15 Oct 2021
Cited by 5 | Viewed by 2217
Abstract
Candida albicans is an opportunistic human fungal pathogen responsible for 90–100% of mucosal and nosocomial infections worldwide. The emergence of drug-resistant strains has resulted in adverse consequences for human health, including numerous deaths. Consequently, there is an urgent need to identify and develop [...] Read more.
Candida albicans is an opportunistic human fungal pathogen responsible for 90–100% of mucosal and nosocomial infections worldwide. The emergence of drug-resistant strains has resulted in adverse consequences for human health, including numerous deaths. Consequently, there is an urgent need to identify and develop new antimicrobial drugs to counter these effects. Antimicrobial nanoagents have shown potent inhibitory activity against a number of pathogens through targeting their defense systems, such as biofilm formation. Here, we investigated the anticandidal activity of silver nanoparticles biosynthesized by the cyanobacterial strains Desertifilum sp. IPPAS B-1220 and Nostoc Bahar_M (D-SNPs and N-SNPs, respectively), along with that of silver nitrate (AgNO3), and examined the mechanisms underlying their lethal effects. For this, we performed agar well diffusion and enzyme activity assays (lactate dehydrogenase, adenosine triphosphatase, glutathione peroxidase, and catalase) and undertook morphological examinations using transmission electron microscopy. The effects of the three treatments on Hwp1 and CDR1 gene expression and protein patterns were assessed using qRT-PCR and SDS–PAGE assays, respectively. All of the three treatments inhibited C. albicans growth; disrupted membrane integrity, metabolic function, and antioxidant activity; induced ultrastructural changes in the cell envelope; and disrupted cytoplasmic and nuclear contents. Of the three agents, D-SNPs showed the greatest biocidal activity against C. albicans. Additionally, the D-SNP treatment significantly reduced the gene expression of Hwp1 and CDR1, suggestive of negative effects on biofilm formation ability and resistance potential of C. albicans, and promoted protein degradation. The mechanism involved in the biocidal effects of both D-SNPs and N-SNPs against C. albicans could be attributed to their ability to interfere with fungal cell structures and/or stimulate oxidative stress, enabling them to be used as a robust antimycotic agent. Full article
Show Figures

Graphical abstract

27 pages, 5985 KiB  
Article
Polyphenols Epigallocatechin Gallate and Resveratrol, and Polyphenol-Functionalized Nanoparticles Prevent Enterovirus Infection through Clustering and Stabilization of the Viruses
by Dhanik Reshamwala, Sailee Shroff, Olivier Sheik Amamuddy, Valentino Laquintana, Nunzio Denora, Antonella Zacheo, Vili Lampinen, Vesa P. Hytonen, Özlem Tastan Bishop, Silke Krol and Varpu Marjomäki
Pharmaceutics 2021, 13(8), 1182; https://doi.org/10.3390/pharmaceutics13081182 - 31 Jul 2021
Cited by 14 | Viewed by 3432
Abstract
To efficiently lower virus infectivity and combat virus epidemics or pandemics, it is important to discover broadly acting antivirals. Here, we investigated two naturally occurring polyphenols, Epigallocatechin gallate (EGCG) and Resveratrol (RES), and polyphenol-functionalized nanoparticles for their antiviral efficacy. Concentrations in the low [...] Read more.
To efficiently lower virus infectivity and combat virus epidemics or pandemics, it is important to discover broadly acting antivirals. Here, we investigated two naturally occurring polyphenols, Epigallocatechin gallate (EGCG) and Resveratrol (RES), and polyphenol-functionalized nanoparticles for their antiviral efficacy. Concentrations in the low micromolar range permanently inhibited the infectivity of high doses of enteroviruses (107 PFU/mL). Sucrose gradient separation of radiolabeled viruses, dynamic light scattering, transmission electron microscopic imaging and an in-house developed real-time fluorescence assay revealed that polyphenols prevented infection mainly through clustering of the virions into very stable assemblies. Clustering and stabilization were not compromised even in dilute virus solutions or after diluting the polyphenols-clustered virions by 50-fold. In addition, the polyphenols lowered virus binding on cells. In silico docking experiments of these molecules against 2- and 3-fold symmetry axes of the capsid, using an algorithm developed for this study, discovered five binding sites for polyphenols, out of which three were novel binding sites. Our results altogether suggest that polyphenols exert their antiviral effect through binding to multiple sites on the virion surface, leading to aggregation of the virions and preventing RNA release and reducing cell surface binding. Full article
Show Figures

Figure 1

15 pages, 23075 KiB  
Article
Development of an Immunochromatographic Strip Using Conjugated Gold Nanoparticles for the Rapid Detection of Klebsiella pneumoniae Causing Neonatal Sepsis
by Noha M. Elhosseiny, Tamer M. Samir, Aliaa A. Ali, Amani A. El-Kholy and Ahmed S. Attia
Pharmaceutics 2021, 13(8), 1141; https://doi.org/10.3390/pharmaceutics13081141 - 26 Jul 2021
Cited by 1 | Viewed by 2744
Abstract
Neonatal sepsis is a leading cause of death among newborns and infants, especially in the developing world. The problem is compounded by the delays in pinpointing the causative agent of the infection. This is reflected in increasing mortality associated with these cases and [...] Read more.
Neonatal sepsis is a leading cause of death among newborns and infants, especially in the developing world. The problem is compounded by the delays in pinpointing the causative agent of the infection. This is reflected in increasing mortality associated with these cases and the spread of multi-drug-resistant bacteria. In this work, we deployed bioinformatics and proteomics analyses to determine a promising target that could be used for the identification of a major neonatal sepsis causative agent, Klebsiella pneumoniae. A 19 amino acid peptide from a hypothetical outer membrane was found to be very specific to the species, well conserved among its strains, surface exposed, and expressed in conditions simulating infection. Antibodies against the selected peptide were conjugated to gold nanoparticles and incorporated into an immunochromatographic strip. The developed strip was able to detect as low as 105 CFU/mL of K. pneumoniae. Regarding specificity, it showed negative results with both Escherichia coli and Enterobacter cloacae. More importantly, in a pilot study using neonatal sepsis cases blood specimens, the developed strip selectively gave positive results within 20 min with those infected with K. pneumoniae without prior sample processing. However, it gave negative results in cases infected with other bacterial species. Full article
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 5060 KiB  
Review
Recent Progress on Hyaluronan-Based Products for Wound Healing Applications
by Kuncham Sudhakar, Seong min Ji, Madhusudhana Rao Kummara and Sung Soo Han
Pharmaceutics 2022, 14(10), 2235; https://doi.org/10.3390/pharmaceutics14102235 - 19 Oct 2022
Cited by 9 | Viewed by 2401
Abstract
Hyaluronic acid (HA) based nanocomposites are considered excellent for improving wound healing. HA is biocompatible, biodegradable, non-toxic, biologically active, has hemostatic ability, and resists bacterial adhesion. HA-based nanocomposites promote wound healing in four different sequential phases hemostasis, inflammation, proliferation, and maturation. The unique [...] Read more.
Hyaluronic acid (HA) based nanocomposites are considered excellent for improving wound healing. HA is biocompatible, biodegradable, non-toxic, biologically active, has hemostatic ability, and resists bacterial adhesion. HA-based nanocomposites promote wound healing in four different sequential phases hemostasis, inflammation, proliferation, and maturation. The unique biological characteristics of HA enable it to serve as a drug, an antibacterial agent, and a growth factor, which combine to accelerate the healing process. In this review, we focus on the use of HA-based nanocomposites for wound healing applications and we describe the importance of HA for the wound healing process in each sequential phase, such as hemostasis, inflammation, proliferation, and maturation. Metal nanoparticles (MNPs) or metal oxide nanoparticles (MO-NPs) loaded with HA nanocomposite are used for wound healing applications. Insights into important antibacterial mechanisms are described in HA nanocomposites. Furthermore, we explain antibiotics loaded with HA nanocomposite and its combination with the MNPs/MO-NPs used for wound healing applications. In addition, HA derivatives are discussed and used in combination with the other polymers of the composite for the wound healing process, as is the role of the polymer in wound healing applications. Finally, HA-based nanocomposites used for clinical trials in animal models are presented for wound healing applications. Full article
Show Figures

Figure 1

24 pages, 2934 KiB  
Review
Nanotechnology in the Diagnosis and Treatment of Osteomyelitis
by Demi Zapata, Jordan Higgs, Hunter Wittholt, Kishore Chittimalli, Amanda E. Brooks and Pranothi Mulinti
Pharmaceutics 2022, 14(8), 1563; https://doi.org/10.3390/pharmaceutics14081563 - 27 Jul 2022
Cited by 3 | Viewed by 3977
Abstract
Infection remains one of the largest threats to global health. Among those infections that are especially troublesome, osteomyelitis, or inflammation of the bone, typically due to infection, is a particularly difficult condition to diagnose and treat. This difficulty stems not only from the [...] Read more.
Infection remains one of the largest threats to global health. Among those infections that are especially troublesome, osteomyelitis, or inflammation of the bone, typically due to infection, is a particularly difficult condition to diagnose and treat. This difficulty stems not only from the biological complexities of opportunistic infections designed to avoid the onslaught of both the host immune system as well as exogenous antibiotics, but also from changes in the host vasculature and the heterogeneity of infectious presentations. While several groups have attempted to classify and stage osteomyelitis, controversy remains, often delaying diagnosis and treatment. Despite a host of preclinical treatment advances being incubated in academic and company research and development labs worldwide, clinical treatment strategies remain relatively stagnant, including surgical debridement and lengthy courses of intravenous antibiotics, both of which may compromise the overall health of the bone and the patient. This manuscript reviews the current methods for diagnosing and treating osteomyelitis and then contemplates the role that nanotechnology might play in the advancement of osteomyelitis treatment. Full article
Show Figures

Figure 1

29 pages, 2054 KiB  
Review
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA)
by John Hulme
Pharmaceutics 2022, 14(4), 805; https://doi.org/10.3390/pharmaceutics14040805 - 06 Apr 2022
Cited by 12 | Viewed by 3532
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive [...] Read more.
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA. Full article
Show Figures

Figure 1

37 pages, 1471 KiB  
Review
Nanotechnology Applications of Flavonoids for Viral Diseases
by Khoshnur Jannat, Alok K. Paul, Tohmina A. Bondhon, Anamul Hasan, Muhammad Nawaz, Rownak Jahan, Tooba Mahboob, Veeranoot Nissapatorn, Polrat Wilairatana, Maria de Lourdes Pereira and Mohammed Rahmatullah
Pharmaceutics 2021, 13(11), 1895; https://doi.org/10.3390/pharmaceutics13111895 - 08 Nov 2021
Cited by 22 | Viewed by 4643
Abstract
Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah [...] Read more.
Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of ‘variants of concern’. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability. Full article
Show Figures

Figure 1

28 pages, 3852 KiB  
Review
Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases
by Jong-Woo Lim, Yu-Rim Ahn, Geunseon Park, Hyun-Ouk Kim and Seungjoo Haam
Pharmaceutics 2021, 13(10), 1570; https://doi.org/10.3390/pharmaceutics13101570 - 27 Sep 2021
Cited by 14 | Viewed by 3565
Abstract
The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based [...] Read more.
The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases. Full article
Show Figures

Figure 1

Back to TopTop