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Abstract: Hyaluronic acid (HA) based nanocomposites are considered excellent for improving
wound healing. HA is biocompatible, biodegradable, non-toxic, biologically active, has hemostatic
ability, and resists bacterial adhesion. HA-based nanocomposites promote wound healing in four
different sequential phases hemostasis, inflammation, proliferation, and maturation. The unique
biological characteristics of HA enable it to serve as a drug, an antibacterial agent, and a growth factor,
which combine to accelerate the healing process. In this review, we focus on the use of HA-based
nanocomposites for wound healing applications and we describe the importance of HA for the
wound healing process in each sequential phase, such as hemostasis, inflammation, proliferation,
and maturation. Metal nanoparticles (MNPs) or metal oxide nanoparticles (MO-NPs) loaded with
HA nanocomposite are used for wound healing applications. Insights into important antibacterial
mechanisms are described in HA nanocomposites. Furthermore, we explain antibiotics loaded
with HA nanocomposite and its combination with the MNPs/MO-NPs used for wound healing
applications. In addition, HA derivatives are discussed and used in combination with the other
polymers of the composite for the wound healing process, as is the role of the polymer in wound
healing applications. Finally, HA-based nanocomposites used for clinical trials in animal models are
presented for wound healing applications.

Keywords: hyaluronic acid; metal/metal oxide nanoparticles; antibiotic drugs; antibacterial activity;
wound healing

1. Introduction

Skin is the first-line anatomical barrier, the most exposed organ, and the most vulnera-
ble to injury. Skin is a primary immunological barrier and protects against dehydration and
infiltration by micro-organisms. When skin is damaged, complex biological processes are
immediately initiated comprised of four overlapping, sequential, interconnected phases,
namely, (i) hemostasis and coagulation, (ii) inflammation, (iii) proliferation and migration,
and (iv) maturation or remodeling [1–5]. The majority of wounds are easily cleaned and
recover within a few weeks with appropriate care. However, in many individuals with
injuries or more serious wounds, healing is prolonged becoming problematic. These compli-
cations include hemorrhage and infections and increase treatment costs and have negative
consequences for individuals, their families, communities, and society [6–8]. Wounds are a
serious global problem, and associated treatment costs were projected to be US $20 billion
and €4–6 billion annually in the United States and the European Union, respectively [9–11].
Skin lacerations caused by physical, chemical, and thermal factors initiate the wound heal-
ing process. However, wounds may become chronic as a result of loss of fluids, excessive
inflammation, and other hurdles that prevent or delay wound healing [12–14]. To cir-
cumvent these limitations of the wound healing process, tissue engineers have developed
various biomaterials, such as hydrogels, membranes, fibers, and nanocomposites. Ideal
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wound dressings must be able to: (i) preserve a wet environment; (ii) facilitate epidermal
migration, promote angiogenesis, and organize connective tissue; (iii) permit access to
gases and nutrients; (iv) protect against micro bacterial contamination; and (v) be non-toxic,
biodegradable and non-allergenic [15,16].

Wound healing is an interactive process that includes phases of hemostasis, inflam-
mation, proliferation, and remodeling. In the wound healing complex, the most serious
problem in skin wounds is a bacterial infection, which can be caused by the aggregation
and expansion of bacterial cells at the wound site [17,18]. Infection under the dressing
prolongs the inflammatory response, impedes re-epithelialization and collagen synthesis,
and inhibits healing [19]. The most common bacteria accompanying wound infections
contained Gram-positive and Gram-negative bacteria. Moreover, bacterial cells can also
aggregate and anchor in an extracellular matrix to form biofilms. As a result, they can
prevent drugs from penetrating the affected region, and bacterially formed biofilms are
considered an important mechanism of antibiotic resistance against bacterial infections [20].
Bacterial infections at wound sites have been associated with delayed wound healing and,
in certain circumstances, with significant adverse consequences that can be life-threatening.
It follows that antimicrobial activity is an essential requirement for an appropriate wound
dressing. Some studies have been reported on the importance of antibacterial activity for
skin re-epithelization during the wound healing process [21–24].

2. HA Plays a Significant Role in the Wound Healing Process

HA is a linear glycosaminoglycan (GAG) present in all living creatures including
bacteria and has a consistent chemical structure. Alternating repeating units of D-glucuronic
acid and N-acetyl-D-glucosamine are connected by β-1, 4, and β-1, 3-glycosidic associations
in biopolymeric HA [25]. HA is a constituent of dermal extracellular matrix (ECM), and is
present in numerous tissues, including synovial fluid and soft and connective tissues [26,27].
HA has a rapid turnover rate in vivo and is catabolized in the extracellular environment
via two pathways: (a) by hyaluronidase hydrolysis or by oxygen-free radical fragmentation
before being evacuated from the lymphatic system, and (b) by enzymatic degradation
initiated by adjacent cells, after which it is transported to lysosomes or endosomes [28].
The biological function of HA is reliant on molecular weight (MW) [29,30]. Specifically,
HA receptors, such as CD44 (cluster of differentiation 44), RHAMM (receptor for HA-
mediated motility), and TLR2 and 4 (toll-like receptors 2 and 4), interact with HA of
different molecular weights [31], and these interactions regulate wound healing through
several intracellular signaling pathways, though wound healing usually proceeds via the
four sequential stages shown in Figure 1.

• Phase I—Hemostasis and coagulation: Platelets within wounds generate significant
amounts of high MW HA (HMW-HA). Edema occurs when HMW-HA is linked
to fibrinogen, clotting factor I, which circulates in blood and causes effective clot
formation. Edema forms when HA is saturated with fluid and HA expands around
wound sites. Furthermore, immune cells access wounds through edema and provide
a temporary scaffolding material [32,33];

• Phase II—Inflammation: HMW-HA is converted into low molecular weight HA (LMW-
HA) at sites of inflammation, and whereas HMW-HA has immunosuppressive and
antiangiogenic properties, LMW-HA is immunostimulatory and pro-angiogenic. Cy-
tokines and chemokines induced by LMW-HA bind to TLR2 and TLR4 at wound
sites and promote the activation, infiltration, and maturation of immune cells. How-
ever, although inflammation is essential for wound healing, protracted inflammation
can cause acute wounds to become chronic. During the Inflammation, LMW-HA is
converted into oligomer-HA (O-HA), which suppresses inflammatory response and
increases proliferative activity [34];

• Phase III—Proliferation and migration: In this phase, O-HA reduces inflammation, in-
creases re-epithelization, promotes angiogenesis, and accelerates granulation tissue de-
velopment. O-HA binds to CD44 and RHAMM consequently activates keratinocytes,
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endothelial cells, and fibroblasts. Furthermore, to produce and deposit collagen type
III at wound sites, O-HA promotes endothelial and fibroblasts, which results in the
formation of new collagen matrix [35];
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Figure 1. The influence of HA at wound sites during the hemostasis, inflammation, proliferation, and
remodeling phases of wound healing, Copyright 2017, ACS publication [36].

• Phase IV—Maturation and remodeling: This phase is characterized by interactions
between O-HA and the receptors CDD4 and RHAMM, which result in the production
of type I collagen. ECM remodeling requires the upregulations of matrix metallopro-
teinases (MMPs) and transforming growth factor (TGF-β), which stimulate fibroblast
to myofibroblast differentiation. Therefore, HA-enriched composite facilitates the
great potential for wound regeneration [36]. Table 1 shows the summary of the wound
healing process.

Table 1. A Summary of Wound Healing.

Activity Hemostasis Inflammation Proliferation Remodeling

Healing Activity

Hours
Vasoconstriction

Platelet
AggregationPlatelet
DegranulationBlood

clotting

Days
Leucocyte migration

Neutrophil
activationsKilling

bacteria
Excluded cellar derbies
Liberation of Growth

factors

Week
Neo-vascularisation

Angiogenesis
Fibroblast proliferation
Kertinocytes migrations

Collagen type III
formation

Months
Fibroblast secretion
ECM reorganization

Collagen type I
formation

Cell type Platelet Neutrophil Keratinocyte,
Endothelial, Fibroblast, Fibroblast

Cytokine and
Growth factors

Fibrin
Thrombin

Clotting factor I

TLR2, TLR4
TGF-β, VEGF

TNF-α

TNF-α, VEGF
bFGF, CD44

MMPs
TGF-β
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3. Wound Healing Applications of Metal Nanoparticles (MNPs)

It is essential that clinicians anticipate the needs of injured tissues. Material choice is
highly influenced by the phase of healing, duration of the therapeutic effect, dosage, wound
depth, and mechanism of action [37]. Researchers have created materials that maintain
a moist environment and be antimicrobial. Individual wound healing routes have been
constructed using a range of natural and synthetic materials alone or in combination [38].
Furthermore, nanomaterials have great potential in terms of encouraging self-healing pro-
cesses that imitate regeneration. However, due to the heterogeneous nature of wound
tissues, an understanding of the mechanisms and cellular cascades involved is required
to customize nanomaterials for wound healing applications [39,40]. Nanoparticles are in-
trinsically more active than microparticles because of their higher surface-to-volume ratios.
Metal nanoparticles, such as Ag, Au, and Zn, have antimicrobial activities and remarkably
stimulate wound healing, making them suitable candidates for wound dressings [41–43].

Silver nanoparticles (AgNPs) can regulate the release of anti-inflammatory cytokines
and speed wound healing without causing scarring, and encourage keratinocyte prolifer-
ation to promote epidermal re-epithelization [44]. Gold nanoparticles (AuNPs) improve
healing and limit microbial colonization and increase keratinocyte proliferation and differ-
entiation at low concentrations [45]. Zinc oxide nanoparticles (ZnO NPs) are established
antibacterial agents that induce bacterial cell membrane perforation. When nanoparticles
are integrated into hydrogels used as wound dressings, they promote keratinocyte migra-
tion and thus improve re-epithelialization [46]. On the other hand, polymeric nanoparticles,
such as chitosan, alginate, cellulose, and hyaluronic acid, have strong antibacterial and re-
epithelialization characteristics when used as wound dressing materials or delivery vectors.
Hyaluronic acid modulates cell adhesion and attachment [47], and hyaluronan oligosac-
charides induce endothelial cell proliferation, motility, and angiogenesis by increasing the
production of vascular endothelial growth factors [48].

Nanoparticle structure-activity correlations and the mechanisms responsible for their
actions have remained elusive. However, nanomaterials offer a great deal of promise as they
promote self-healing mechanisms that mimic regeneration. Understanding of the processes
and cellular cascades at play to design nanomaterials that promote wound healing [37].
This section describes HA interactions with antibacterial agents and their antibacterial
mechanisms. The interaction between HA and MNPs with inter and intra-hydrogen bonds
between hyaluronan chains is destroyed or generated spontaneously when the pH of the
reaction mixture is increased or decreased. [49]. MNPs are chemically or physically attached
to hydroxyl, carboxyl, acetamide, and the amino groups of hyaluronan. The hyaluronan
groups electrostatically protected MNPs which MNPs function as crosslinking agents
between hyaluronan chains and maintain the helical structure of hyaluronic acid [50].
The rapid development of resistance mechanisms in several bacterial strains makes it
difficult to combat antibiotic-resistant pathogens [51]. In individuals with some degree
of immunosuppression, these strains are particularly capable of causing bacteremia and
persistently infected wounds [52]. By damaging the cell wall, bacterial membranes, electron
transport chain, nucleic acids, proteins or enzymes, these inorganic nanoparticles can
prevent bacterial growth [53]. They can also do this by binding directly to biological
macromolecules or indirectly producing reactive oxygen species (ROS). However, under
physiological circumstances, using the higher amounts of MNPs required for antibacterial
activity can result in poor biocompatibility and cytotoxicity, modification of the MNP
surface with additional biocompatible antibacterial compounds is a promising strategy [54].
In order to understand the wound healing process, it is necessary to understand the
antibacterial mechanism.

Mechanisms of HA Nanocomposite Induced Releases of Antibiotics and MNPs

The mechanism underlying the antibacterial activity of HA nanocomposites is shown
in Figure 2. The main steps are as follows: (a) Gram-positive bacteria and Gram-negative
bacteria released hyaluronidase (HAase), which causes specific cleaved of the HA-Ag-
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drug nanocarrier [53,54]. Furthermore, metabolic activities of the antibacterial agent cause
an acidic environment (H+) in the vicinity of bacteria [55]. Both HAase and H+ may
cause MNPs and drugs released from HA composite. (b) MNPs have been shown to
adhere and accumulate on cell membranes, where they may oxidize plasma membrane
surface proteins and cause structural alterations in cell membranes [56]. (c) However, the
M+ produced by MNPs dissolves cell membranes and causes considerable increases in
membrane permeability and morphological changes [53,57]. (d) MNPs and M+ have also
been shown to produce ROS, which can cause cell membrane damage [58]. (e) Membrane
leakage can reduce the transmembrane proton electrochemical gradient and disable energy-
dependent processes, such as adenosine triphosphate (ATP) production, ion transport, and
metabolite sequestration [59]. (f) MNPs can easily enter bacterial cells by enhancing cell
membrane permeability and then biochemically attach to ribosome at h44 in the 30S and
H69 in the 50S subunit and prevent protein formation [60]. (g) Damaged DNA caused by
MNPs can interact with intracellular enzymes and disrupt cellular metabolism-induced
intracellular ROS production [54,61,62]. (h) Furthermore, interactions between MNPs and
antibiotics produce MNPs-antibiotic complexes, which stimulate M+ ion release at cell
walls and inhibit bacterial growth [63]. A synergistic antibacterial mechanism in which
MNPs-antibiotic complexes increased ROS levels, membrane damage, and K+ leakage as a
result of protein release and biofilm inhibition [64].
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4. HA-MNPs and Wound Healing Applications
4.1. Silver Nanoparticles

Silver (Ag) is the most well-studied antibacterial agent due to its broad antibacterial
spectrum, although extensive spectra of micro-bacterial pathogens, fungi, and viruses are
resistant to AgNPs [65,66]. Since World War I, silver nitrate (AgNO3) has been used as an
antibacterial material for treating wounds because of its unique antibiotic properties. How-
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ever, the current use of Ag agents for the treatment of burns is limited to silver derivatives,
such as silver sulfadiazine (cream/gel) [67]. AgNPs play a vital role in preventing infection
and decreasing bacterial effects at wound sites due to their broad-spectrum antibacterial
and surface modification characteristics, and thus, are incorporated into polymeric mate-
rials and drugs to promote wound healing [68]. However, antibacterial agents must be
added to native hyaluronan to prevent bacterial infections of wounds or chronic ulcers
from forming. Table 2 shows summarize MNPs-loaded HA composites used for wound
healing applications.

In-situ AgNPs were synthesized using HA as a stabilizing and capping agent without
any external reducing agents by A.M. Abdel-Mohsen et al. [69]. The in-situ production
of AgNPs (20–25 ± 2 nm) enhanced the crystallinity and thermal stability of fabrics and
improved mechanical characteristics as compared with pure HA. Wound covers made of
HA/AgNPs nanocomposite fabrics had satisfactory antibacterial activities against Gram-
negative bacteria (e.g., E. coli), did not show cytotoxicity against HaCaT cells, and were
highly biocompatible. HA/AgNPs composites also had better wound healing efficacies
than a HA composite and a control sample. Histological evaluations confirmed the im-
proved wound healing capacities of HA/AgNPs composites.

B. Lu et al. [70] reported spongy composites (SPCs) containing AgNPs prepared
from HA combined with a chitosan solution mixed and AgNO3 using a freeze-drying
method. AgNO3 concentration was found to influence AgNPs aggregation and morphology.
HA/AgNP (5–20 nm) SPCs had an interconnected porous structure and a rough surface.
When AgNO3 concentration increased, pore size increased, and surfaces had a folded
structure. SPCs had good mechanical properties, swelling, and water retention capacity
(>5% after 60 h). Furthermore, their results indicated that SPCs could effectively inhibit
bacterial growth and the penetration of E. coli and S. aureus. L929 cells were unaffected by
a low concentration of AgNPs. In vivo studies showed wound contraction ratio, average
healing time, and histological characteristics that HA/AgNPs composites encouraged
wound healing. Figure 3 shows the formation of AgNPs and bacterial killing for wound
healing application.

P. Makvandi et al. [71] fabricated injectable-sensitive hydrogels based on a combination
of HA, pluronic (P), corn silk extract (CSE), and AgNPs using a microwave-assisted method.
The gelation of pluronic is induced by self-assembly triggered by polymer-polymer in-
teractions in solution to form a semi-solid phase [72]. AgNPs increased the population
of micelles and increased their sizes in composite gel, but HA did not affect the size of
micelles. HA/P/AgNPs hydrogels exhibited good mechanical properties with Tgel values
close to body temperature and improved viscoelasticities. Fabricated AgNPs (13 ± 1 nm)
hydrogels effectively inhibited B. subtilis, S. aureus, P. aeruginosa, and E. coli growth, and
L929 cells treated with AgNPs exhibited no evidence of cytotoxicity and a typical mouse
fibroblast-like shape typical of in vitro L929 cell morphology shown in Figure 4A(a,b) for
24 h and 72 h. HA/P/AgNPs hydrogels were applied to HDF cells for in vitro wound
healing assessments. CSE acts as a medium for synthesizing AgNPs and improving wound
healing ability. Pluronic can promote cell migration, division, and proliferation, increase
ECM formation, and help to create a microenvironment that promotes wound healing. M.R.
El-Aassar et al. [73] fabricated electrospun nanofiber HA combined with polygalacturonic
acid (PGA) and loaded it with AgNPs. Specifically, hydrophilicity and starin activity of
the nanofiber was increased due to the increases in the HA content. The stress-strain curve
of the (PGA/HA)-PVA nanofibers was much improved, and their capacity to withstand
network deformation decreased as AgNPs concentration increased. This enhancement in
nanofiber stress-strain was due to HA acting as a crosslinker between PGA/PVA chains.
AgNPs presented in nanofibers had strong antibacterial effects against pathogens. In addi-
tion, AgNPs acted as antioxidant and anti-inflammatory agents and thus protected cells
from the damaging effects of ROS and accelerated wound healing. Moreover, an in vivo
evaluation in albino rats exhibited maximum epithelization and collagen deposition after
14 days in the presence of nanofiber.
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Table 2. HA-based Ag nanoparticles for wound healing applications.

Base
Polymer

Other
Polymer Nanoparticles Cross-

Linker
Type of

Composite Method Bacterial
Strains Cells Ref.

HA —-
AgNPs

(20–25 ±
2 nm)

—-
Fabric

nanocom-
posite

The wet
dry-spinning

technique
(WDST)

E. coli
Keratinocyte

cell line
(HaCaT)

[69]

HA
Chitosan-L-

glutamic acid
(CG)

AgNPs
(5–20 nm) —- Spongy

composite Freeze-drying E. coli & S.
aureus. L929 cells [70]

HA corn silk
extract (CSE)

AgNPs
(13 ± 1 nm)

self-
assembling Hydrogels microwave-

assisted

B.subtilis, S.
aureus & P.

aeruginosa, E.
coli

L929 cells &
HDF cells. [71]

HA Polygalacturonic
acid (PGA) AgNPs —- Nanofibers Electrospinning

B.subtilis, S.
aureus & E.

coli
—- [73]

HA Gelatin AgNPs

(EDC
NHS)
Photo

cross-linker

Hydrogels
Free-radical

polymerization
under UV light

S. aureus and
E. coli, 3T3 cells [74]

HA PCN-224 AgNPs Visible
lightTCPP Hydrogels Photosensitive MRSA

E. coli L929 cells [75]

HA
Alginate

with chital
-AgNPs

AgNPs Calcium
ion

Spongy
membrane Freeze-drying

S. aureus,
S.epidermid &
P. aeruginosa

HaCaT &
HDF cells [76]
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Modified methacrylate hyaluronan (MHA) combined with polyacrylamide (PAAm)
and loaded with AgNPs was used to prepare AHAs hydrogels (Q Tang et al. reported
(2020) [74]. Engineered hydrogels exhibited satisfactory stretch, adhesion, and hemostatic
characteristics. Rat-tail bleeding and liver bleeding models were used to investigate the
hemostatic ability of the hydrogels. AgNPs containing hydrogels provide outstanding
antibacterial activity against E. coli and S. aureus. AHAs hydrogels alleviated inflamma-
tion, promoted angiogenesis and collagen deposition, and improved granulation tissue
development. Blood losses in the severed rat-tail and liver bleeding models showed that
AHA hydrogels less blood clotting compare to the control. SEM images demonstrated the
interaction between AHA or gauze and red blood cells many red cells adhered to the surface
of AHA, presumably because of electrostatic interactions between positively charged MHA
and negatively charged red blood cells, and the subsequent enhancement of platelet throm-
bosis. Zhang, Y et al. [75] constructed PCN-224-Ag-HA nanocomposite an antibacterial
surface composed of a HA coating on photosensitive PCN-224 nanoscale metal-organic
frameworks (nMOFs) embedded with AgNPs. Metal nodes of nMOFs selected as a photo-
sensitive ligand 5,10,15,20-tetrakis(4-methoxycarbonylphenyl)porphyrin (TCPP) and Zr6
clusters. PCN-224-Ag-HA exhibited excellent biocompatibility with non-targeted bacteria
and mammalian cells, which was attributed to the presence of HA and a small amount
of Ag ion release. Moreover, PCN-224-Ag-HA was degraded and HAase was secreted in
the presence of the bacteria to produce PCN- 224-Ag+, which electrostatically bound to
bacteria. ROS might be exerted more efficiently as a result of the synergistic antibacterial
action originating from Ag ions, allowing for resource conservation. PCN-224-Ag-HA
demonstrated exceptional antibacterial activity in both in vitro and in vivo assessments,
indicating that it has much promise for biomedical applications. Figure 4B displays the
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nano platform used for killing bacteria and disinfecting wounds using the Ag-infused
nMOFs. Figure 4B(a) MRSA strain and Figure 4B(b) drug survival rates of E. coli under
UV-light irradiation. (C, D) SEM images of MRSA and (D) Drug resistance for E. coli after
various treatments under UV-light irradiation (1) PBS, (2) AgNO3, (3) PCN-224-HA, and
(4) PCN-224-Ag-HA.

Tarusha, L. et al. [76] developed flexible HA-based alginate/Chitlac-AgNPs mem-
branes and found they promoted wound healing in vitro and were effective against plank-
tonic bacteria and bacterial biofilms. Furthermore, the Chitlac-AgNPs component was
shown to suppress the proteolytic activity of matrix metalloproteinases (MMPs), which has
been reported to hinder the healing of resistant wounds in vitro. Membranes were non-
cytotoxic to keratinocytes and primary fibroblasts in vitro. Reswelling kinetic experiments
showed this biomaterial is highly hygroscopic, which is critical for eliminating excessive
exudates and removing bacteria nutrition from wound beds. In addition, membranes had
a high water-vapor transfer rate (WVTR), which indicated they could maintain a moist
environment at wound sites and prevent dehydration or exudate buildup.

4.2. Gold Nanoparticles

Gold nanoparticles (AuNPs) are now being employed to administer a variety of bioac-
tive compounds and enhance therapeutic efficacy by providing tailored distributions, re-
ducing toxicity, and increasing absorption [77,78], and are considered suitable transporters
of proteins and macromolecules and the more widely distributed [79]. The use of AuNPs
to treat various infections has been examined in various tissue damage models due to
their antioxidant and anti-inflammatory properties [80]. Interestingly, Sumbayev et al. [81]
showed that citrate-stabilized AuNPs reduced IL1-induced cellular response in vitro and
in vivo.

In an epithelial lesion Wistar rat model, Mendes, C. et al. [82] investigated the in-
flammatory and antioxidant effects of a combination of PBM and AuNPs-HA on proin-
flammatory IL1 and TNFα, anti-inflammatory IL10 and IL4, growth factors (FGF and
TGFβ), and cytokines and on oxidative stress parameters. In addition, histological analysis
was performed to evaluate inflammatory infiltrates, fibroblasts, new vessels, and colla-
gen production. Treated animals had lower proinflammatory cytokine levels and higher
anti-inflammatory cytokine levels. TGF and FGF levels also increased in treated animals,
especially in the combination therapy group (PBM + AuNPs-HA). In terms of oxidative
stress parameters, MPO, DCF, nitrite levels, and oxidative damage were lower in treated
with carbonyl and thiol groups. Antioxidant defense was enhanced in the treated animals,
and histologic sections showed inflammatory infiltration was lower in the PBM + GNPs-
HA group than in the non-treated controls. PBM or PBM + HA treated animals had more
fibroblasts, and collagen production was greater in all treated animals than in controls.

Ovais, M., et al. reported [83] Gold nanoparticles improve the healing of wound infec-
tion when used in photobiomodulation treatment. In addition, a cryopreserved fibroblast
culture coupled with gold nanoparticles has been used to heal burns in rats. The antibac-
terial and antioxidant properties of gold nanoparticles have been shown to be extremely
beneficial for wound healing and collagen tissue regeneration. In addition, AuNPs are
involved in the release of proteins, such as IL-8, IL-12, VEGF, and TNF, which are important
candidates for wound healing due to their antiangiogenic and anti-inflammatory activity.

4.3. Wound Healing Applications of HA-ZnO NPs

Metal oxides play a prominent role in the prevention of bacterial infections. The
antimicrobial activity of ZnO NPs against microbial pathogens, such as Gram-positive
and Gram-negative bacteria, is mediated by chemical processes such as the formation of
ROS, the release of Zn2+ ions, and by physical effects, such as bacterial cell membrane
rupture and internalization [84,85]. In addition, ZnO NPs promote tissue regeneration
and vascularization, which aids wound healing [86,87]. ZnO loaded composite fibers
exhibit antibacterial activity using two possible mechanisms: (i) The generation of reactive
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oxygen species, such as H2O2, O2−, and OH−, which causes oxidative stress in bacteria;
and (ii) by interacting electrostatically with cell surfaces and damaging bacterial cell mem-
branes [88–90]. When the effects of ZnO-loaded nanocomposite fibers were examined on S.
aureus and E. coli, they were found to have greater antibacterial activity against S. aureus.
This may have been because the cell walls of E. coli and S. aureus are quite different in terms
of their structure and chemical compositions, that is, the cell wall of S. aureus is composed
of a simple peptidoglycan layer, whereas that of E. coli contains lipid A, lipopolysaccharide,
and peptidoglycan [91,92]. Furthermore, the outer layer of the S. aureus bacteria might
increase ZnO adherence, whereas that of E. coli may reduce attachment [93].

The antimicrobial activity of ZnO NPs is due to the disruption of bacterial cell mem-
branes and the stimulation of reactive oxygen species (ROS) [94]. Different types of bio-
materials with antimicrobial properties produced by embedding ZnO NPs into hydrogel
networks have been used to promote wound healing. However, most of these materials
have low adhesion strengths and are not easily biodegraded [95,96]. Thus, there is a need
to develop composites with better adhesive and mechanical strengths and biodegradation
properties to encourage skin repair and regeneration [88]. Table 3 shows summarize MO
NPs-loaded HA composites used for wound healing applications.

Non-antibiotic combined treatments based on functionalized nanofibers (NFs) have
been used to suppress microbial invasion and minimize antibacterial resistance [97]. In
a new approach to the functionalization of NFs for wound healing, a non-antibiotic com-
binational therapy was employed to limit microbial invasion and decrease antimicrobial
resistance. M.R. El-Aassar et al. [98] produced NFs by embedding a ZnO NPs/cinnamon
essential oil (CEO) as a biocomposite in an electrospinnable HA/polyvinyl alcohol (PVA)/
polyethylene oxide (PEO) blend. The effect of this material on bacterial growth was per-
formed using log number plots of S. aureus [99]. HA/ZnO/CEO-NFs reduced S. aureus
growth more than HA/ZnO-NFs or HA/CEO-NFs, presumably due to the presence of
ZnO NPs [100] and CEO [101]. NFs are non-toxic to human dermal fibroblasts (HDF)
cells [102]. Furthermore, it has also been reported that HA-ZnO nanocomposite enhanced
the cytocompatibility of essential oils [103,104]. After 24 h, all antibacterial NFs formula-
tions showed excellent antibacterial activity against S. aureus. The lower in vivo activity of
singly loaded NFs than combinational NFs was attributed to more challenging wound mi-
croenvironments [105], prolonged interactions with wounds, and continuous CEO release.
As a result, the combinational NFs displayed antibacterial properties. Hadisi, Z et al. [106]
fabricated a wound dressing using core-shell hyaluronic acid–silk fibroin/ZnO nanofibers
to treat burn injuries. ZnO NPs incorporated in the core of nanofibers improved sustained
drug release and regulated bioactivity. Increases in the ZnO content in the polymer matrix
increased wound dressing antibacterial abilities against E. coli and S. aureus. When HA–SF
nanofibers were tested in vitro, HaCat cells displayed good cell adhesion, cell proliferation,
and viability in culture at ZnO doping levels up to 3%. Since HA–SF/ZnO-3 stimulated
HaCat cell movement, a similar tendency was found in scratch experiments. The inclusion
of ZnO may have increased wound contraction in the HA–SF/ZnO-3 group. ZnO has also
been demonstrated to have favorable effects on the stimulation and migration of epithelial
cells and keratinocytes and wound closure [107,108]. Based on the outcomes of in vitro
experiments, HA–SF/ZnO-3 was chosen for an in vivo examination. Histologically, HA–
SF/ZnO-3 improved burn wound healing and skin regeneration and enhanced collagen
deposition by stimulating the creation of epidermis, hair follicles, and sebaceous glands.
Furthermore, immunohistopathological staining revealed that the HA–SF/ZnO-3 nanofiber
matrix-treated burn site reduced inflammatory response than gauze or HA–SF. Figure 5A
depicts the fabrication of antibacterial NFs with a core-shell structure for wound dressing.
The majority of studies on ZnO NPs in hydrogels have reported ZnO NPs suitable for
wound dressings. in-situ production of ZnO NPs has been employed in a few studies [109].
Rao et al. [110] reported the simple in-situ formation of ZnO NP nanobelt-like structures
from HA hydrogel crosslinked with 1, 4-butanediol diglycidyl ether (BDDE) Figure 5B.
HA-ZnONPs may be superior candidates for wound healing applications due to their cell-
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adhesive, hemostatic, and antibacterial activities. The nano belt-like structure (Figure 5C)
plays a prominent role in the swelling and biodegradation of HA hydrogels. HA-ZnONPs
exhibited enhanced blood clotting and hemocompatibility, which was as good as that
of antibacterial agents (Figure 5D). The hydrophilicity of HA polymeric matrices, which
reduce RBC destruction, might be due to lower hemolysis by hydrogels. Furthermore, HA
hydrogels with or without ZnO nanobelt-like features have high hemocompatibility and
percentage hemolysis values of < 5%. In addition, CCD-98sk cells treated with HA-ZnO
NPs show good adhesion and proliferation. Consequently, ZnO nanobelt-like structures
did not affect the cell adhesion properties of CCD-986sk cells. Moreover, HA plays a vital
role in the migration of fibroblasts, which produce ECM for wound healing [111,112].
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Figure 5. (A) Preparation of antibacterial HA-SF/ZnO fibers with core-shell structure and applied
for wound healing. Copy right 2020, John Wiley and Sons [106]. (B) Formation of HA and HA-ZnO
hydrogels, (C). SEM images ZnO hydrogels. (D). Hemolysis and antibacterial activity of hydrogels
Figure (B–D) Copyright 2019, Elsevier [113]. (B) HA and HA-ZnO hydrogels B(a) formation of
mechanism B(b) BDDE crosslinked hydrogels, B(c) ZnO nanoparticles, and (d) digital photographic
hydrogels. (C) SEM images of C(a–a-2) HA, C(b–b-2) HA-ZnO-0.05, C(c–c-2) HA-ZnO-0.1. (D) Hy-
drogels treated with pig whole blood, D(a) photographic images of blood clot formed, D(b) hemolysis
(%) of different hydrogels (inset photographic images showing hemolysis), D(c) antibacterial activity
of hydrogels against E. coli and S. aureus

The use of MNPs and MO NPs combinations to reduce cell damage and enhance
antibacterial efficacy is an active research topic. HA-based on AgNPs and graphene oxide
(GO), Ran, X et al. [113] developed a hyaluronidase-triggered photothermal antibacterial
platform. The antibacterial activity of HAase-triggered release was outstanding against
S. aureus. GO-based nanomaterials elevated temperature locally when exposed to NIR
light and induced substantial bacterial mortality. The antibacterial Haase-triggered AgNPs
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release technique provides that the HA template protects AgNPs, while causing no harm
to mammalian cells. The nanocomposites exhibited antibacterial action against S. aureus
and were non-toxic to mammalian cells. Furthermore, HA-GO-AgNPs demonstrated
outstanding antibacterial activities in a wound disinfection model in vivo.

Table 3. HA-MO NPs for wound healing applications.

Base
Polymer

Other
Polymer Nanoparticles Cross-Linker Type of

Composite Technique Bacterial
Strains Cells Ref.

HA PVA/PEO ZnO Glutaraldehyde
S(GA) Nanofiber Electrospinning S. aureus HDF cells [98]

HA Silk Fibroin ZnO – Nanofiber Electrospinning E. coli and
S. aureus HaCat cells [106]

HA – ZnO

1,4-butanediol
diglycidyl

ether (BDDE)
cross-linker

Nano-belt
like

structure

in-situ
free-radical
polymeriza-

tion

E. coli and
S. aureus

CCD-98sk
cell [110]

5. Drug Loaded HA Nanocomposites for Wound Healing Applications

The wound healing process can be accelerated by HA alone but this must be done
in different ways. Sustained release of a therapeutic payload can provide more effective
treatment. Although many drugs can be used as wound healing treatments, the inflam-
matory environments of wounds make it difficult for a drug to promote healing, and
few candidates have proven clinical outcomes. HA and its compounds help to deliver
antibacterial agents, balance inflammation at wound sites, and enhance the healing pro-
cess. Regarding recent advancements, the development of eco-friendly, cost-effective,
multi-functional, and transparent wound care dressings with excellent exudate interac-
tions and wound adherences, while encouraging healing and preventing bacterial biofilm
development and infections present an intriguing challenge. Furthermore, constructing
such structures with energy-efficient techniques and environmentally friendly materials
and solvents (i.e., aqueous) would be a significant advantage. Table 4 shows summarize
drug-loaded HA-nanocomposites used for wound healing applications.

Table 4. HA-nanocomposite loaded with antibiotic drugs for wound healing applications.

Base
Polymer Other Polymer Nanoparticles Composite

Structure Drug Bacterial Strains Cells Ref.

HA polyvinylpyrrolidone
(PVP) —- Bilayer films Ciprofloxacin

(Cipro) S. aureus HDF cells [106]

HA poly(vinyl
alcohol) (PVA) —- Nanofiber Naproxen

(NAP)
S. aureus, E. coli &

P. aeruginosa. HaCat cells [107]

HA Spu —- Films Curcumin S. aureus & E. coli L929 cells [108]
SHA —- —- Hydrogels Nafcillin —- HDF cells [113]
HA —- AgNPs Hydrogels gentamicin —- —- [114]

HA AA Ru Nanocomposite ciprofloxacin
(CIP)

S. aureus &
P. aeruginosa —- [115]

HA DP DP-rGO Hydrogels doxycycline E. coli and S. aureus L929 cells [116]

M. Contardietal et al. [114] developed a multifunctional bi-layer wound dressing
with a HA/polyvinylpyrrolidone (PVP) transparent matrix containing and antibiotics,
respectively. The bilayer structure consisted of a PVP top sheet containing the antibiotic
Neomercurocromo® (Neo) (Pavia, Italy) and a HA/PVP bottom sheet containing the
antibiotic ciprofloxacin (Cipro). This bi-layer system is transparent, self-adhesive, flexible,
and was found to be biocompatible in vitro when tested on human foreskin fibroblasts.
In addition, skin disinfectants and antibiotics in this system allowed drug release in a
controlled manner over 5 days. Three distinct strains of S. aureus, E. coli, and P. aeruginosa
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were tested for antibacterial activity. Furthermore, the construct’s capacity to be entirely
resorbed by wounds was also demonstrated in an in vivo full-thickness excision model; it
was probably integrated into healed tissues. HA is commonly dissolved in toxic organic
solvents to synthesize electrospun nanofibers. Although HA is water-soluble, its ionic
nature causes long-range electrostatic interactions, and the presence of counter ions causes
dramatic increases in the viscosities of aqueous HA solutions without ensuring sufficient
chain entanglement for stable and effective electrospinning. Although electrospinning of
HA containing PVA as a carrier polymer permitted processing in water, the scaffolds were
inefficient and had several defects.

M. Seon Lutzetal et al. [115] proposed an HA-based nanofiber scaffold containing
hydroxypropyl β-cyclodextrin (HPβCD) using water as a solvent for safe and functional
wound dressings. Poly (vinyl alcohol) (PVA) is used as a carrier polymer, and HPβCD
stabilizes the electrospinning process and enables the formation of uniform nanofibers.
in-situ crosslinking processes for scaffolds have also been proposed to ensure products are
non-toxic. Furthermore, the inclusion of HPβCD in HA fibrous scaffolds paves the way for
the production of wound dressings with regulated drug release and encapsulation abilities.
The scaffold was impregnated with the non-steroidal anti-inflammatory drug naproxen
(NAP) in an aqueous solution or supercritical CO2. The functional scaffolds produced had
consistent drug kinetic release profiles and retained their fibrous integrities over several
days.

A Cur-HA-Spu (Cur = Curcumin and Spu = Succinylated pullulan) composite produc-
tion by esterification was reported by Y. Duan et al. [116]. Cur-HA-Spu demonstrated a
high swelling ratio, rapid hemostasis ability, antimicrobial activity, and antioxidant charac-
teristics. MTT and proliferation tests in L929 cells demonstrated that Cur-HA-Spu polymer
was non-cytotoxicity and increased cell proliferation as compared with Cur. Cur-HA-Spu
exhibited antibacterial activity against E. coli and S. aureus. The materials produced also
demonstrated antioxidant activity when tested using the DPPH technique. Cur-HA-Spu
film produced superior wound healing results than HASPu film and spontaneous healing
in a Wistar rat investigation. Cur has various advantages for wound healing, that is, it has
antioxidant, anti-infectious, and anti-inflammatory effects [117,118] and encourages granu-
lation tissue formation, collagen deposition, tissue remodeling, and wound contraction, but
the effectiveness of Cur is limited by its poor solubility (≤0.125 µg/mL). However, grafting
with HA to produce Cur-HA-Spu increased the solubility of Cru to 3.1∼5.3 µg/mg. Cur
can speed up the different stages of wound healing, including inflammation, proliferation,
and maturation. Furthermore, it can also efficiently scavenge ROS and promote antiox-
idant enzyme synthesis in wound environments during the inflammatory phase. In the
proliferation phase, Cur also promotes fibroblast migration to form granulation tissue and
re-epithelialization, and in the maturation phase, it increases cytokine levels in wounds
to facilitate wound contraction and fibroblast proliferation [119]. Nanoparticle inclusion,
double-network, and double-crosslinking techniques have all been utilized to increase the
mechanical strengths of hydrogels [120].

Haopeng Si et al. [121] prepared a UV-crosslinked methacrylic anhydride (HA-MA)
combined with HA-SH/3, 3′-dithiobis (propionyl hydrazide) (DTP) crosslinked network
hydrogel bioink for 3D bioprinting. Different weight ratios of HA-MA and HA-SH changed
the rheological properties of the hydrogels; for example, HA-MA concentration enhanced
the storage modulus (G’) of the hydrogel matrix. Moreover, hydrogels had a higher swelling
ratio and exhibited controlled degradation. When nafcillin was incorporated into hydrogels,
it exhibited good antibacterial activity. In addition, rheological and swelling studies, drug
release kinetics in vitro degradation, and cytotoxicity characteristics of nafcillin-loaded
hydrogel were examined. HDF cells were used for in vitro cytotoxicity assays of nafcillin-
loaded HA-MA/HA-SH hydrogels. Figure 6 provides a summary of drug release at
wound sites, bacteria mortalities, and regeneration skin effects of HA combined with
different drugs. Table 3 summarizes drug-loaded HA-nanocomposites used for wound
healing applications.
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HA Combined with Antibiotics and MNPs

The demand for novel antimicrobial strategies is being driven by increased severe infec-
tions caused by antibiotic drug resistance and a fall in the number of new antibacterial medi-
cations licensed for usage. N.Yu, et al. [122] adevised a HA/AgNPs/gentamicin nanocarrier
(HA/Ag/g) as a multi-responsive antibacterial nanocarrier and combined it with mussel-
inspired chitin hydrogel. A simple self-assembly process was used to prepare HA/Ag/g,
which exhibited controlled drug release; Ag was stimulated by bacteria-produced Haase
or pH. HA/Ag/g@CPH inhibited bacterial growth and had good adhesion but no effect
on cell adhesion or proliferation. In vivo studies revealed that HA/Ag/g@CPH might
promote wound healing. The rapid evolution of drug-resistant bacteria and the significant
delay in the creation of new medicines underlie the need for antibacterial research. Nano-
materials with different effect sizes and antibacterial properties might be useful alternatives
to antibiotics. For this reason, the chemo-photothermal enzyme-responsive drug delivery
nanosystem was developed by Liu, Y., et al. [123]. The AA@Ru@ HA-MoS2 nanosystem
used was composed of mesoporous RuNPs encapsulated by ascorbic acid (AA)-capped
HA. Ciprofloxacin (CIP) coated (molybdenum disulfide) MoS2 nanoparticles inhibited the
bacterial activities of P. aeruginosa and S. aureus and efficiently accumulated at wound sites,
and the HA capping agent was dissolved by bacteria to produce Hyal at sites of infection.
Subsequently, the encapsulated AA was catalytically decomposed by MoS2 to form hy-
droxyl radicals (•OH). AA@Ru@ HA-MoS2 exhibited good NIR photothermal response and
synergetic antibacterial activity. The fabricated nanosystem shown in Figure 7A induced
bacterial morphologies changes. Bacterial cell membranes were oxidatively damaged by
converting AA to •OH at sites of infection. •OH specific release under NIR exposure
destroyed bacterial cell membranes and caused the leakage of bacterial contents. This result
was attributed to the inclusion of CIP in the AA@Ru@HA-MoS2.
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Y. Liang et al.,[124] prepared HA grafted dopamine (DA) loaded with reduced graphene
oxide (rGO) using H2O2/HPR (horseradish peroxidase) as an antibacterial, antioxidant,
photothermal hydrogels for wound dressing applications (Figure 7B). Fabricated hydrogels
were self-healing due to hydrogen bonding and π-π- stacking occurs between rGO@PDA
and HA-DA, and hydrogel stability, gelling, crosslinking, mechanical properties, and
conductivity improved when the rGO@PDA content was increased. Furthermore, the
inhibition zones for S. aureus and E. coli increased for HA-DA/rGO hydrogels when the
irradiation period was increased from 0 to 10 min and showed potent photothermal bacte-
rial activity in vitro and in vivo. When compared with commercial wound dressing films
(Tegaderm™), doxycycline-loaded hydrogels (HA-DA/rGO3/Doxy) greatly promoted
wound healing.

6. HA-Derivatives and Other Polymers Used for Wound Healing Application

Nanoparticles have been employed as novel wound healing therapies. AgNPs act as
anti-infection agents and AuNPs stimulate fibroblast proliferation and collagen produc-
tion [125]. However, AgNPs and AuNPs may accumulate subdermally and are difficult to
excrete [126]. Furthermore, the cost of these materials presents a substantial barrier to their
widespread clinical and outpatient use. Figure 8 shows summarize HA and other polymer
structure and significant properties in wound healing.



Pharmaceutics 2022, 14, 2235 16 of 26

Pharmaceutics 2022, 14, x FOR PEER REVIEW 17 of 27 
 

 

their widespread clinical and outpatient use. Figure 8 shows summarize HA and other 
polymer structure and significant properties in wound healing. 

 
Figure 8. summarizes HA/polymers structure and significant properties in the wound healing pro-
cess. 

Li X. et al. [127] developed a HA/poloxamer (HA-POL) hydrogel and investigated its 
therapeutic efficacy on skin wound healing. HA-POL solution became a gel at 30 °C and 
retained its moisturizing properties. Furthermore, the air permeability of HA-POL hydro-
gel was greater than that of a conventional wound dressing. According to the results of 
Transwell experiments, the HA-POL hydrogel successfully prevented bacteria (E. coil) in-
vading skin wounds. Moreover, HA-POL hydrogel promoted fibroblast growth factor 
(bFGF) production and thus wound healing. In addition, hydrogels promote wound heal-
ing by increasing protein deposition in wound sites.  

Uddin et al. [128] constructed two assemblies of polyelectrolyte multilayers (PEMs) 
using a layer-by-layer technique at three different insoluble multi-l-arginyl-poly-l-aspar-
tate (iMAPA) with HA (iMAPA/HA) to γ-polyglutamic acid (iMAPA/γ-PGA) concentra-
tion ratios. The effects of iMAPA and its counterparts, HA or γ-PGA, as a terminal layer 
on film roughness, cell proliferation, and cell migration were investigated. Because of 
stronger charge interactions, iMAPA incorporation was greater at high anionic polymer 
concentrations, and iMAPA/HA films were smoother than iMAPA/γ-PGA multilayers. 

Figure 8. Summarizes HA/polymers structure and significant properties in the wound healing process.

Li X. et al. [127] developed a HA/poloxamer (HA-POL) hydrogel and investigated
its therapeutic efficacy on skin wound healing. HA-POL solution became a gel at 30 ◦C
and retained its moisturizing properties. Furthermore, the air permeability of HA-POL
hydrogel was greater than that of a conventional wound dressing. According to the results
of Transwell experiments, the HA-POL hydrogel successfully prevented bacteria (E. coli)
invading skin wounds. Moreover, HA-POL hydrogel promoted fibroblast growth factor
(bFGF) production and thus wound healing. In addition, hydrogels promote wound healing
by increasing protein deposition in wound sites.

Uddin et al. [128] constructed two assemblies of polyelectrolyte multilayers (PEMs)
using a layer-by-layer technique at three different insoluble multi-l-arginyl-poly-l-aspartate
(iMAPA) with HA (iMAPA/HA) to γ-polyglutamic acid (iMAPA/γ-PGA) concentration
ratios. The effects of iMAPA and its counterparts, HA or γ-PGA, as a terminal layer
on film roughness, cell proliferation, and cell migration were investigated. Because of
stronger charge interactions, iMAPA incorporation was greater at high anionic polymer
concentrations, and iMAPA/HA films were smoother than iMAPA/γ-PGA multilayers.
L929 fibroblast growth rates on PEMs were comparable to those on a glass substrate, with
no additional benefit from the terminal layer. However, all PEMs boosted the migratory
rates of L929 cells as compared with untreated glass, γ-PGA integrated films promoted cell



Pharmaceutics 2022, 14, 2235 17 of 26

migration by 50% after 12 h of culture, while smooth films containing HA increased cell
migration by up to 82%. The results obtained showed the use of iMAPA to create layer-by-
layer systems of polyelectrolyte biopolymers might have application in wound dressings.

Liu S et al. reported [129] bioadhesive hydrogels prepared by combining oxidized
hyaluronic acid (HA-CHO) and dopa-grafted ε-polylysine (EPL- Dopa). ‘An enzymic Schiff
base crosslinking reaction was used to fabricate HA/EPL hydrogel dressings. Bioadhesive
hydrogel has inherent antibacterial properties due to its high positive surface charge density
and may efficiently kill E. coli and S. aureus bacteria. The physicochemical characteristics of
HA/EPL were investigated in vitro and included gelation time, internal structure, swelling
and degradation behavior, and rheological, self-healing, and adhesion capabilities. The
cytocompatibilities of hydrogel dressings and prepolymer solutions were determined
in vitro using L929 cells, the Cell Counting Kit-8 (CCK-8) technique, and live/dead assays.

P. Luo et al. [130] studied adipic acid dihydrazide modified hyaluronic acid (ADH-HA)
combined with oxidized hydroxyethyl cellulose (OHEC). The resulting hydrogel had a
shortest gelation time of < 106 sec and a maximum swelling rate of 2888%, though the
swelling rate decreased as OHEC oxidation increased. Hemolysis tests revealed that
the hydrogel was compatible with blood; hemolysis rates ranged from 2.4% to 4.0%.
Furthermore, cytotoxicity studies revealed that the hydrogel was not toxic to NIH-3T3 cells
and that all samples increased cell viability by 85%. The remarkable performance of this
hydrogel suggests its use as a wound dressing.

H. Ying and colleagues [131] produced a collagen/HA (COL-HA) hydrogel by connect-
ing the phenol moieties of collagen I-hydroxybenzoic acid (COL-P) and hyaluronic-acid-
tyramine (HA-Tyr) in situ using horseradish peroxidase (HRP). The hydrogel produced
had strong antibacterial effects on E. coli and S. aureus. The porous nature of the COL-HA
hydrogel permitted the interchange of gas, medium, and nutrients, and COL-HA sub-
stantially promoted the proliferation of human microvascular endothelial cells (HMECs)
and fibroblasts (COS-7). More crucially, a vascular endothelial growth factor (VEGF) was
detected in the HMEC grown hydrogel, which suggested that vascular regeneration might
be possible. Because COL and HA combine to promote wound repair, the healing ratio,
and efficacy of full-thickness wounds treated with COL-HA hydrogel were greater than
those treated with commercial drugs, COL-P hydrogel or HA-Tyr hydrogel.

L Hong et al. [132] reported the preparation of two classes of HA-based hydrogels
by freezing-thawing (HA1) or chemical crosslinking (HA2). Using New Zealand rabbits
and powdered HA and cotton clothing as references, both hydrogels were applied to cure
full-thickness skin lesions. After disinfecting wounds with iodine and treating them with
HA2, HA1, HA, or cotton dressing (the control) the wounds begin to heal. Healing progress
was monitored and evaluated over 56 days, and the biological mending mechanism was
investigated. Based on wound area changes, white blood cell (WBC) counts, and H&E
staining results, HA2 was the most promising therapy in terms of encouraging wound
healing with minimal scar formation. Immunochemistry and real-time PCR of the bio-
factors involved in wound healing, that is, vascular endothelial growth factor (VEGF), alpha-
smooth muscle actin (α-SMA), and transforming growth factor beta-1 (TGF-1), revealed
that HA2 increased VEGF and α-SMA secretion but decreased TGF-1 expression at an early
stage. Furthermore, HA2 reduced wound inflammation and scar formation and improved
skin regeneration.

A. Eskandarinia, et al. [133] used a solvent-casting method to prepare CS/HA/EEP
films from a combination of HA, cornstarch (CS), and the ethanolic extract of propolis (EEP).
Films were characterized for molecular interactions and surface morphology, assessed
for opacity, EEP release, and equilibrium swelling, and subjected to in vitro and in vivo
evaluations. CS/HA/EEP-0.5% film dressings had better antibacterial activities against
S. aureus, E. coli, and S. epidermidis than CS, CS/HA, and CS/HA/EEP-0.25% films. In
addition, CS/HA/EEP-0.5% had no toxic effect on L929 fibroblasts. Furthermore, the
wound healing process might have been accelerated in skin excisions by CS/HA/EEP
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wound dressings in Wistar rats. These results suggest that adding HA and EEP to cornstarch
wound dressings can greatly improve wound healing efficacy.

The potential of N-butylated LMW-HA (BHA) for skin healing both in vitro and
in vivo was examined by Yin Gao et al. [134]. BHA was found to improve skin healing
significantly more than a commercial wound dressing material. Wound closures achieved
by partially de-acetylated LMW-HA (DHA) and re-acetylated DHA (AHA) were signifi-
cantly postponed, which demonstrated the importance of the N-acylation of LMW-HA. In
a systematic study, these authors showed that the therapeutic effects of BHA were achieved
by targeting inflammation, proliferation, and maturation. Supramolecular hydrogels (SH)
provide reversible, dynamic, and biomimetic control over structural characteristics. For
therapeutic applications, the development of SH using enhanced structural and functional
recapitulations of injured organs is critical. For this reason, Weiyi Zhao et al. [135] prepared
a photo-responsive SH via host-guest interactions between azobenzene and β-cyclodextrin
groups attached to HA chains. SH with a dynamic spatial network crosslink density
was created by applying a light stimulus using the photoisomerization characteristics of
azobenzene at different wavelengths. It was suggested that the loosened hydrogel might
rapidly release EGF when exposed to UV light and enhance EGF delivery at the wound
site. Controlled EGF release from a supramolecular hydrogel displayed higher wound
healing effectiveness in terms of granulation tissue development, growth factor levels,
and angiogenesis, according to an in vivo assessment of the healing process using a full-
thickness skin defect model. Table 5 details HA/polymer combinations used cells for
wound healing applications.

Table 5. HA combined with other polymers for wound healing applications.

Base
Polymer

Polymer
Combination Cross-Linker Composite

Structure Technique Bacterial
Strains Cells Ref.

HA Poloxamer —- Hydrogels Sol-gel E. coli Fibroblast [127]

HA

Multi-L-arginyl-
poly-L-aspartate

(MAPA) and
γ-polyglutamic acid

(γ-PGA)

—- Films Layer by-layer
technique —- L929 fibroblast [128]

HA ε-polylysine Enzymatic Hydrogels Schiff base
reaction

E.coli &
S. aureus L929 cells [129]

HA
Oxidized hydrox-

yethylcellulose
(OHEC)

EDC/HOBt
and NaIO4

hydrogels Schiff base
reaction —- NIH-3T3 cells [130]

HA Collagen
Horseradish
peroxidase

(HRP).
Hydrogel

In-situ
coupling of

phenol

E.coli &
S. aureus

human
microvascular

endothelial cells
(HMEC) and

fibroblasts
(COS-7)

[131]

HA
Various pH solutions

of
HAS

—- Hydrogel freezing-
thawing —- White blood cell

(WBC) [132]

HA Cornstarch —- Films Solvent-
casting

S. aureus,
& E. coli L929 fibroblast [133]

HA

de-acetylated
LMW-HA (DHA)

and the re-acetylated
DHA (AHA)

—- hydrogels
Endotoxin
Assay kit

Instructions
—-

HUVEC (Human
Umbilical Vein

Endothelial
Cells)

[134]

HA azobenzene and
β-cyclodextrin —- hydrogels host-guest

interactions —- L929 cells [135]
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7. Clinical Perspectives

Although some of HA-based products available in the market [136], There are still
challenges to be addressed the HA-based nanocomposites for clinical study in animal mod-
els. Few investigations have been applied clinical studies in animal models using the HA
nanocomposites Ag or Zno, or GO/Ag, Ag-nMOFs as well as MNPs with antibitic drugs,
such as ciprofloxacin and doxycycline, etc., for wound healing properties by in vivo. The
results proved the effective healing of wound bacterial infected and diabetic wounds. The
use of antibacterial agents improves the wound healing property as explained in Figure 2
(mechanism action of antibacterial activity of HA/nanocomposites). Several researchers
have used Ag nanoparticles embedded in HA-based composites for wound healing by
in vivo animal models. They have shown great potential for improving the wound healing
property [69,71,74]. The combination of GO/Ag further improved the wound healing of
bacterial wounds due to its NIR active property, which produced thermal heating to kill bac-
teria [105]. The combination of the antibiotic drug with metallic nanoparticles also proved
the effective inhibition of bacterial growth to improve wound healing by in vivo [122]. The
combination of rGO@PDA-HA_DA hydrogels proved the effective inhibition for S. aureus
and E. coli bacterial via photothermal effect as compared to a commercialized wound dress-
ing films (TegadermTM) [124]. Although HA-based nanocomposite has shown improved
abilities to aid in the healing of infected wounds, practical use is still difficult because
of associated impurities during synthesis, which should be carefully controlled to avoid
excessive inflammatory reactions. Additionally, the sterilization of products based on
untreated or modified HA may also degrade the polymer, affecting its immunological
reactions. Advanced HA-based solutions for use as wound dressings, however, encounter
a series of technical challenges during product development, including good mechanical
qualities, outstanding biological results, and affordable production costs without the use of
harmful ingredients. However, the in vitro and in vivo experiments of HA-based scaffolds
that have been reported by a number of researchers show that HA is a promising material
and that these nanocomposites with remarkable therapeutic properties may be taken to use
in the clinical purpose in future.

8. Future Perspectives and Challenges

Presently very limited exploration for control and acceleration to wound healing by
using HA-based nanocomposite. Specifically, HA-based metal (or) metal-oxide, such as Ag,
Au, Ru, and ZnO, are used for controlling and killing bacterial pathogens in the wound
healing process. In addition, antibiotic drugs and combinations with metal/metal oxides
as well as other suitable polymers are used as wound dressing materials. Furthermore,
antibiotics are the most widely used drugs in the clinical setting, and controlled-release
antibiotics have attracted considerable interest. However, antibiotic abuse still exists and
there is no unified standard for evaluating the controlled release of these drugs to en-
sure optimal therapy efficacy. However, bacterial killing by using the HA-nanocomposite
mechanism difficult to understand to control and promote wound healing in vitro and
in vivo process. Therefore extended an understanding of the mechanism for different
bacterial agents including Cu, Ce2O, MgO, etc. for control and promoting the wound heal-
ing process. In addition, HA-modified or quaternary amine polymers exhibited excellent
antibacterial properties for control and accelerating wound healing. Wound healing is
complex and can be improved using functional dressings that release drugs or growth
factors. Accordingly, HA-based nanocomposite wound dressings have been produced that
release antibacterial agents or other active agents in a sustained manner. It is conceivable
that some of the physical and chemical features of biological tissues could be mimicked by
new bioactive nanomaterials, such as clay, ceramics, or metallics, and that these bioactive
materials could control infections and enhance wound healing. We believe further manu-
facturing and multicomponent system developments will result in the next generation of
wound-healing nanomaterials.
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9. Conclusions

A variety of engineered nanomaterials have been produced with the joint aims of
regulating wound infections and accelerating wound healing. HA is a unique material
in terms of achieving these objectives due to its biocompatible and biodegradable prop-
erties and its limited adhesion to bacteria. In addition, it can be altered in various ways
to enhance its properties. This review mainly described HA’s important role in wound
healing’s four stages and it explained engineered HA nanocomposite scaffolds containing
MNPs or MO-NPs, antibiotics and other polymers to control wound infection and promote
healing. Furthermore, clinical perspectives of HA-based nanocomposites used for wound
healing applications using in vivo methods. In particular, MNPs, MO-NPs and antibiotics
can inactivate bacterial pathogens by damaging the cell wall of the bacterial membrane,
transferring electron chains, nucleic acids, proteins or enzymes. This damage can be gener-
ated by direct (adhering to biological molecules) or indirect (generating ROS) mechanisms.
Accordingly, HA-based nanocomposite wound dressings were produced that sustainably
release antibacterial agents, such as Ag, Au, Ru or ZnO, GO, growth factors, or other active
agents. Furthermore, antibiotic drugs alone or in combination with MNPs/MO-NPs effec-
tively kill the bacteria in a sustained manner for wound healing applications. Additionally,
the inherent antibacterial killing properties of polymers are used directly or to optimize the
polymer in combination with the HA composite for wound healing applications. HA-based
nanocomposite materials accelerate the wound healing process in vitro and in vivo.
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Abbreviations

ATP adenosine triphosphate
α-SMA alpha-smooth muscle actin
BDDE 1, 4-butanediol diglycidyl ether
CD44 cluster of differentiation 44
Cipro Ciprofloxacin
Cur Curcumin
DA Dopamine
DTP 3, 3′-dithiobis (propionyl hydrazide)
ECM Extracellular matrix
GAG Glycosaminoglycan
AuNPs Gold nanoparticles
GO Graphene oxide
HMW High molecular weight
HPβCD hydroxypropyl β-cyclodextrin
HA Hyaluronic acid
HAase Hyaluronidase
HRP Horseradish peroxidase
LMW Low molecular weight
MMPs matrix metalloproteinases
MHA Methacrylate hyaluronan
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MNPs Metal nanoparticles
MWMoS2 Molecular weightmolybdenum disulfide
NFs Nanofibers
nMOFs nanoscale metal-organic frameworks
Neo Neomercurocromo®

O-HA•OH oligomer-HAhydroxyl radicals
OHEC oxidized hydroxyethyl cellulose
RHAMM receptor for HA-mediated motility
ROS Reactive oxygen species
AgNPs Silver nanoparticles
SPCs Spongy composites
SPu Succinylated pullulan
TCPP 5,10,15,20-tetrakis(4-methoxycarbonylphenyl)porphyrin
TLR2 and 4 toll-like receptors 2 and 4
TGF-β transforming growth factor
VEGF vascular endothelial growth factor
WBC white blood cell
WVTR water-vapor transfer rate
ZnO NPs Zinc oxide nanoparticles
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