

Supplementary information to the article

Identification and Characterization of Four c-di-GMP-Metabolizing Enzymes from *Streptomyces ghanaensis* ATCC14672 Involved in the Regulation of Morphogenesis and Moenomycin A Biosynthesis

Desirèe Nuzzo, Roman Makitrynskyy*, Olga Tsypik and Andreas Bechthold*

Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Freiburg 79104, Germany

* Correspondence: R.M. (email: roman.makitrynskyy@pharmazie.uni-freiburg.de), A.B. (email: andreas.bechthold@pharmazie.uni-freiburg.de)

Strains or plasmids	Description/Functions	Source
Strains		
S. ghanaensis ATCC14672	Wild-type (WT) moenomycin producer	ATCC
S. ghanaensis $\Delta cdgE_{gh}$	WT derivative, $\Delta cdgE_{gh}$ deletion	This work
S. ghanaensis $\Delta cdgD_{gh}$	WT derivative, $\Delta c dg D_{gh}$ deletion	This work
S. ghanaensis $\Delta rmdA_{gh}$	WT derivative, $\Delta rmdA_{gh}$ deletion	This work
S. ghanaensis $\Delta cdgA_{gh}$	WT derivative, $\Delta c dg A_{gh}$ deletion	This work
S. ghanaensis pIJcdgE	WT derivative, $cdgE_{gh}$ overexpression	This work
S. ghanaensis pIJcdgD	WT derivative, $cdgD_{gh}$ overexpression	This work
S. ghanaensis pIJrmdA _{gh}	WT derivative, <i>rmdA_{gh}</i> overexpression	This work
<i>S. ghanaensis</i> pIJcdgA _{gh}	WT derivative, <i>cdgA</i> gh overexpression	This work
S. ghanaensis pIJrmdA ^{AAL}	WT derivative, <i>rmdA</i> _{gh} ^{AAL} overexpression	This work
<i>S. ghanaensis</i> pIJcdgA ^{AAL}	WT derivative, <i>cdgA</i> _{gh} ^{AAL} overexpression	This work
<i>E. coli</i> XL1Blue	Host strain for DNA cloning	Agilent
<i>E. coli</i> ET12567 (pUZ8002)	Host for E. coli-streptomycetes conjugation	[1]
<i>E. coli</i> BW25113	Host for REDIRECT technology with helper plasmid pIJ790	[2]
<i>E. coli</i> BL21 Star (DE3)	Host for protein production	Thermo Fisher Scientific
E. coli BL21 Star	Host for protein production	Thermo Fisher
(DE3)/pLysS	Host for protein production	Scientific
Plasmids		
pBluesctiptIIKS+	Cloning vector, Ap ^R	Addgene
pKGLP2	Suicide vector carrying gusA, Hyg ^R	[3]
pSET152	φC31-based integrative vector, Am ^R	[4]
pUWLCre	Vector carrying <i>cre</i> under <i>ermEp</i> , Tsr ^R	[5]
pIJ10257	φBT1-based integrative vector carrying <i>ermEp</i> , Hyg ^R	[6]
#LEDECI	Vector carrying apramycin resistance	Prof. Luzhetskyy,
PLEKECJ	cassette with <i>loxP</i> -sites for gene replacement	Saarland University
pET28a	Vector for protein production, Km ^R	Novagen
pET32a	Vector for protein production, Ap ^R	Novagen
pBluecdgE	pBluescriptIIKS+ carrying <i>cdgE</i> _{gh}	This work
pBluecdgD	pBluescriptIIKS+ carrying cdgD _{gh}	This work
pBluermdA	pBluescriptIIKS+ carrying <i>rmdA</i> _{gh}	This work
pBluecdgA	pBluescriptIIKS+ carrying <i>cdgA</i> _{gh}	This work
pBluecdgE::aac(3)IV	pBlue02707, $\Delta cdgE_{gh}$ deletion	This work
pBluecdgD::aac(3)IV	pBlue02343, $\Delta cdgD_{gh}$ deletion	This work

Supplementary Table S1. Strains and plasmids used in this work.

www.mdpi.com/journal/microorganisms

Microorganisms

pBluermdA::aac(3)IV	pBluermdA, $\Delta rmdA_{gh}$ deletion	This work
pBluecdgA::aac(3)IV	pBluecdgA, $\Delta cdgA_{gh}$ deletion	This work
pSETcdgA	pSET152 carrying <i>cdgA_{gh}</i> along with its promoter	This work
pKGcdgE::aac(3)IV	pKGLP2 carrying <i>cdgE::aac(3)IV</i>	This work
pKGcdgD::aac(3)IV	pKGLP2 carrying <i>cdgD::aac(3)IV</i>	This work
pKGrmdA::aac(3)IV	pKGLP2 carrying <i>rmdA::aac(3)IV</i>	This work
pKGcdgA::aac(3)IV	pKGLP2 carrying <i>cdgA::aac(3)IV</i>	This work
pIJcdgE	pIJ10257 carrying <i>ermEp-cdgE</i> gh fusion	This work
pIJcdgD	pIJ10257 carrying <i>ermEp-cdgD_{gh}</i> fusion	This work
pIJrmdA	pIJ10257 carrying <i>ermEp-rmdA_{gh}</i> fusion	This work
pIJcdgA	pIJ10257 carrying <i>ermEp-cdgA_{gh}</i> fusion	This work
pIJrmdA ^{AAL}	pIJ10257 carrying a mutated version of <i>rmdA_{gh}</i>	This work
pIJcdgA ^{AAL}	pIJ10257 carrying a mutated version of $cdgA_{gh}$	This work
pETcdgE	pET28b carrying His-tagged CdgEgh	This work
pETcdgE ^{AADEF}	pET28b carrying a mutated version of $CdgE_{gh}$	This work
pETrmdA	pET28b carrying His-tagged RmdA _{gh}	This work
pETcdgA	pET28b carrying His-tagged CdgA _{gh}	This work
pETrmdA ^{GGDEF}	pET28b carrying solely the His-tagged GGDEF domain of RmdA _{gh}	This work
pETrmdA ^{AAL}	pET28b carrying a mutated version of His- tagged RmdA _{gh}	This work
pETcdgA ^{AAL}	pET28b carrying a mutated version of His- tagged CdgA _{gh}	This work
pET32acdgA ^{AAL}	pET32a carrying a mutated version of Trx- His-tagged CdgA _{gh}	This work

Supplementary Table S2. Primers used in this work.

Primers	Sequence
02707_del_for	AAATCTAGAAACGACGAGACGATGCCG
02707_del_rev	AAATCTAGATACGGGTGGAGGCGCTCG
00707 1	AATGTACCCGTTCGCCCGGAATCTCCCTAGCCTGGAGGGAT
02/0/_kn_10r	GGATATCTCTAGATACCG
00707 1	GCGCGTCACACCCGCCGGAGCCGCGGGGGGGGGGGGGGG
02/0/_kn_rev	AAACAAAAGCTGGAGCTC
02343 del for	AAATCTAGAAGTCTGTAGGTGCATCGAGC
02343 del rev	AAAGAATTCAAGAGCACCTGGCACTCG
02242 lan fan	GCTCCTTGCCGAACGCGCCGCCGCGGGGGGGGGGGGGGG
02343_kn_10r	TGAGCGATATCTCTAGATACCG
02242 1	GTCCGGGGCCAGGTGCCACCGGAACACCGGCAGCGCACTC
02343_kn_rev	ATGCAACAAAAGCTGGAGCTC
cdgA_del_for	AAATCTAGAGTGGTGATCTTCACCGTCCAC
cdgA_del_rev	AAAGAATTCCTGCAGGAGATCGAGGTGC
	CTGCACGGACAGCGATCGAGTGCACTGCGGGAGCGAGAGG
cdgA_kn_lor	TGGATATCTCTAGATACCG
ada A Ira nav	CTACGGGTTGCCGGCCCCGCCTGAACCCCGGACGCGCCCA
cdgA_kn_rev	GAACAAAAGCTGGAGCTC
rmdA_del_for	AAATCTAGAGAGTTGACGATGAATACCTCCT
rmdA_del_rev	AAAGAATTCAAGTCATGTTCAGCTCACCA
mud A Im for	CGCCTTCTCCGGCTTCGCGGGGCGTGGGGGCGTACGGCGTGAG
rindA_kii_lor	CGATATCTCTAGATACCG
	CACCGATCGTCCGGCCGGTCCGCGACCGGTTTGCGCCTCAA
rmdA_kn_rev	ACAAAAGCTGGAGCTC
cdgA_compl_for	AAATCTAGAGACGGTTCACGGGACACCG
cdgA_compl_rev	AAAGAATTCGTGCGGCTGCGCTCCTAC
02707 exp for	AAAAAACATATGGGTGAGGACAGCCGGCT

Microorganisms

02707_exp_rev	AAACTCGAGTCACGGCGAGTGCCGCCCCC
02343_exp_for	AAAAAACATATGAGCACCACGGCACTTGC
02343_exp_rev	AAACTCGAGTCATGCCGCGCGCGGCGGC
rmdA_exp_for	AAAAAACATATGAGCGTGGAACCGGACGGG
rmdA_exp_rev	AAAAAGCTTTCACCCCGACGCGTCCAC
cdgA_exp_for	AAAAAACATATGGTGAGCGGAACGTCCGA
cdgA_exp_rev	AAACTCGAGCTACGGGTTGCCGGCCCCCG
rmdA_GGDEF_rev	AAAAAGCTTTCAGTCGGCGAGCTCGAACCG
cdgA_AAL_for	GCGGCCCTGGTCCGCTGGAACC
cdgA_AAL_rev	CACGCCGTGCACCCGG
rmdA_AAL_for	GCGGCGCTGGTGCGCTGGC
rmdA_AAL_rev	GGCGCCGCGGACGCTC
02707_AADEF_for	GCCGCCGACGAGTTCTGCCTGCTGTCC
02707 AADEF rev	GAGCCGCGCCGCCAGG

Supplementary Table S3. Buffers used in protein purification.

Protein	Equilibration buffer	Storage buffer
$\begin{array}{c} CdgE_{gh}\\ CdgE_{gh}{}^{AADEF}\end{array}$	50 mM TrisHCl (pH 7.0) 0.5 M NaCl 5 mM Imidazole	50 mM TrisHCl (pH 7.0) 0.5 M NaCl 1 mM MgCl ₂ 1 mM DTT 10% Glycerol
$\begin{array}{c} RmdA_{gh} \\ CdgA_{gh} \\ RmdA^{GGDEF} \\ CdgA_{gh}^{AAL} \end{array}$	50 mM TrisHCl (pH 7.5) 0.25 M NaCl 1 mM MgCl ₂ 5 mM β-mercaptoethanol 5% Glycerol 10 mM Imidazole	50 mM TrisHCl (pH 7.5) 0.25 M NaCl 1 mM MgCl ₂ 1 mM DTT 5% Glycerol

Figure S1. Domains architecture of CdgA_{gh}, RmdA_{gh}, CdgD_{gh} and CdgE_{gh}. Domains composition was predicted by the SMART database (<u>https://smart.embl.de</u>).

Figure 2. MS spectra of GTP, c-di-GMP and pGpG detected after the DGC and PDE *in vitro* assays. **A**) [M-H]⁻ ion of GTP (m/z 522.1). **B**) [M-H]⁻ ion of c-di-GMP (m/z 689.1). **C**) [M-H]⁻ ion of pGpG (m/z 707.1).

Figure 3. LC-MS chromatograms of $CdgA_{gh}^{AAL}$ and $CdgE_{gh}^{AADEF}$ diguanylate cyclase *in vitro* assays. No conversion of GTP into c-di-GMP ([M-H]⁻ ion of c-di-GMP (*m*/*z*= 689.1)) was observed in both reaction mixtures containing $CdgA_{gh}^{AAL}$ and $CdgE_{gh}^{AADEF}$, respectively.

Figure 4. Phenotype evaluation of *S. ghanaensis* wild-type (WT), *S. ghanaensis* $\Delta cdgA_{gh}$ ($\Delta cdgA_{gh}$), *S. ghanaensis* $\Delta cdgE_{gh}$ ($\Delta cdgE_{gh}$), *S. ghanaensis* $\Delta cdgE_{gh}$, *S. ghanaensis* $\Delta cdgE_{gh}$ (**A**) and *S. ghanaensis* $\Delta cdgE_{gh}$ (**B**) in SFM and oatmeal (OAT) agar after four days of growth.

Microorganisms

Figure 5. Complementation experiments in *S. ghanaensis* null-mutants. **A)** *S. ghanaensis* $\Delta cdgA_{gh}$ carrying an empty copy of pSET152 ($\Delta cdgA_{gh}$ +pSET152) and complemented strain ($\Delta cdgA_{gh}$ +pSETcdgA). **B**) *S. ghanaensis* $\Delta rmdA_{gh}$ carrying an empty copy of pIJ10257 ($\Delta rmdA_{gh}$ +pIJ10257) and complemented strain ($\Delta rmdA_{gh}$ +pIJrmdA). **C**) *S. ghanaensis* $\Delta cdgD_{gh}$ carrying an empty copy of pIJ10257 ($\Delta cdgD_{gh}$ +pIJ10257) and complemented strain ($\Delta cdgD_{gh}$ +pIJ10257). The mean value of moenomycin mass peak area of each *S. ghanaensis* null-mutant carrying the empty vector was taken as 100%. Error bars represent standard deviations.

9 of 10

BldD-box

nTnACnC(A/T)GnGTnAn

(A)			
. ,	cdgAp _{vnz}	5'-CGGAAA GTCACATTCGGTCAC GTCGT-3' 3'-GCCTTT CAGTGTAAGCCAGTG CAGCA-5'	-215
	cdgAp _{coe}	5'-AAGACA CTCACGGAACGTCAC AACTG-3' 3'-TTCTGT GAGTGCCTTGCAGTG TTGAC-5'	-66
	cdgAp _{gh}	5'-GCACCA CGCACGGAACGTCAT AACTG-3' 3'-CGTGGT GCGTGCCTTGCAGTA TTGAC-5' * *** ***	-171

(B)			
()	cdgEp _{vnz}	5'-CTAAAT GTGACTTACGGTGAC GTCTC-3' 3'-GATTTA CACTGAATGCCACTG CAGCG-5'	-59
	sco4931p _{coe}	5'-ACACGACCCTACGAGCCGAAGGCAATCGCCCGGTTC-3' 3'-TGTGCTGGGATGCTCGGCTTCCGTTAGCGGGCCAAG-5'	
	$cdgEp_{gh}$	5'-TCCCGGAACCGCCCCGTCGCGGGCGGTCCCCGTTC-3' 3'-AGGGCCTTGGCGGGGGGCAGCGCCCGCCAGGGGCAAC-5'	

Figure 6. Multiple sequence alignment of putative BldD-binding site (BldD-box) in the promoter of $cdgA_{gh}$ and $cdgE_{gh}$ and their orthologs. **A**) Alignment of BldD-boxes (in bold) identified in the promoter region of cdgA in *S. venezuelae* ($cdgAp_{vnz}$) [7,8] and *S. coelicolor* ($cdgAp_{coe}$) [9] shows a putative BldD-box also present in the promoter of $cgdA_{gh}$ ($cdgAp_{gh}$). Asterisks indicate identical nucleotides. **B**) A BldD-box was identified in the promoter of cdgE in *S. venezuelae* ($cdgEp_{vnz}$) [7,8] but not in the promoter regions of its orthologs from *S. coelicolor* ($cdgEp_{coe}$) and *S. ghanaensis* ($cdgEp_{gh}$). BldD-box was determined by den Hengst et al. (2010) [9] and the numbers represent the distance from the putative start codon of the corresponding downstream gene. .

References

- 1. Kieser, T. Practical streptomyces genetics; John Innes Foundation: Norwich, 2000, ISBN 0708406238.
- Gust, B.; Chandra, G.; Jakimowicz, D.; Yuqing, T.; Bruton, C.J.; Chater, K.F. λ Red-Mediated Genetic Manipulation of Antibiotic-Producing Streptomyces. In Advances in applied microbiology; Laskin, A.I., Bennett, J.W., Gadd, G.M., Eds.; Elsevier: Estados Unidos, 2004; pp 107–128, ISBN 9780120026562.
- 3. Myronovskyi, M.; Welle, E.; Fedorenko, V.; Luzhetskyy, A. β-Glucuronidase as a Sensitive and Versatile Reporter in Actinomycetes. Appl. Environ. Microbiol. **2011**, *77*, 5370–5383, doi:10.1128/AEM.00434-11.
- 4. Bierman, M.; Logan, R.; O'Brien, K.; Seno, E.T.; Nagaraja Rao, R.; Schoner, B.E. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene **1992**, *116*, 43–49, doi:10.1016/0378-1119(92)90627-2.
- Fedoryshyn, M.; Welle, E.; Bechthold, A.; Luzhetskyy, A. Functional expression of the Cre recombinase in actinomycetes. Appl. Microbiol. Biotechnol. 2008, 78, 1065–1070, doi:10.1007/s00253-008-1382-9.
- Tschowri, N.; Schumacher, M.A.; Schlimpert, S.; Chinnam, N.B.; Findlay, K.C.; Brennan, R.G.; Buttner, M.J. Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell **2014**, *158*, 1136–1147, doi:10.1016/j.cell.2014.07.022.
- Haist, J.; Neumann, S.A.; Al-Bassam, M.M.; Lindenberg, S.; Elliot, M.A.; Tschowri, N. Specialized and shared functions of diguanylate cyclases and phosphodiesterases in Streptomyces development. Mol. Microbiol. 2020, doi:10.1111/mmi.14581.

- Hong, H.-J.; Hutchings, M.I.; Hill, L.M.; Buttner, M.J. The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J. Biol. Chem. 2005, 280, 13055–13061, doi:10.1074/jbc.M413801200.
- 9. Den Hengst, C.D.; Tran, N.T.; Bibb, M.J.; Chandra, G.; Leskiw, B.K.; Buttner, M.J. Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol. Microbiol. **2010**, *78*, 361–379, doi:10.1111/j.1365-2958.2010.07338.x.