New Perspectives on Fungal Endophytes Research

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungal Evolution, Biodiversity and Systematics".

Deadline for manuscript submissions: closed (30 April 2023) | Viewed by 14124

Special Issue Editor


E-Mail Website
Guest Editor
LSTM, IRD, CIRAD, INRAE, Institut Agro Montpellier, Université de Montpellier, Montpellier, France
Interests: soil microbial ecology; mycorrhizal symbiosis, biofertilizers

Special Issue Information

Dear Colleagues,

The Special Issue entitled "New Perspectives on Fungal Endophytes Research" aims to present recent research on any aspect of the fungal communities (symbiotic and saprophytic fungi) inhabiting the plant roots and their importance in plant development and soil biofunctioning. Among fungal biofertilizers, three types of fungal associates will be considered hereafter: (i) arbuscular mycorrhizal (AM), (ii) fungi belonging to the genera Piriformospora, and (iii) the group of fungi called “dark-septate endophytes (DSE). Some of its focal points include but are not limited to the following:

  1. Importance of fungal endophytes to improve plant resistance or tolerance to abiotic stresses (mineral deficiencies, saline stress, etc.);
  2. Fungal endophytes and biological control of plant pathogens;
  3. Formulation of fungal endophyte biofertilizers;
  4. Importance of fungal endophyte inoculation and/or management in agroecological practices;
  5. The use of fungal endophytes in the remediation of contaminated soils (heavy metals, pesticides, etc.).

Reviews, original research, and communications will be welcome.

Prof. Dr. Robin Duponnois
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2834 KiB  
Article
The Influence of Cone Age and Urbanisation on the Diversity and Community Composition of Culturable Seed Fungal Endophytes within Native Australian Banksia ericifolia L.f. subsp. ericifolia
by Merize Philpott, Edward C. Y. Liew, Marlien M. van der Merwe, Allison Mertin and Kristine French
J. Fungi 2023, 9(7), 706; https://doi.org/10.3390/jof9070706 - 27 Jun 2023
Cited by 2 | Viewed by 1188
Abstract
Seed fungal endophytes play a crucial role in assisting the overall health and success of their host plant; however, little is known about the factors that influence the diversity and composition of these endophytes, particularly with respect to how they change over time [...] Read more.
Seed fungal endophytes play a crucial role in assisting the overall health and success of their host plant; however, little is known about the factors that influence the diversity and composition of these endophytes, particularly with respect to how they change over time and within urban environments. Using culturing techniques, morphological analyses, and Sanger sequencing, we identified the culturable seed fungal endophytes of Banksia ericifolia at two urban and two natural sites in Sydney, New South Wales, Australia. A total of 27 Operational Taxonomic Units were obtained from 1200 seeds. Older cones were found to contain, on average, more colonised endophytes than younger cones. Species richness was also significantly influenced by cone age, with older cones being more speciose. Between urban and natural sites, the overall community composition did not change, although species richness and diversity were greatest at urban sites. Understanding how these endophytes vary in time and space may help provide an insight into the transmission pathways used and the potential role they play within the development and survival of the seed. This knowledge may also be crucial for restoration purposes, especially regarding the need to consider endophyte viability in ex situ seed collection and storage in seed-banking practices. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Endophytes Research)
Show Figures

Figure 1

26 pages, 5313 KiB  
Article
Genomic and Metabolomic Analysis of the Endophytic Fungus Fusarium sp. VM-40 Isolated from the Medicinal Plant Vinca minor
by Ting He, Xiao Li, Riccardo Iacovelli, Thomas Hackl and Kristina Haslinger
J. Fungi 2023, 9(7), 704; https://doi.org/10.3390/jof9070704 - 27 Jun 2023
Cited by 1 | Viewed by 1900
Abstract
The genus Fusarium is well-known to comprise many pathogenic fungi that affect cereal crops worldwide, causing severe damage to agriculture and the economy. In this study, an endophytic fungus designated Fusarium sp. VM-40 was isolated from a healthy specimen of the traditional European [...] Read more.
The genus Fusarium is well-known to comprise many pathogenic fungi that affect cereal crops worldwide, causing severe damage to agriculture and the economy. In this study, an endophytic fungus designated Fusarium sp. VM-40 was isolated from a healthy specimen of the traditional European medicinal plant Vinca minor. Our morphological characterization and phylogenetic analysis reveal that Fusarium sp. VM-40 is closely related to Fusarium paeoniae, belonging to the F. tricinctum species complex (FTSC), the genomic architecture and secondary metabolite profile of which have not been investigated. Thus, we sequenced the whole genome of Fusarium sp. VM-40 with the new Oxford Nanopore R10.4 flowcells. The assembled genome is 40 Mb in size with a GC content of 47.72%, 15 contigs (≥50,000 bp; N 50~4.3 Mb), and 13,546 protein-coding genes, 691 of which are carbohydrate-active enzyme (CAZyme)-encoding genes. We furthermore predicted a total of 56 biosynthetic gene clusters (BGCs) with antiSMASH, 25 of which showed similarity with known BGCs. In addition, we explored the potential of this fungus to produce secondary metabolites through untargeted metabolomics. Our analyses reveal that this fungus produces structurally diverse secondary metabolites of potential pharmacological relevance (alkaloids, peptides, amides, terpenoids, and quinones). We also employed an epigenetic manipulation method to activate cryptic BGCs, which led to an increased abundance of several known compounds and the identification of several putative new compounds. Taken together, this study provides systematic research on the whole genome sequence, biosynthetic potential, and metabolome of the endophytic fungus Fusarium sp. VM-40. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Endophytes Research)
Show Figures

Figure 1

18 pages, 5768 KiB  
Article
Wild Rosa Endophyte M7SB41-Mediated Host Plant’s Powdery Mildew Resistance
by Yi Zhao, Wenqin Mao, Wenting Tang, Marcos Antônio Soares and Haiyan Li
J. Fungi 2023, 9(6), 620; https://doi.org/10.3390/jof9060620 - 27 May 2023
Cited by 2 | Viewed by 958
Abstract
Our previous studies indicated that endophyte M7SB41 (Seimatosporium sp.) can significantly enhance host plants powdery mildew (PM) resistance. To recover the mechanisms, differentially expressed genes (DEGs) were compared between E+ (endophte-inoculated) and E− (endophyte-free) plants by transcriptomics. A total of 4094, 1200 [...] Read more.
Our previous studies indicated that endophyte M7SB41 (Seimatosporium sp.) can significantly enhance host plants powdery mildew (PM) resistance. To recover the mechanisms, differentially expressed genes (DEGs) were compared between E+ (endophte-inoculated) and E− (endophyte-free) plants by transcriptomics. A total of 4094, 1200 and 2319 DEGs between E+ and E− were identified at 0, 24, and 72 h after plants had been infected with PM pathogen Golovinomyces cichoracearum, respectively. Gene expression pattern analysis displayed a considerable difference and temporality in response to PM stress between the two groups. Transcriptional profiling analysis revealed that M7SB41 induced plant resistance to PM through Ca2+ signaling, salicylic acid (SA) signaling, and the phenylpropanoid biosynthesis pathway. In particular, we investigated the role and the timing of the SA and jasmonic acid (JA)-regulated defensive pathways. Both transcriptomes and pot experiments showed that SA-signaling may play a prominent role in PM resistance conferred by M7SB41. Additionally, the colonization of M7SB41 could effectively increase the activities and the expression of defense-related enzymes under PM pathogen stress. Meanwhile, our study revealed reliable candidate genes from TGA (TGACG motif-binding factor), WRKY, and pathogenesis-related genes related to M7SB41-mediate resistance. These findings offer a novel insight into the mechanisms of endophytes in activating plant defense responses. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Endophytes Research)
Show Figures

Figure 1

15 pages, 2725 KiB  
Article
Chemically Synthesized AgNPs and Piriformospora indica Synergistically Augment Nutritional Quality in Black Rice
by Shikha Solanki, Samta Gupta, Rupam Kapoor and Ajit Varma
J. Fungi 2023, 9(6), 611; https://doi.org/10.3390/jof9060611 - 25 May 2023
Viewed by 1373
Abstract
The use of biofertilizers has been the spotlight of research aiming to mitigate the food security threat as well as to restore the fertility of agricultural lands, for decades. Several studies are being conducted to unravel the role and mechanisms of plant growth-promoting [...] Read more.
The use of biofertilizers has been the spotlight of research aiming to mitigate the food security threat as well as to restore the fertility of agricultural lands, for decades. Several studies are being conducted to unravel the role and mechanisms of plant growth-promoting microbes. In the present research, we evaluated the effect of silver nanoparticles (AgNPs) and Piriformospora indica on the growth and nutritional enhancement of black rice (Oryzae sativa. L.) individually and in combination. Among the different treatment conditions, the AgNPs + P. indica treatment led to a significant (p ≤ 0.05) increase in morphological and agronomic parameters. In comparison to the control, the percentage increase in plant height in AgNPs-treated black rice was 2.47%, while that for the treatment with only P. indica was 13.2% and that for the treatment with both AgNPs + P. indica was 30.9%. For the number of productive tillers, the effect of AgNPs in comparison to the control was non-significant; however, the effect of P. indica and AgNPs + P. indica showed a significant (p ≤ 0.05) increase of 13.2% and 30.9% in both the treatments, respectively. Gas chromatography mass spectrophotometry analysis of grains revealed that the contents of phenylalanine, tryptophan, and histidine (aromatic amino acids) were significantly (p ≤ 0.05) increased by 75%, 11.1%, and 50%, respectively, in P. indica-treated black rice. Nutrient profiling showed that macronutrients such as potassium, calcium, magnesium were found to be increased by 72.8%, 86.4% and 59.2%, respectively, in the treatment with AgNPs + P. indica in comparison to the control plants. Additionally, a significant (p ≤ 0.05) increase of 51.9% in anthocyanin content was observed in AgNPs + P. indica-treated black rice. The P. indica treatment also showed improved growth and augmented nutrient contents. From this study, we were able to understand that AgNPs + P. indica treatment would be a better plant growth-promoting factor and further evaluation would enable us to obtain a clear picture of its mechanisms of action. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Endophytes Research)
Show Figures

Figure 1

14 pages, 2774 KiB  
Article
Endophytic Fungal Community of Stellera chamaejasme L. and Its Possible Role in Improving Host Plants’ Ecological Flexibility in Degraded Grasslands
by Wenting Tang, Weijun Gong, Ruitong Xiao, Wenqin Mao, Liangzhou Zhao, Jinzhao Song, Muhammad Awais, Xiuling Ji and Haiyan Li
J. Fungi 2023, 9(4), 465; https://doi.org/10.3390/jof9040465 - 12 Apr 2023
Cited by 1 | Viewed by 1374
Abstract
Stellera chamaejasme L. is a widely distributed poisonous plant in Chinese degraded grasslands. To investigate the role of endophytic fungi (EF) in S. chamaejasme’s quick spread in grasslands, the endophytic fungal community of S. chamaejasme was studied through culture-dependent and culture-independent methods, and [...] Read more.
Stellera chamaejasme L. is a widely distributed poisonous plant in Chinese degraded grasslands. To investigate the role of endophytic fungi (EF) in S. chamaejasme’s quick spread in grasslands, the endophytic fungal community of S. chamaejasme was studied through culture-dependent and culture-independent methods, and the plant-growth-promoting (PGP) traits of some culturable isolates were tested. Further, the growth-promoting effects of 8 isolates which showed better PGP traits were evaluated by pot experiments. The results showed that a total of 546 culturable EF were isolated from 1114 plant tissue segments, and the colonization rate (CR) of EF in roots (33.27%) was significantly higher than that in shoots (22.39%). Consistent with this, the number of specific types of EF was greater in roots (8 genera) than in shoots (1 genus). The same phenomenon was found in culture-independent study. There were 95 specific genera found in roots, while only 18 specific genera were found in shoots. In addition, the dominant EF were different between the two study methods. Cladosporium (18.13%) and Penicillium (15.93%) were the dominant EF in culture-dependent study, while Apiotrichum (13.21%) and Athelopsis (5.62%) were the dominant EF in culture-independent study. PGP trait tests indicated that 91.30% of the tested isolates (69) showed phosphorus solubilization, IAA production, or siderophores production activity. The benefit of 8 isolates on host plants’ growth was further studied by pot experiments, and the results indicated that all of the isolates can improve host plants’ growth. Among them, STL3G74 (Aspergillus niger) showed the best growth-promotion effect; it can increase the plant’s shoot and root dry biomass by 68.44% and 74.50%, respectively, when compared with the controls. Our findings revealed that S. chamaejasme has a wide range of fungal endophytic assemblages, and most of them possess PGP activities, which may play a key role in its quick spread in degraded grasslands. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Endophytes Research)
Show Figures

Figure 1

18 pages, 3252 KiB  
Article
Biodegradation of Aflatoxin B1 in Maize Grains and Suppression of Its Biosynthesis-Related Genes Using Endophytic Trichoderma harzianum AYM3
by Adel K. Madbouly, Younes M. Rashad, Mohamed I. M. Ibrahim and Nahla T. Elazab
J. Fungi 2023, 9(2), 209; https://doi.org/10.3390/jof9020209 - 05 Feb 2023
Cited by 8 | Viewed by 1992
Abstract
Aflatoxin B1 is one of the most deleterious types of mycotoxins. The application of an endophytic fungus for biodegradation or biosuppression of AFB1 production by Aspergillus flavus was investigated. About 10 endophytic fungal species, isolated from healthy maize plants, were screened for their [...] Read more.
Aflatoxin B1 is one of the most deleterious types of mycotoxins. The application of an endophytic fungus for biodegradation or biosuppression of AFB1 production by Aspergillus flavus was investigated. About 10 endophytic fungal species, isolated from healthy maize plants, were screened for their in vitro AFs-degrading activity using coumarin medium. The highest degradation potential was recorded for Trichoderma sp. (76.8%). This endophyte was identified using the rDNA-ITS sequence as Trichoderma harzianum AYM3 and assigned an accession no. of ON203053. It caused a 65% inhibition in the growth of A. flavus AYM2 in vitro. HPLC analysis revealed that T. harzianum AYM3 had a biodegradation potential against AFB1. Co-culturing of T. harazianum AYM3 and A. flavus AYM2 on maize grains led to a significant suppression (67%) in AFB1 production. GC-MS analysis identified two AFB1-suppressing compounds, acetic acid and n-propyl acetate. Investigating effect on the transcriptional expression of five AFB1 biosynthesis-related genes in A. flavus AYM2 revealed the downregulating effects of T. harzianum AYM3 metabolites on expression of aflP and aflS genes. Using HepaRG cell line, the cytotoxicity assay indicated that T. harazianum AYM3 metabolites were safe. Based on these results, it can be concluded that T. harzianum AYM3 may be used to suppress AFB1 production in maize grains. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Endophytes Research)
Show Figures

Figure 1

16 pages, 2341 KiB  
Article
Endophytic Fungi Associated with Aquilaria sinensis (Agarwood) from China Show Antagonism against Bacterial and Fungal Pathogens
by Tian-Ye Du, Samantha C. Karunarathna, Xian Zhang, Dong-Qin Dai, Ausana Mapook, Nakarin Suwannarach, Jian-Chu Xu, Steven L. Stephenson, Abdallah M. Elgorban, Salim Al-Rejaie and Saowaluck Tibpromma
J. Fungi 2022, 8(11), 1197; https://doi.org/10.3390/jof8111197 - 14 Nov 2022
Cited by 5 | Viewed by 2518
Abstract
Agarwood is the most expensive non-construction wood product in the world. As a therapeutic agent, agarwood can cure some diseases, but few studies have been carried out on the antagonistic abilities of endophytic fungi associated with agarwood. Agarwood is mainly found in the [...] Read more.
Agarwood is the most expensive non-construction wood product in the world. As a therapeutic agent, agarwood can cure some diseases, but few studies have been carried out on the antagonistic abilities of endophytic fungi associated with agarwood. Agarwood is mainly found in the genus Aquiaria. The objectives of this study are to understand the antimicrobial activities and their potential as biocontrol agents of the endophytic fungi of Aquilaria sinensis. First, fresh samples of A. sinensis were collected from Yunnan and Guangdong Provinces in 2020–2021, and the endophytic fungi were isolated and identified to genus level based on the phylogenetic analyses of the Internal Transcribed Spacer (ITS) region. In this bioassay, 47 endophytic strains were selected to check their bioactivities against three bacterial pathogens viz. Erwinia amylovora, Pseudomonas syringae, and Salmonella enterica; and three fungal pathogens viz. Alternaria alternata, Botrytis cinerea, and Penicillium digitatum. The antibiosis test was carried out by the dual culture assay (10 days), and among the 47 strains selected, 40 strains belong to 18 genera viz. Alternaria, Annulohypoxylon, Aspergillus, Botryosphaeria, Colletotrichum, Corynespora, Curvularia, Daldinia, Diaporthe, Fusarium, Lasiodiplodia, Neofusicoccum, Neopestalotiopsis, Nigrospora, Paracamarosporium, Pseudopithomyces, Trichoderma, Trichosporon and one strain belongs to Xylariaceae had antimicrobial activities. In particular, Lasiodiplodia sp. (YNA-D3) showed the inhibition of all the bacterial and fungal pathogens with a significant inhibition rate. In addition, the strains viz; Curvularia sp. (GDA-3A9), Diaporthe sp. (GDA-2A1), Lasiodiplodia sp. (YNA-D3), Neofusicoccum sp. (YNA-1C3), Nigrospora sp. (GDA-4C1), and Trichoderma sp. (YNA-1C1) showed significant antimicrobial activities and are considered worthy of further studies to identify individual fungal species and their bioactive compounds. This study enriches the diversity of endophytic fungi associated with agarwood, and their potential antagonistic effects against bacterial and fungal pathogens. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Endophytes Research)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 1486 KiB  
Review
Management of Plant Beneficial Fungal Endophytes to Improve the Performance of Agroecological Practices
by Bouchra Nasslahsen, Yves Prin, Hicham Ferhout, Abdelaziz Smouni and Robin Duponnois
J. Fungi 2022, 8(10), 1087; https://doi.org/10.3390/jof8101087 - 15 Oct 2022
Cited by 3 | Viewed by 2029
Abstract
By dint of the development of agroecological practices and organic farming, stakeholders are becoming more and more aware of the importance of soil life and banning a growing number of pesticide molecules, promoting the use of plant bio-stimulants. To justify and promote the [...] Read more.
By dint of the development of agroecological practices and organic farming, stakeholders are becoming more and more aware of the importance of soil life and banning a growing number of pesticide molecules, promoting the use of plant bio-stimulants. To justify and promote the use of microbes in agroecological practices and sustainable agriculture, a number of functions or services often are invoked: (i) soil health, (ii) plant growth promotion, (iii) biocontrol, (iv) nutrient acquiring, (v) soil carbon storage, etc. In this paper, a review and a hierarchical classification of plant fungal partners according to their ecosystemic potential with regard to the available technologies aiming at field uses will be discussed with a particular focus on interactive microbial associations and functions such as Mycorrhiza Helper Bacteria (MHB) and nurse plants. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Endophytes Research)
Show Figures

Figure 1

Back to TopTop