Nanotechnology Applied in Prevention, Diagnosis and Treatment of Cancer

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 11253

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
Interests: cancer; infectious diseases; nanoencapsulation; nanomedicine; nanoparticles; new drug delivery systems; polymersome; theragnosis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cancer is a major global health issue. Indeed, despite significant progress made in the fields of cancer research and treatment, there remains a need for more effective and precise diagnostic tools and treatment options. Nanotechnology, the manipulation of materials at the nanoscale level, has the potential to revolutionize cancer care by offering innovative approaches for prevention, diagnosis, and treatment. Nanoparticles can be engineered to selectively target cancer cells while minimizing side effects, whether as drug carriers or imaging agents. In cancer prevention, nanotechnology may help to reduce the incidence of the disease by developing novel approaches to address risk factors and early detection. The impact of nanotechnology in cancer care has shown promising results in preclinical and clinical studies. However, further research and development are necessary to realize its full potential in cancer care. Nanotechnology presents a unique opportunity to develop more effective and precise cancer therapies, which may in turn lead to better outcomes for patients.

We look forward to receiving your contributions.

Dr. Hyun-ouk Kim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • drug delivery
  • biosensors
  • imaging
  • theragnosis

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 4085 KiB  
Article
Charge-Complementary Polymersomes for Enhanced mRNA Delivery
by HakSeon Kim, Yu-Rim Ahn, Minse Kim, Jaewon Choi, SoJin Shin and Hyun-Ouk Kim
Pharmaceutics 2023, 15(12), 2781; https://doi.org/10.3390/pharmaceutics15122781 - 15 Dec 2023
Viewed by 1110
Abstract
Messenger RNA (mRNA) therapies have emerged as potent and personalized alternatives to conventional DNA-based therapies. However, their therapeutic potential is frequently constrained by their molecular instability, susceptibility to degradation, and inefficient cellular delivery. This study presents the nanoparticle “ChargeSome” as a novel solution. [...] Read more.
Messenger RNA (mRNA) therapies have emerged as potent and personalized alternatives to conventional DNA-based therapies. However, their therapeutic potential is frequently constrained by their molecular instability, susceptibility to degradation, and inefficient cellular delivery. This study presents the nanoparticle “ChargeSome” as a novel solution. ChargeSomes are designed to protect mRNAs from degradation by ribonucleases (RNases) and enable cell uptake, allowing mRNAs to reach the cytoplasm for protein expression via endosome escape. We evaluated the physicochemical properties of ChargeSomes using 1H nuclear magnetic resonance, Fourier-transform infrared, and dynamic light scattering. ChargeSomes formulated with a 9:1 ratio of mPEG-b-PLL to mPEG-b-PLL-SA demonstrated superior cell uptake and mRNA delivery efficiency. These ChargeSomes demonstrated minimal cytotoxicity in various in vitro structures, suggesting their potential safety for therapeutic applications. Inherent pH sensitivity enables precise mRNA release in acidic environments and structurally protects the encapsulated mRNA from external threats. Their design led to endosome rupture and efficient mRNA release into the cytoplasm by the proton sponge effect in acidic endosome environments. In conclusion, ChargeSomes have the potential to serve as effective secure mRNA delivery systems. Their combination of stability, protection, and delivery efficiency makes them promising tools for the advancement of mRNA-based therapeutics and vaccines. Full article
Show Figures

Figure 1

13 pages, 3330 KiB  
Article
Prevention of Colitis-Associated Cancer via Oral Administration of M13-Loaded Lipid Nanoparticles
by Dingpei Long, Zahra Alghoul, Junsik Sung, Chunhua Yang and Didier Merlin
Pharmaceutics 2023, 15(9), 2331; https://doi.org/10.3390/pharmaceutics15092331 - 16 Sep 2023
Viewed by 5132
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease, is known to increase the risk of colitis-associated cancer (CAC). CAC has been found to be unresponsive to standard chemotherapy regimens, and the current treatments do not utilize effective small-molecule drugs [...] Read more.
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s disease, is known to increase the risk of colitis-associated cancer (CAC). CAC has been found to be unresponsive to standard chemotherapy regimens, and the current treatments do not utilize effective small-molecule drugs and colon-targeted delivery systems. Previous studies indicated that the M13–nano-liposome (NL) formulation can effectively target the colon and reshape the gut microbiota in ex vivo cultures, generating altered microbial metabolites that can efficiently prevent chronic UC. In this study, we tested the cancer cell uptake ability of the NL formulation and investigated the potential of the M13–NL formulation to prevent CAC in the azoxymethane (AOM)-exposed IL10−/− mouse model. Our findings demonstrate that oral administration of M13–NL prevents tumor development in AOM-exposed IL10−/− mice, suggesting that M13–NL is a promising oral drug formulation for preventing CAC. Full article
Show Figures

Graphical abstract

12 pages, 1685 KiB  
Article
Overcoming Resistance to Immune Checkpoint Inhibitor Therapy Using Calreticulin-Inducing Nanoparticle
by Sri Vidhya Chandrasekar, Akansha Singh and Ashish Ranjan
Pharmaceutics 2023, 15(6), 1693; https://doi.org/10.3390/pharmaceutics15061693 - 09 Jun 2023
Viewed by 1287
Abstract
Nanoparticles (NPs) have the ability to transform poorly immunogenic tumors into activated ‘hot’ targets. In this study, we investigated the potential of a liposome-based nanoparticle (CRT-NP) expressing calreticulin as an in-situ vaccine to restore sensitivity to anti-CTLA4 immune checkpoint inhibitor (ICI) in CT26 [...] Read more.
Nanoparticles (NPs) have the ability to transform poorly immunogenic tumors into activated ‘hot’ targets. In this study, we investigated the potential of a liposome-based nanoparticle (CRT-NP) expressing calreticulin as an in-situ vaccine to restore sensitivity to anti-CTLA4 immune checkpoint inhibitor (ICI) in CT26 colon tumors. We found that a CRT-NP with a hydrodynamic diameter of approximately 300 nm and a zeta potential of approximately +20 mV induced immunogenic cell death (ICD) in CT-26 cells in a dose-dependent manner. In the mouse model of CT26 xenograft tumors, both CRT-NP and ICI monotherapy caused moderate reductions in tumor growth compared to the untreated control group. However, the combination therapy of CRT-NP and anti-CTLA4 ICI resulted in remarkable suppression of tumor growth rates (>70%) compared to untreated mice. This combination therapy also reshaped the tumor microenvironment (TME), achieving the increased infiltration of antigen-presenting cells (APCs) such as dendritic cells and M1 macrophages, as well as an abundance of T cells expressing granzyme B and a reduction in the population of CD4+ Foxp3 regulatory cells. Our findings indicate that CRT-NPs can effectively reverse immune resistance to anti-CTLA4 ICI therapy in mice, thereby improving the immunotherapeutic outcome in the mouse model. Full article
Show Figures

Figure 1

13 pages, 3904 KiB  
Article
Development of a Gold Nanoparticle-Linked Immunosorbent Assay of Staphylococcal Enterotoxin B Detection with Extremely High Sensitivity by Determination of Gold Atom Content Using Graphite Furnace Atomic Absorption Spectrometry
by Chaojun Song, Yutao Liu, Jinwei Hu, Yupu Zhu, Zhengjun Ma, Jiayue Xi, Minxuan Cui, Leiqi Ren and Li Fan
Pharmaceutics 2023, 15(5), 1493; https://doi.org/10.3390/pharmaceutics15051493 - 13 May 2023
Viewed by 1156
Abstract
Highly sensitive staphylococcal enterotoxin B (SEB) assay is of great importance for the prevention of toxic diseases caused by SEB. In this study, we present a gold nanoparticle (AuNP)-linked immunosorbent assay (ALISA) for detecting SEB in a sandwich format using a pair of [...] Read more.
Highly sensitive staphylococcal enterotoxin B (SEB) assay is of great importance for the prevention of toxic diseases caused by SEB. In this study, we present a gold nanoparticle (AuNP)-linked immunosorbent assay (ALISA) for detecting SEB in a sandwich format using a pair of SEB specific monoclonal antibodies (mAbs) performed in microplates. First, the detection mAb was labeled with AuNPs of different particle sizes (15, 40 and 60 nm). Then the sandwich immunosorbent assay for SEB detection was performed routinely in a microplate except for using AuNPs-labeled detection mAb. Next, the AuNPs adsorbed on the microplate were dissolved with aqua regia and the content of gold atoms was determined by graphite furnace atomic absorption spectrometry (GFAAS). Finally, a standard curve was drawn of the gold atomic content against the corresponding SEB concentration. The detection time of ALISA was about 2.5 h. AuNPs at 60 nm showed the highest sensitivity with an actual measured limit of detection (LOD) of 0.125 pg/mL and a dynamic range of 0.125–32 pg/mL. AuNPs at 40 nm had an actual measured LOD of 0.5 pg/mL and a dynamic range of 0.5 to 128 pg/mL. AuNPs at 15 nm had an actual measured LOD of 5 pg/mL, with a dynamic range of 5–1280 pg/mL. With detection mAb labeled with AuNPs at 60 nm, ALISA’s intra- and interassay coefficient variations (CV) at three concentrations (2, 8, and 20 pg/mL) were all lower than 12% and the average recovery level was ranged from 92.7% to 95.0%, indicating a high precision and accuracy of the ALISA method. Moreover, the ALISA method could be successfully applied to the detection of various food, environmental, and biological samples. Therefore, the successful establishment of the ALISA method for SEB detection might provide a powerful tool for food hygiene supervision, environmental management, and anti-terrorism procedures and this method might achieve detection and high-throughput analysis automatically in the near future, even though GFAAS testing remains costly at present. Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 11452 KiB  
Review
Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility
by Jiahuan Zheng, Rui Huang, Zhexuan Lin, Shaoqi Chen and Kaisong Yuan
Pharmaceutics 2024, 16(1), 44; https://doi.org/10.3390/pharmaceutics16010044 - 27 Dec 2023
Viewed by 1665
Abstract
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such “tiny robots” show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the [...] Read more.
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such “tiny robots” show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect of nano/micromotors to show the great efforts made by researchers to promote their clinical application, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion, and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future challenges in translating nano/micromotors into real applications and the potential directions for increasing biocompatibility are also described. Full article
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

1) Combination of cerium oxide nanoparticles and antimalarial drug chloroquine: a novel therapeutic tool in triple negative breast cancer?

Chantal-Kristin Wenzel1, Claudia Wyrich1, Clara van Waasen1, Andreas S. Reichert1, Sudipta Seal2, and Peter Brenneisen1.

2) Controled release of Erufosine from polymer-based carriers based on polycaprolactone/poly (ethylene oxide) and the effect on Graffi tumor-bearing hamsters

Nikolai Georgiev 1, Ani Georgieva 2, Tania Toshkova 3, Dobrin Svinarov 4, Reneta Toshkova 2 and Rumiana Tzoneva

 

Back to TopTop