Role of Moonlighting Proteins in Coordinating Cellular Processes in Bacteria

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Molecular Microbiology and Immunology".

Deadline for manuscript submissions: closed (30 April 2021) | Viewed by 12119

Special Issue Editor


E-Mail Website
Guest Editor
BTU Cottbus-Senftenberg, Institut für Biotechnologie, FG Synthetische Mikrobiologie, Universitätsplatz 1, 01968 Senftenberg, Germany
Interests: microbial physiology; genetics; gene regulation; protein complexes; second messenger

Special Issue Information

Dear Colleagues,

It is generally believed that most proteins have specialized in performing a specific task in the course of their evolution. However, research in recent years has shown that many proteins can perform more than one function in a bacterial cell. Those proteins performing two or more functions in one cell have been designated as moonlighting proteins. It is becoming increasingly clear that moonlighting proteins are very widespread among bacteria. Moreover, it can be assumed that moonlighting proteins are present in every biological system because the bi- or multifunctionality of proteins allows the coordination of different cellular processes. For example, the conformational change of an enzyme during the catalytic cycle can be used as a signal to control another cellular process. Very often, the metabolic pathway in which the moonlighting enzyme occurs is in some way linked to the specific cellular process. Thus, moonlighting proteins act as a linker, allowing bacteria to coordinate essential cellular processes, which is crucial for survival in their natural environment.

Prof. Dr. Fabian Commichau
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • adaptation
  • evolution
  • multifunctionality
  • trigger enzyme

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2145 KiB  
Article
Conversion of the Sensor Kinase DcuS to the Fumarate Sensitive State by Interaction of the Bifunctional Transporter DctA at the TM2/PASC-Linker Region
by Marius Stopp, Christopher Schubert and Gottfried Unden
Microorganisms 2021, 9(7), 1397; https://doi.org/10.3390/microorganisms9071397 - 28 Jun 2021
Cited by 3 | Viewed by 1618
Abstract
The membrane-bound C4-dicarboxylate (C4DC) sensor kinase DcuS of Escherichia coli typically forms a protein complex with the C4DC transporter DctA. The DctA × DcuS complex is able to respond to C4DCs, whereas DcuS without DctA is in the permanent ON state. [...] Read more.
The membrane-bound C4-dicarboxylate (C4DC) sensor kinase DcuS of Escherichia coli typically forms a protein complex with the C4DC transporter DctA. The DctA × DcuS complex is able to respond to C4DCs, whereas DcuS without DctA is in the permanent ON state. In DctA, the C-terminal helix 8b (H8b) serves as the site for interaction with DcuS. Here the interaction site in DcuS and the related structural and functional adaptation in DcuS were determined. The Linker connecting transmembrane helix 2 (TM2) and the cytosolic PASC (Per-ARNT-SIM) domain of DcuS, was identified as the major site for interaction with DctA-H8b by in vivo interaction studies. The Linker is known to convert the piston-type transmembrane signaling of TM2 to a tilting motion which relies on a resolution of the Linker-Linker’ homodimer in the presence of C4DCs. Absence of DctA caused decreased cross-linking in the Linker, as identified by oxidative Cys-cross-linking. This response resembled structurally and functionally that of fumarate activation in the DctA × DcuS complex. Overall, formation of the DctA × DcuS complex is based on the interaction of the DcuS Linker with DctA H8b; the interaction is required to set DcuS in the C4DC-responsive state by stabilizing the linker-linker’ homodimer in DcuS. This work identifies DctA as a structural co-regulator of DcuS sensor kinase. Full article
Show Figures

Figure 1

13 pages, 1949 KiB  
Communication
Pathogen Moonlighting Proteins: From Ancestral Key Metabolic Enzymes to Virulence Factors
by Luis Franco-Serrano, David Sánchez-Redondo, Araceli Nájar-García, Sergio Hernández, Isaac Amela, Josep Antoni Perez-Pons, Jaume Piñol, Angel Mozo-Villarias, Juan Cedano and Enrique Querol
Microorganisms 2021, 9(6), 1300; https://doi.org/10.3390/microorganisms9061300 - 15 Jun 2021
Cited by 11 | Viewed by 2479
Abstract
Moonlighting and multitasking proteins refer to proteins with two or more functions performed by a single polypeptide chain. An amazing example of the Gain of Function (GoF) phenomenon of these proteins is that 25% of the moonlighting functions of our Multitasking Proteins Database [...] Read more.
Moonlighting and multitasking proteins refer to proteins with two or more functions performed by a single polypeptide chain. An amazing example of the Gain of Function (GoF) phenomenon of these proteins is that 25% of the moonlighting functions of our Multitasking Proteins Database (MultitaskProtDB-II) are related to pathogen virulence activity. Moreover, they usually have a canonical function belonging to highly conserved ancestral key functions, and their moonlighting functions are often involved in inducing extracellular matrix (ECM) protein remodeling. There are three main questions in the context of moonlighting proteins in pathogen virulence: (A) Why are a high percentage of pathogen moonlighting proteins involved in virulence? (B) Why do most of the canonical functions of these moonlighting proteins belong to primary metabolism? Moreover, why are they common in many pathogen species? (C) How are these different protein sequences and structures able to bind the same set of host ECM protein targets, mainly plasminogen (PLG), and colonize host tissues? By means of an extensive bioinformatics analysis, we suggest answers and approaches to these questions. There are three main ideas derived from the work: first, moonlighting proteins are not good candidates for vaccines. Second, several motifs that might be important in the adhesion to the ECM were identified. Third, an overrepresentation of GO codes related with virulence in moonlighting proteins were seen. Full article
Show Figures

Figure 1

10 pages, 851 KiB  
Communication
Comparative Exoproteome Analysis of Streptococcus suis Human Isolates
by Esther Prados de la Torre, Antonio Rodríguez-Franco and Manuel J. Rodríguez-Ortega
Microorganisms 2021, 9(6), 1287; https://doi.org/10.3390/microorganisms9061287 - 12 Jun 2021
Viewed by 1840
Abstract
The swine pathogen Streptococcus suis is a Gram-positive bacterium which causes infections in pigs, with an impact in animal health and in the livestock industry, and it is also an important zoonotic agent. During the infection process, surface and secreted proteins are essential [...] Read more.
The swine pathogen Streptococcus suis is a Gram-positive bacterium which causes infections in pigs, with an impact in animal health and in the livestock industry, and it is also an important zoonotic agent. During the infection process, surface and secreted proteins are essential in the interaction between microorganisms and their hosts. Here, we report a comparative proteomic analysis of the proteins released to the extracellular milieu in six human clinical isolates belonging to the highly prevalent and virulent serotype 2. The total secreted content was precipitated and analyzed by GeLC-MS/MS. In the six strains, 144 proteins assigned to each of the categories of extracellular or surface proteins were identified, as well as 680 predicted cytoplasmic proteins, many of which are putative moonlighting proteins. Of the nine predicted signal peptide-I secreted proteins, seven had relevant antigenic potential when they were analyzed through bioinformatic analysis. This is the first work comparing the exoproteome fraction of several human isolates of this important pathogen. Full article
Show Figures

Figure 1

17 pages, 2047 KiB  
Article
Identification and Characterization of Four c-di-GMP-Metabolizing Enzymes from Streptomyces ghanaensis ATCC14672 Involved in the Regulation of Morphogenesis and Moenomycin A Biosynthesis
by Desirèe Nuzzo, Roman Makitrynskyy, Olga Tsypik and Andreas Bechthold
Microorganisms 2021, 9(2), 284; https://doi.org/10.3390/microorganisms9020284 - 30 Jan 2021
Cited by 4 | Viewed by 2310
Abstract
Diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) are essential enzymes deputed to maintain the intracellular homeostasis of the second messenger cyclic dimeric (3′→5′) GMP (c-di-GMP). Recently, c-di-GMP has emerged as a crucial molecule for the streptomycetes life cycle, governing both morphogenesis and secondary metabolite [...] Read more.
Diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) are essential enzymes deputed to maintain the intracellular homeostasis of the second messenger cyclic dimeric (3′→5′) GMP (c-di-GMP). Recently, c-di-GMP has emerged as a crucial molecule for the streptomycetes life cycle, governing both morphogenesis and secondary metabolite production. Indeed, in Streptomyces ghanaensis ATCC14672 c-di-GMP was shown to be involved in the regulatory cascade of the peptidoglycan glycosytransferases inhibitor moenomycin A (MmA) biosynthesis. Here, we report the role of four c-di-GMP-metabolizing enzymes on MmA biosynthesis as well as morphological progression in S. ghanaensis. Functional characterization revealed that RmdAgh and CdgAgh are two active PDEs, while CdgEgh is a DGC. In vivo, overexpression of rmdAgh and cdgAgh led to precocious sporulation, whereas overexpression of cdgEgh and cdgDgh (encoding a predicted DGC) caused an arrest of morphological development. Furthermore, we demonstrated that individual deletion of rmdAgh, cdgAgh, and cdgDgh enhances MmA accumulation, whereas deletion of cdgEgh has no impact on antibiotic production. Conversely, an individual deletion of each studied gene does not affect morphogenesis. Altogether, our results show that manipulation of c-di-GMP-metabolizing enzymes represent a useful approach to improving MmA production titers in S. ghanaensis. Full article
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 2461 KiB  
Review
Moonlighting in Bacillus subtilis: The Small Proteins SR1P and SR7P Regulate the Moonlighting Activity of Glyceraldehyde 3-Phosphate Dehydrogenase A (GapA) and Enolase in RNA Degradation
by Inam Ul Haq and Sabine Brantl
Microorganisms 2021, 9(5), 1046; https://doi.org/10.3390/microorganisms9051046 - 12 May 2021
Cited by 8 | Viewed by 2918
Abstract
Moonlighting proteins are proteins with more than one function. During the past 25 years, they have been found to be rather widespread in bacteria. In Bacillus subtilis, moonlighting has been disclosed to occur via DNA, protein or RNA binding or protein phosphorylation. [...] Read more.
Moonlighting proteins are proteins with more than one function. During the past 25 years, they have been found to be rather widespread in bacteria. In Bacillus subtilis, moonlighting has been disclosed to occur via DNA, protein or RNA binding or protein phosphorylation. In addition, two metabolic enzymes, enolase and phosphofructokinase, were localized in the degradosome-like network (DLN) where they were thought to be scaffolding components. The DLN comprises the major endoribonuclease RNase Y, 3′-5′ exoribonuclease PnpA, endo/5′-3′ exoribonucleases J1/J2 and helicase CshA. We have ascertained that the metabolic enzyme GapA is an additional component of the DLN. In addition, we identified two small proteins that bind scaffolding components of the degradosome: SR1P encoded by the dual-function sRNA SR1 binds GapA, promotes the GapA-RNase J1 interaction and increases the RNase J1 activity. SR7P encoded by the dual-function antisense RNA SR7 binds to enolase thereby enhancing the enzymatic activity of enolase bound RNase Y. We discuss the role of small proteins in modulating the activity of two moonlighting proteins. Full article
Show Figures

Figure 1

Back to TopTop