materials-logo

Journal Browser

Journal Browser

Microstructure, Mechanical Properties, and Deformation Characteristics of Metals and Alloys

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: closed (20 December 2023) | Viewed by 13386

Special Issue Editor


E-Mail Website
Guest Editor
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Interests: metallic materials; composites; grain boundary; deformation behavior; twins; mechanical properties, severe plastic deformation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As the largest group of engineering materials, metals and alloys have always played an important role in the development of the world economy. Ready availability, ease of fabrication, and desirable mechanical properties are the principal attributes of metals and alloys. Metallic materials may be divided into two large groups, ferrous and nonferrous, depending on whether iron or another element is the principal constituent. Ferrous materials can be further grouped into wrought irons, cast irons, carbon steels, and alloy steels. Common nonferrous materials include alloys of copper, aluminum, magnesium, nickel, lead, tin, and zinc.

The relationship between microstructure, mechanical properties, and deformation characteristics is critical in the research of metals and alloys. This Special Issue welcomes the submission of high-quality research on various aspects of metals and alloys, including microstructure evolution, materials design, numerical modeling, processing technology, and failure mechanisms. In particular, we encourage papers on the relationship between advanced manufacturing processing and the microstructures properties of metals and alloys.

Dr. Guobing Wei
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microstructure evolution
  • mechanical and physical properties
  • strengthening mechanisms
  • numerical modeling
  • failure mechanisms

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 17592 KiB  
Article
Thermal Deformation Behavior and Microstructural Evolution of Multicomponent Mg-Li-Zn-Al-Y Alloys under Hot Compression
by Kun Yang, Weiwu Bai, Bin Li, Hao Chen, Guo Li, Guobing Wei and Junwei Liu
Materials 2024, 17(2), 489; https://doi.org/10.3390/ma17020489 - 19 Jan 2024
Viewed by 480
Abstract
High-temperature compression tests on Mg-11.5Li-2.5Zn-0.35Al-0.3Y (in wt.%) were carried out on a Gleeble-3500 thermal simulator. Flow stress and microstructural evolution were analyzed at different temperatures (T = 473 K, 523 K, 573 K, and 623 K) and strain rates (ε˙ = [...] Read more.
High-temperature compression tests on Mg-11.5Li-2.5Zn-0.35Al-0.3Y (in wt.%) were carried out on a Gleeble-3500 thermal simulator. Flow stress and microstructural evolution were analyzed at different temperatures (T = 473 K, 523 K, 573 K, and 623 K) and strain rates (ε˙ = 1 s−1, 0.1 s−1, 0.01 s−1, and 0.001 s−1). On this basis, the constitutive model of the alloy was established using the Arrhenius-type constitutive model, and the thermal processing map of the alloy was drawn based on the DMM (dynamic material modeling) theory. The experimental results show that the flow stress of the Mg-11.5Li-2.5Zn-0.35Al-0.3Y alloy decreases with an increase in temperature and a decrease in strain rate. The grain size increases uniformly with the increase in temperature, while a sudden increase occurs with the decrease in strain rate. The predicted value of the model is compared with the experimental value to verify the correctness of the model, and the correlation coefficient, R = 0.9690, was calculated, which further proves the applicability of the model to the Mg-11.5Li-2.5Zn-0.35Al-0.3Y alloy. This alloy can be safely plastic-deformed 473 K~623 K and 0.001 s−1~1 s−1. Full article
Show Figures

Figure 1

13 pages, 6392 KiB  
Article
Effect of Cobalt and Chromium Content on Microstructure and Properties of WC-Co-Cr Coatings Prepared by High-Velocity Oxy-Fuel Spraying
by Qun Wang, Yuan Zhong, Haifeng Li, Shaoyi Wang, Jianwu Liu, Yiwei Wang and Chidambaram Seshadri Ramachandran
Materials 2023, 16(21), 7003; https://doi.org/10.3390/ma16217003 - 01 Nov 2023
Cited by 1 | Viewed by 1033
Abstract
To explore the Co/Cr ratio impact on the high-velocity oxygen fuel (HVOF)-sprayed WC-Co-Cr coatings microstructure and performances, three kinds of WC-Co-Cr coatings, namely WC-4Co-10Cr, WC-7Co-7Cr, and WC-10Co-4Cr, were prepared by using a high-velocity oxygen fuel (HVOF) spraying process. The three coatings’ phase composition, [...] Read more.
To explore the Co/Cr ratio impact on the high-velocity oxygen fuel (HVOF)-sprayed WC-Co-Cr coatings microstructure and performances, three kinds of WC-Co-Cr coatings, namely WC-4Co-10Cr, WC-7Co-7Cr, and WC-10Co-4Cr, were prepared by using a high-velocity oxygen fuel (HVOF) spraying process. The three coatings’ phase composition, microstructure, basic mechanical properties, abrasive wear, and corrosion resistance were investigated. The results show that all three WC-Co-Cr coatings comprise the main phase WC, minor W2C, and amorphous W-Co-Cr phase, besides the WC-4Co-10Cr coating containing a small amount of CrxCy phase. In addition, WC-7Co-7Cr coating exhibited the highest hardness and abrasive wear resistance, followed by WC-10Co-4Cr and WC-4Co-10Cr coatings. The corrosion resistance as a hierarchy was found to be WC-10Co-4Cr > WC-7Co-7Cr > WC-4Co-10Cr. Full article
Show Figures

Figure 1

15 pages, 4412 KiB  
Article
Effect of the Equal Channel Angular Pressing on the Microstructure and Phase Composition of a 7xxx Series Al-Zn-Mg-Zr Alloy
by Anwar Qasim Ahmed, Dániel Olasz, Elena V. Bobruk, Ruslan Z. Valiev and Nguyen Q. Chinh
Materials 2023, 16(19), 6593; https://doi.org/10.3390/ma16196593 - 07 Oct 2023
Cited by 1 | Viewed by 871
Abstract
A supersaturated Al-4.8%Zn-1.2%Mg-0.14%Zr (wt%) alloy was processed by the equal-channel angular pressing (ECAP) technique at room temperature in order to obtain an ultrafine-grained (UFG) microstructure having an average grain size of about 260 nm. The hardness and microstructural characteristics, such as the phase [...] Read more.
A supersaturated Al-4.8%Zn-1.2%Mg-0.14%Zr (wt%) alloy was processed by the equal-channel angular pressing (ECAP) technique at room temperature in order to obtain an ultrafine-grained (UFG) microstructure having an average grain size of about 260 nm. The hardness and microstructural characteristics, such as the phase composition and precipitations of this UFG microstructure were studied using depth-sensing indentation (DSI), transmission electron microscopy (TEM), as well as non-isothermal scanning of differential scanning calorimetry (DSC), and compared to the properties of the un-deformed sample. Emphasis was placed on the effect of the UFG microstructure on the subsequent thermal processes in DSC measurements. It has been shown that the ECAP process resulted in not only an ultrafine-grained but also a strongly precipitated microstructure, leading to a hardness (2115 MPa) two and a half times higher than the initial hardness of the freshly quenched sample. Because of the significant changes in microstructure, ECAP has also a strong effect on the dissolution (endothermic) and precipitation (exothermic) processes during DSC measurements, where the dissolution and precipitation processes were quantitatively characterized by using experimentally determined specific enthalpies, ΔH and activation energies, Q. Full article
Show Figures

Figure 1

18 pages, 69550 KiB  
Article
Effect of Deformation Conditions on Strain-Induced Precipitation of 7Mo Super-Austenitic Stainless Steel
by Shiguang Xu, Jinshan He, Runze Zhang, Fucheng Zhang and Xitao Wang
Materials 2023, 16(19), 6401; https://doi.org/10.3390/ma16196401 - 25 Sep 2023
Viewed by 745
Abstract
Strain-induced precipitation (SIP) behaviors of 7Mo super-austenitic stainless steel (SASS) under various deformation conditions were studied by stress relaxation tests. The research demonstrates that sigma phases are the primary SIP phases of 7Mo SASS. Generally, SIP is mainly distributed in granular shape at [...] Read more.
Strain-induced precipitation (SIP) behaviors of 7Mo super-austenitic stainless steel (SASS) under various deformation conditions were studied by stress relaxation tests. The research demonstrates that sigma phases are the primary SIP phases of 7Mo SASS. Generally, SIP is mainly distributed in granular shape at the boundaries of deformed grains or recrystallized grains, as well as around the deformed microstructure, such as deformation twin layers/matrix interfaces. The variation of deformation parameters can lead to changes in microstructure, therefore influencing the distribution of SIP. For instance, with the temperature increases, the SIP distribution gradually evolves from deformed grain boundaries to recrystallized grain boundaries. The average size of SIP increases with increasing temperature and strain, as well as decreasing strain rate. The SIP content also increases with increasing strain and decreasing strain rate, while exhibiting an initial rise followed by a decline with increasing temperature, reaching its maximum value at 850 °C. The presence of SIP can promote recrystallization by particle-induced nucleation (PSN) mechanism during the hot deformation process. Moreover, the boundaries of these recrystallized grains can also serve as nucleation sites for SIP, therefore promoting SIP. This process can be simplified as SIPPSNRecrystallizationNucleation sitesSIP. With the increase in holding time and the consumption of stored energy, the process gradually slows down, leading to the formation of a multi-layer structure, namely SIPs/Recrystallized grains/SIPs structure. Moreover, SIP at recrystallized grain boundaries can hinder the growth of recrystallized grains. Through this study, a comprehensive understanding of the SIP behaviors in 7Mo SASS under different deformation conditions has been achieved, as well as the interaction between SIP and recrystallization. This finding provides valuable insights for effective control or regulation of SIP and optimizing the hot working processes of 7Mo SASS. Full article
Show Figures

Figure 1

10 pages, 3191 KiB  
Article
Effects of V Addition on the Deformation Mechanism and Mechanical Properties of Non-Equiatomic CoCrNi Medium-Entropy Alloys
by Rui Shen, Zengyu Ni, Siyuan Peng, Haile Yan and Yanzhong Tian
Materials 2023, 16(14), 5167; https://doi.org/10.3390/ma16145167 - 22 Jul 2023
Cited by 3 | Viewed by 1023
Abstract
Equiatomic CoCrNi medium-entropy alloys exhibit superior strength and ductility. In this work, a non-equiatomic CoCrNi alloy with low stacking fault energy was designed, and different fractions of V were added to control the stacking fault energy and lattice distortion. Mechanical properties were evaluated [...] Read more.
Equiatomic CoCrNi medium-entropy alloys exhibit superior strength and ductility. In this work, a non-equiatomic CoCrNi alloy with low stacking fault energy was designed, and different fractions of V were added to control the stacking fault energy and lattice distortion. Mechanical properties were evaluated by tensile tests, and deformation microstructures were characterized by transmission electron microscope (TEM). The main deformation mechanisms of CoCrNiV alloy with low V content are dislocation slip, stacking faults, and deformation-induced HCP phase transformation, while the dominant deformation patterns of CoCrNiV alloy with high V contents are dislocation slip and stacking faults. The yield strength increases dramatically when the V content is high, and the strain-hardening behavior changes non-monotonically with increasing the V content. V addition increases the stacking fault energy (SFE) and lattice distortion. The lower strain-hardening rate of 6V alloy than that of 2V alloy is dominated by the SFE. The higher strain-hardening rate of 10V alloy than that of 6V alloy is dominated by the lattice distortion. The effects of V addition on the SFE, lattice distortion, and strain-hardening behavior are discussed. Full article
Show Figures

Figure 1

10 pages, 5205 KiB  
Article
Improving the Mechanical Properties of Mg-5Al-2Ca-1Mn-0.5Zn Alloy through Rotary Swaging
by Bin Li, Hao Chen, Xiangnan Ke, Guobing Wei and Qingshan Yang
Materials 2023, 16(12), 4489; https://doi.org/10.3390/ma16124489 - 20 Jun 2023
Cited by 2 | Viewed by 726
Abstract
To meet the demand for more extensive applications of Mg alloys, a Mg-5Al-2Ca-1Mn-0.5Zn alloy without RE was prepared in this paper, and its mechanical properties were further improved by conventional hot extrusion and subsequent rotary swaging. The results show that the hardness of [...] Read more.
To meet the demand for more extensive applications of Mg alloys, a Mg-5Al-2Ca-1Mn-0.5Zn alloy without RE was prepared in this paper, and its mechanical properties were further improved by conventional hot extrusion and subsequent rotary swaging. The results show that the hardness of the alloy decreases along the radial central region after rotary swaging. The strength and hardness of the central area are lower, but the ductility is higher. The yield strength and ultimate tensile strength of the alloy in the peripheral area after rotary swaging reach 352 MPa and 386 MPa, respectively, while the elongation remains at 9.6%, exhibiting better strength–ductility synergy. The grain refinement and dislocation increase caused by rotary swaging promoted strength improvement. The activation of non-basal slips during rotary swaging is an important reason for the alloy to maintain good plasticity while improving strength. Full article
Show Figures

Figure 1

15 pages, 5191 KiB  
Article
In Situ Study of the Microstructural Evolution of Nickel-Based Alloy with High Proportional Twin Boundaries Obtained by High-Temperature Annealing
by Chao Zhang, Ming Sun, Ruhan Ya, Lulu Li, Jingyi Cui, Zhipeng Li and Wenhuai Tian
Materials 2023, 16(7), 2888; https://doi.org/10.3390/ma16072888 - 05 Apr 2023
Viewed by 1368
Abstract
In this paper, we report an in situ study regarding the microstructural evolution of a nickel-based alloy with high proportional twin boundaries by using electron backscatter diffraction techniques combined with the uniaxial tensile test. The study mainly focuses on the evolution of substructure, [...] Read more.
In this paper, we report an in situ study regarding the microstructural evolution of a nickel-based alloy with high proportional twin boundaries by using electron backscatter diffraction techniques combined with the uniaxial tensile test. The study mainly focuses on the evolution of substructure, geometrically necessary dislocation, multiple types of grain boundaries (especially twin boundaries), and grain orientation. The results show that the Cr20Ni80 alloy can be obtained with up to 73% twin boundaries by annealing at 1100 °C for 30 min. During this deformation, dislocations preferentially accumulate near the twin boundary, and the strain also localizes at the twin boundary. With the increasing strain, dislocation interaction with grain boundaries leads to a decreasing trend of twin boundaries. However, when the strain is 0.024, the twin boundary is found to increase slightly. Meanwhile, the grain orientation gradually rotates to a stable direction and forms a Copper, S texture, and α-fiber <110>. Above all, during this deformation process, the alloy is deformed mainly by two deformation mechanisms: mechanical twinning and dislocation slip. Full article
Show Figures

Graphical abstract

32 pages, 19153 KiB  
Article
Experiments and Modeling on the Stain-Controlled Time- and Temperature-Dependent Cyclic Ratchetting Plasticity of the Nickel-Based Superalloy IN100
by Carl Fischer, Sophie Schackert, Thomas Seifert, Christoph Schweizer and Martin Fuchs
Materials 2023, 16(5), 1888; https://doi.org/10.3390/ma16051888 - 24 Feb 2023
Viewed by 1197
Abstract
In this paper, the time- and temperature-dependent cyclic ratchetting plasticity of the nickel-based alloy IN100 is experimentally investigated in strain-controlled experiments in the temperature range from 300 °C to 1050 °C. To this end, uniaxial material tests are performed with complex loading histories [...] Read more.
In this paper, the time- and temperature-dependent cyclic ratchetting plasticity of the nickel-based alloy IN100 is experimentally investigated in strain-controlled experiments in the temperature range from 300 °C to 1050 °C. To this end, uniaxial material tests are performed with complex loading histories designed to activate phenomena as strain rate dependency, stress relaxation as well as the Bauschinger effect, cyclic hardening and softening, ratchetting and recovery from hardening. Plasticity models with different levels of complexity are presented that consider these phenomena, and a strategy is derived to determine the multitude of temperature-dependent material properties of the models in a step-by-step procedure based on sub-sets of experimental data of isothermal experiments. The models and the material properties are validated based on the results of non-isothermal experiments. A good description of the time- and temperature-dependent cyclic ratchetting plasticity of IN100 is obtained for isothermal as well as non-isothermal loading with models including ratchetting terms in the kinematic hardening law and the material properties obtained with the proposed strategy. Full article
Show Figures

Figure 1

11 pages, 8441 KiB  
Article
Preparing Thick Gradient Surface Layer in Cu-Zn Alloy via Ultrasonic Severe Surface Rolling for Strength-Ductility Balance
by Qisheng Sun, Jiapeng Sun, Yantao Fu, Bingqian Xu, Ying Han, Jianqing Chen, Jing Han, Hao Wu and Guosong Wu
Materials 2022, 15(21), 7687; https://doi.org/10.3390/ma15217687 - 01 Nov 2022
Cited by 5 | Viewed by 1079
Abstract
A gradient structure (GS) design is a prominent strategy for strength-ductility balance in metallic materials, including Cu alloys. However, producing a thick GS surface layer without surface damage is still a challenging task limited by the available processing technology. In this work, a [...] Read more.
A gradient structure (GS) design is a prominent strategy for strength-ductility balance in metallic materials, including Cu alloys. However, producing a thick GS surface layer without surface damage is still a challenging task limited by the available processing technology. In this work, a gradient structure (GS) surface layer with a thickness at the millimeter scale is produced in the Cu-38 wt.% Zn alloy using ultrasonic severe surface rolling technology at room temperature. The GS surface layer is as thick as 1.1 mm and involves the gradient distribution of grain size and dislocation density. The grain size is refined to 153.5 nm in the topmost surface layer and gradually increases with increasing depth. Tensile tests indicate that the single-sided USSR processed alloy exhibits balanced strength (467.5 MPa in yield strength) and ductility (10.7% in uniform elongation). Tailoring the volume fraction of the GS surface layer can tune the combination of strength and ductility in a certain range. The high strength of GS surface layer mainly stems from the high density of grain boundaries, dislocations and dislocation structures, deformation twins, and GS-induced synergistic strengthening effect. Our study elucidates the effect of the thick GS surface layer on strength and ductility, and provides a novel pathway for optimizing the strength-ductility combination of Cu alloys. Full article
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 5922 KiB  
Review
Asymmetric Extrusion Technology of Mg Alloy: A Review
by Qingshan Yang, Dan Zhang, Peng Peng, Guobing Wei, Jianyue Zhang, Bin Jiang and Fusheng Pan
Materials 2023, 16(15), 5255; https://doi.org/10.3390/ma16155255 - 26 Jul 2023
Cited by 1 | Viewed by 1093
Abstract
Magnesium (Mg) alloy is a widely used lightweight metal structural material due to its high specific strength and stiffness, excellent damping performance, and recyclability. Wrought Mg alloys are particularly favored in fields such as aerospace, transportation, and biomedical stents. However, most wrought Mg [...] Read more.
Magnesium (Mg) alloy is a widely used lightweight metal structural material due to its high specific strength and stiffness, excellent damping performance, and recyclability. Wrought Mg alloys are particularly favored in fields such as aerospace, transportation, and biomedical stents. However, most wrought Mg alloys with a hexagonal close-packed (HCP) crystal structure lack sufficient independent slip systems to meet the von Mises criterion for uniform plastic deformation at room temperature. This can result in the formation of a strong basal texture during plastic deformation and poor room temperature plastic formability. Enhancing the room temperature forming performance is therefore a crucial challenge that needs to be addressed in order to expand the application of Mg alloy sheets. Our research group has comprehensively summarized significant work and the latest research progress in improving the room temperature forming of Mg alloy sheets via extrusion technology in recent years. Specifically, we have developed a new type of asymmetric extrusion technology that combines material structure evolution, mechanical properties, and forming behavior analysis. We have elucidated the extrusion process characteristics, texture control mechanism, and forming properties of Mg alloy sheets through plastic deformation mechanisms, mold design, and finite element numerical simulation. The findings of our study present an innovative extrusion technology for the fabrication of highly formable Mg alloy sheets, which can be utilized in various applications. Full article
Show Figures

Figure 1

38 pages, 29807 KiB  
Review
Theory, Method and Practice of Metal Deformation Instability: A Review
by Miaomiao Wan, Fuguo Li, Kenan Yao, Guizeng Song and Xiaoguang Fan
Materials 2023, 16(7), 2667; https://doi.org/10.3390/ma16072667 - 27 Mar 2023
Cited by 3 | Viewed by 3099
Abstract
Deformation instability is a macroscopic and microscopic phenomenon of non-uniformity and unstable deformation of materials under stress loading conditions, and it is affected by the intrinsic characteristics of materials, the structural geometry of materials, stress state and environmental conditions. Whether deformation instability is [...] Read more.
Deformation instability is a macroscopic and microscopic phenomenon of non-uniformity and unstable deformation of materials under stress loading conditions, and it is affected by the intrinsic characteristics of materials, the structural geometry of materials, stress state and environmental conditions. Whether deformation instability is positive and constructive or negative and destructive, it objectively affects daily life at all times and the deformation instability based on metal-bearing analysis in engineering design has always been the focus of attention. Currently, the literature on deformation instability in review papers mainly focuses on the theoretical analysis of deformation instability (instability criteria). However, there are a limited number of papers that comprehensively classify and review the subject from the perspectives of material characteristic response, geometric structure response, analysis method and engineering application. Therefore, this paper aims to provide a comprehensive review of the existing literature on metal deformation instability, covering its fundamental principles, analytical methods, and engineering practices. The phenomenon and definition of deformation instability, the principle and viewpoint of deformation instability, the theoretical analysis, experimental research and simulation calculation of deformation instability, and the engineering application and prospect of deformation instability are described. This will provide a reference for metal bearing analysis and deformation instability design according to material deformation instability, structural deformation instability and localization conditions of deformation instability, etc. From the perspective of practical engineering applications, regarding the key problems in researching deformation instability, using reverse thinking to deduce and analyze the characteristics of deformation instability is the main trend of future research. Full article
Show Figures

Figure 1

Back to TopTop