Special Issue "Invasive Pest Management and Climate Change"

A special issue of Insects (ISSN 2075-4450).

Deadline for manuscript submissions: 31 December 2023 | Viewed by 7044

Special Issue Editors

Center for Biological Control, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
Interests: integrated pest management of invasive insects pests; identification and diagnosis; biological control; insect pest modeling and predictions
Special Issues, Collections and Topics in MDPI journals
Center for Biological Control, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
Interests: insect toxicology; insect pathology; insect physiology; biological control; integrated pest management of invasive insect pests; insect population dynamics; insect ecology

Special Issue Information

Dear Colleagues,

Climate change is altering vital aspects of the environment such as temperature, precipitation, the frequency of extreme weather events (hurricanes, fires, and floods, etc.), as well as atmospheric composition and land cover. Indeed, the temperature, atmospheric concentration of carbon dioxide CO2, and available nutrients are key factors that drive species survival, growth, development, and distribution. Any change in these factors will most likely stress the food production systems, natural resources, and the chances of invasion. In recent years, the process of establishment of new invasive species has received extensive research attention. Many scientists agree that climate change is altering destination habitats and increasing vulnerability to biological invasion because of resource scarcity and increased competition among native fauna and flora. There have been severe economic losses to the food and fiber industries, export markets, natural resource bases, and native species’ habitats regardless of the entry method and pathways. It is critical to remember that biological invasions are a fundamental and integral trait of nature and have always been present in the history of life on Earth.

This Special Issue will include original research articles and reviews by leading research entomologists, plant pathologists, weed control specialists, and associated experts. Articles will focus on the development, improvement, and implementation of invasive pest management under climate change patterns. Additionally, articles that outline the integration of effective IPM options for a given pest species under climate change patterns in food crops, forestry, and urban areas are particularly welcome.

Dr. Muhammad Haseeb
Dr. Lambert H.B. Kanga
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • invasive pests
  • climate change
  • food security
  • natural resources
  • pest management

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Acoustic Comparisons of Red Palm Weevil (Rhynchophorus ferrugineus) Mortality in Naturally Infested Date Palms after Injection with Entomopathogenic Fungi or Nematodes, Aluminum Phosphide Fumigation, or Insecticidal Spray Treatments
Insects 2023, 14(4), 339; https://doi.org/10.3390/insects14040339 - 30 Mar 2023
Viewed by 381
Abstract
Red palm weevil (RPW) management is important to the economic success of date palm agriculture. Monitoring with acoustic sensors was conducted in naturally infested trees in date palm orchards for six months after treatments with entomopathogenic fungi (Beauveria bassiana and Metarhizium anisopliae [...] Read more.
Red palm weevil (RPW) management is important to the economic success of date palm agriculture. Monitoring with acoustic sensors was conducted in naturally infested trees in date palm orchards for six months after treatments with entomopathogenic fungi (Beauveria bassiana and Metarhizium anisopliae), entomopathogenic nematodes (Steinernema carpocapsae), aluminum phosphide, emamectin benzoate, or fipronil to evaluate their efficacy in an integrated pest management treatment vs. a distilled water injection. Reductions in the mean rates of RPW sound impulse bursts over time after treatment were used as indicators of RPW mortality. Entomopathogenic fungi and nematodes, aluminum phosphide, and emamectin benzoate were the most effective treatments, reducing RPW impulse burst rates within 2–3-months to levels indicating absence of infestation. However, when applied as a spray, fipronil had only a minor effect. The results indicate that treatments utilizing entomopathogenic fungi or nematodes can beneficially manage RPW in palm orchards and can help to limit treatments that may induce insecticide resistance or cause human and environmental harm. Furthermore, the use of an acoustic sensor can be beneficial in monitoring the activities of insect borers inside the tree trunk. Full article
(This article belongs to the Special Issue Invasive Pest Management and Climate Change)
Show Figures

Figure 1

Article
Using MaxEnt Model to Predict the Potential Distribution of Three Potentially Invasive Scarab Beetles in China
Insects 2023, 14(3), 239; https://doi.org/10.3390/insects14030239 - 27 Feb 2023
Viewed by 881
Abstract
A hot topic in recent years is the prediction of the potential distribution of possible invasive insects. China is facing a great challenge due to invasive insects. Scarab beetles are a highly diverse group, and many of them are well-known invasive insects. Here, [...] Read more.
A hot topic in recent years is the prediction of the potential distribution of possible invasive insects. China is facing a great challenge due to invasive insects. Scarab beetles are a highly diverse group, and many of them are well-known invasive insects. Here, in order to prevent the invasion of scarab beetles in China, we screened the invasive insects globally and obtained a preliminary database of quarantine or invasive scarab beetles. From the obtained database, we selected the top five species (Popillia japonica, Heteronychus arator, Oryctes monoceros, Oryctes boas and Amphimallon majale) to discuss and analyzed the potential distribution of three species that have not invaded China by using the MaxEnt model. The prediction results show that every continent has potential distribution areas for these species. Specifically within China, Popillia japonica and Amphimallon majale were mainly concentrated in east central regions and Heteronychus arator and Oryctes boas were mainly distributed in the southwest areas, while Oryctes monoceros has no suitable area. Notably, Yunnan, Hunan, Jiangxi and Zhejiang province had a high risk of invasion. In general, local agriculture, forestry and customs departments in China should pay more attention to monitoring for the prevention of infestation by invasive insects. Full article
(This article belongs to the Special Issue Invasive Pest Management and Climate Change)
Show Figures

Figure 1

Article
Abundance of Halyomorpha halys (Hemiptera: Pentatomidae) and Megacopta cribraria (Hemiptera: Plataspidae) in Soybean in Areas with Few Previous Sightings in Tennessee
Insects 2023, 14(3), 237; https://doi.org/10.3390/insects14030237 - 27 Feb 2023
Viewed by 641
Abstract
Halyomorpha halys (Stål) and Megacopta cribraria (Fabricius) are two exotic invasive pests that have invaded the United States in recent years. Halyomorpha halys can damage various fruits, vegetables, and field crops, such as soybean and corn, while Megacopta cribraria only attacks soybean and [...] Read more.
Halyomorpha halys (Stål) and Megacopta cribraria (Fabricius) are two exotic invasive pests that have invaded the United States in recent years. Halyomorpha halys can damage various fruits, vegetables, and field crops, such as soybean and corn, while Megacopta cribraria only attacks soybean and kudzu, a weed species. They are currently found in southeastern states and threaten soybean and other crops grown in the region. This study evaluated the seasonal abundance of H. halys and M. cribraria in soybeans in 2016 and 2017 in two counties in the central region of Tennessee, where both species had either a few sightings or none that were recorded when this research was being planned. Lures and sweep sampling were used to monitor H. halys, and sweep sampling was used to monitor M. cribraria. Halyomorpha halys was first detected in samples in late July. Their numbers increased in early to mid-September, reached the economic threshold in late Sept, and then started to decline. Megacopta cribraria was first detected in mid to late July, increased their populations in September, but did not reach the economic threshold and declined mid-October. Our results showed the seasonal abundances of H. halys and M. cribraria and their establishment in the central region of Tennessee. Full article
(This article belongs to the Special Issue Invasive Pest Management and Climate Change)
Show Figures

Figure 1

Article
Constructing an Ensemble Model and Niche Comparison for the Management Planning of Eucalyptus Longhorned Borer Phoracantha semipunctata under Climate Change
Insects 2023, 14(1), 84; https://doi.org/10.3390/insects14010084 - 13 Jan 2023
Viewed by 961
Abstract
Phoracantha semipunctata is a destructive invasive alien forest pest worldwide. It primarily damages the eucalyptus via adults, affecting almost all parts of the eucalyptus. Its larvae develop in almost all major tissues of the plant. Phoracantha semipunctata spreads both via the migration of [...] Read more.
Phoracantha semipunctata is a destructive invasive alien forest pest worldwide. It primarily damages the eucalyptus via adults, affecting almost all parts of the eucalyptus. Its larvae develop in almost all major tissues of the plant. Phoracantha semipunctata spreads both via the migration of adults and global trade in intercontinental translocation. Currently, this pest has spread to six continents worldwide, except Antarctica, resulting in substantial economic losses. Based on global occurrence data and environmental variables, the potential global geographical distribution of P. semipunctata was predicted using an ensemble model. The centroid shift, overlap, unfilling, and expansion scheme were selected to assess niche dynamics during the global invasion process. Our results indicated that the AUC and TSS values of the ensemble model were 0.993 and 0.917, respectively, indicating the high prediction accuracy of the model. The distribution pattern of P. semipunctata is primarily attributed to the temperature seasonality (bio4), mean temperature of the warmest quarter (bio10), and human influence index variables. The potential geographical distribution of P. semipunctata is primarily in western and southwestern Asia, western Europe, western and southern North America, southern South America, southern Africa, and eastern and southern Oceania. The potential geographical distribution of P. semipunctata showed a downward trend in the 2030s and the 2050s. The distribution centroid showed a general tendency to shift southward from the near-current to future climate. Phoracantha semipunctata has largely conserved its niche during the global invasion process. More attention should be paid to the early warning, prevention, and control of P. semipunctata in the countries and regions where it has not yet become invasive. Full article
(This article belongs to the Special Issue Invasive Pest Management and Climate Change)
Show Figures

Figure 1

Article
Future Trends in Obolodiplosis robiniae Distribution across Eurasian Continent under Global Climate Change
Insects 2023, 14(1), 48; https://doi.org/10.3390/insects14010048 - 03 Jan 2023
Viewed by 643
Abstract
Obolodiplosis robiniae was discovered in Eurasia at the beginning of the 21st century. In this study, we explore the present and future (in the years 2050 and 2070) trends in the potential distribution of O. robiniae in Eurasia under diverse climate change scenarios [...] Read more.
Obolodiplosis robiniae was discovered in Eurasia at the beginning of the 21st century. In this study, we explore the present and future (in the years 2050 and 2070) trends in the potential distribution of O. robiniae in Eurasia under diverse climate change scenarios based on a maximum entropy model. Our findings indicated that the current potential distribution area of O. robiniae is within the range of 21°34′ and 65°39′ N in the Eurasian continent. The primary factor controlling the distribution of O. robiniae is temperature. The highly and moderately suitable areas are mainly distributed in the semi-humid and semi-arid regions, which also happen to be the locations where the host black locust (Robinia pseudoacacia L.) grows at its fastest rate. The forecast of the potential distribution area of O. robiniae revealed that the species would benefit from global warming. The region suitable for the habitat of O. robiniae is characterized by a large-scale northward expansion trend and an increase in temperature. This information would help the forestry quarantine departments of Asian and European countries provide early warnings on the probable distribution areas of O. robiniae and provide a scientific basis for the prevention and control of O. robiniae spread and outbreaks. Full article
(This article belongs to the Special Issue Invasive Pest Management and Climate Change)
Show Figures

Figure 1

Article
Prediction of the Current and Future Distributions of the Hessian Fly, Mayetiola destructor (Say), under Climatic Change in China
Insects 2022, 13(11), 1052; https://doi.org/10.3390/insects13111052 - 15 Nov 2022
Viewed by 1186
Abstract
The Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), is a destructive wheat pest worldwide and an important alien species in China. Based on 258 distribution records and nine environmental factors of the Hessian fly, we predicted the potential distribution area in China under [...] Read more.
The Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), is a destructive wheat pest worldwide and an important alien species in China. Based on 258 distribution records and nine environmental factors of the Hessian fly, we predicted the potential distribution area in China under three current and future (2050s and 2070s) climate change scenarios (RCP2.6, RCP4.5, and RCP8.5) via the optimized MaxEnt model. Under the current climate conditions, the suitable distribution areas of the Hessian fly in China were 25–48° N, 81–123° E, and the total highly suitable distribution area is approximately 9.63 × 105 km2, accounting for 9.99% of the total national area. The highly suitable areas are mainly located in northern Xinjiang and central and eastern China. With the rising global temperatures, except for the high-suitable areas under the RCP8.5 scenario, most potential geographic distribution areas would expand in the future. The minimum temperature in February (tmin-2), precipitation in March (prec-3), maximum temperature in November (tmax-11), and precipitation seasonality (bio-15) are important factors that affect the potential geographic distribution of the Hessian fly. This study provides an important reference and empirical basis for management of the Hessian fly in the future. Full article
(This article belongs to the Special Issue Invasive Pest Management and Climate Change)
Show Figures

Figure 1

Article
Biology and Rearing of an Emerging Sugar Beet Pest: The Planthopper Pentastiridius leporinus
Insects 2022, 13(7), 656; https://doi.org/10.3390/insects13070656 - 21 Jul 2022
Cited by 1 | Viewed by 1438
Abstract
The rapid spread of the bacterial yellowing disease Syndrome des Basses Richesses (SBR) has a major impact on sugar beet (Beta vulgaris) cultivation in Germany, resulting in significant yield losses. SBR-causing bacteria are transmitted by insects, mainly the Cixiid planthopper Pentastiridius [...] Read more.
The rapid spread of the bacterial yellowing disease Syndrome des Basses Richesses (SBR) has a major impact on sugar beet (Beta vulgaris) cultivation in Germany, resulting in significant yield losses. SBR-causing bacteria are transmitted by insects, mainly the Cixiid planthopper Pentastiridius leporinus. However, little is known about the biology of this emerging vector, including its life cycle, oviposition, developmental stages, diapauses, and feeding behavior. Continuous mass rearing is required for the comprehensive analysis of this insect. Here we describe the development of mass rearing techniques for P. leporinus, allowing us to investigate life cycle and ecological traits, such as host plant choice, in order to design agronomic measures that can interrupt the life cycle of nymphs in the soil. We also conducted field studies in recently-infected regions of Rhineland-Palatinate and south Hesse, Germany, to study insect mobility patterns and abundance at four locations during two consecutive years. The soil-depth monitoring of nymphs revealed the movement of the instars through different soil layers. Finally, we determined the prevalence of SBR-causing bacteria by designing TaqMan probes specific for two bona fide SBR pathogens: Candidatus Arsenophonus phytopathogenicus (Gammaproteobacteria) and Candidatus Phytoplasma solani (stolbur phytoplasma). Our data suggest that P. leporinus is spreading northward and eastward in Germany, additionally, the abundance of SBR-carrying planthoppers is increasing. Interestingly, P. leporinus does not appear to hibernate during winter, and is polyphagous as a nymph. Stolbur phytoplasma has a significant impact on SBR pathology in sugar beet. Full article
(This article belongs to the Special Issue Invasive Pest Management and Climate Change)
Show Figures

Figure 1

Back to TopTop