
Citation: Ma, Q.; Guo, J.-L.; Guo, Y.;

Guo, Z.; Lu, P.; Hu, X.-S.; Zhang, H.;

Liu, T.-X. Prediction of the Current

and Future Distributions of the

Hessian Fly, Mayetiola destructor (Say),

under Climatic Change in China.

Insects 2022, 13, 1052. https://

doi.org/10.3390/insects13111052

Academic Editors: Lambert H.B.

Kanga and Muhammad Haseeb

Received: 15 October 2022

Accepted: 10 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

insects

Article

Prediction of the Current and Future Distributions of the
Hessian Fly, Mayetiola destructor (Say), under Climatic
Change in China
Qi Ma 1, Jin-Long Guo 1, Yue Guo 1, Zhi Guo 1, Ping Lu 2, Xiang-Shun Hu 1, Hao Zhang 1,3,*
and Tong-Xian Liu 1,3,4,*

1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection,
Northwest A&F University, Xianyang 712100, China

2 Yining Customs Technical Center, Yining 835008, China
3 Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of

Agriculture and Rural Affairs, China, Northwest A&F University, Xianyang 712100, China
4 Institute of Entomology, Guizhou University, Guiyang 550025, China
* Correspondence: zhh1972@nwsuaf.edu.cn (H.Z.); tx.liu@gzu.edu.cn (T.-X.L.);

Tel.: +86-135-7257-0037 (H.Z.); +86-29-8709-2663 (T.-X.L.)

Simple Summary: The Hessian fly (Mayetiola destructor (Say)) is an important wheat pest worldwide
and an invasive species in China. In this study, we used the MaxEnt model to predict the potentially
suitable habitat of the Hessian fly in China under current and future climatic change conditions. The
results showed that under the current climatic conditions, the potentially suitable habitats of the
Hessian fly were mainly concentrated in central and eastern China, with an area of 96.27 × 104 km2.
With increasing global temperatures, most potential geographic distribution areas would expand in
the future.

Abstract: The Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), is a destructive wheat
pest worldwide and an important alien species in China. Based on 258 distribution records and nine
environmental factors of the Hessian fly, we predicted the potential distribution area in China under
three current and future (2050s and 2070s) climate change scenarios (RCP2.6, RCP4.5, and RCP8.5) via
the optimized MaxEnt model. Under the current climate conditions, the suitable distribution areas of
the Hessian fly in China were 25–48◦ N, 81–123◦ E, and the total highly suitable distribution area is
approximately 9.63 × 105 km2, accounting for 9.99% of the total national area. The highly suitable
areas are mainly located in northern Xinjiang and central and eastern China. With the rising global
temperatures, except for the high-suitable areas under the RCP8.5 scenario, most potential geographic
distribution areas would expand in the future. The minimum temperature in February (tmin-2),
precipitation in March (prec-3), maximum temperature in November (tmax-11), and precipitation
seasonality (bio-15) are important factors that affect the potential geographic distribution of the
Hessian fly. This study provides an important reference and empirical basis for management of the
Hessian fly in the future.

Keywords: Hessian fly; MaxEnt model; climate change; environmental variables; habitat distribution

1. Introduction

Climate change can directly affect the development, survival, and dispersal patterns
of invasive species, possibly leading to an increased risk of biological invasions, pest
outbreaks, range shifts, and habitat loss [1–3]. Climate warming is the main feature of
climate change in the 21st century, and global temperatures are expected to rise between
1.4 and 5.8 ◦C by 2100, based on the 1990 baseline data [4]. Therefore, the impact of climate
warming on invasive insects’ distribution has attracted international attention [5–11].
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The Hessian fly, Mayetiola destructor (Say) (Diptera, Cecidomyiidae), is a destructive
pest in many wheat production regions worldwide, causing up to 30–100% yield losses [12].
The most suitable host of M. destructor is the wheat plant (Triticum spp. L.). Besides wheat,
M. destructor feeds on many cultivated and wild plant species belonging to more than
16 genera of Poaceae [13,14].

M. destructor originated in the Middle East and now occurs widely in North Africa,
North America, Europe, Central Asia, New Zealand, and northwest China [12,15]. M.
destructor may complete one to six generations per year, depending on the latitude and
climate [16,17]. Adults usually lay eggs on their host leaves, and the neonate larvae move
down tillers and establish feeding sites on the stem beneath the leaf sheath [18]. Although
M. destructor has three instars [19], only the first and second instar larvae feed; they can
affect the normal growth, jointing, and heading of wheat and even lead to death in severe
cases [20]. The third instar and pupae develop in the second-instar exoskeleton, usually
known as a puparium or “flaxseed” stage [17]. Adults do not feed and may live for
1–4 days [21]. M. destructor has a weak migratory ability and mainly relies on human
activities for long-distance dispersal [18,22]. The developmental zero temperatures of the
eggs, larvae, and pupae are 12.2, 1.6, and 1.6 ◦C, respectively; the optimum temperature
for growth and adult emergence is 21.1 ◦C; when the temperature is higher than 26.7 ◦C,
a large number of the third instar larvae enter dormancy [23]. Thus, it is a cool season
pest. Additionally, M. destructor has the characteristics of facultative winter diapause and
summer aestivation; the third instar larvae may aestivate over summer or diapause or
non-diapause over winter, depending on their geographical locations [17,24]. Consequently,
its life cycle ranges from 28 days to several years [25,26].

Due to its economic importance, M. destructor has been listed as an entry and domestic
quarantine pest in China since 1954. However, in 1975, it was discovered in Huocheng
County of the Ili prefecture (Ili), Xinjiang, China [27], and was then discovered in nine
counties and cities in Ili and three counties in Bortala prefecture (Bortala) in 1983. Several
outbreaks caused huge losses to local wheat yield [27,28]. By taking strict phytosanitary
measures, M. destructor was strictly limited in its initial distribution regions in Xinjiang.
Surprisingly, in recent years, M. destructor repeatedly erupted in Bortala [28]. Compared
with the outbreaks in the early 1980s, the severe occurrence areas during the beginning of
the 21st century expanded significantly to some higher altitude areas. Because the annual
average temperature and precipitation in Xinjiang showed a fluctuating upward trend from
1961 to 2015 [29], we speculate that the expansion may be attributed to climate warming.

Species distribution models correlate the distribution data of a species with environ-
mental variables (such as the climate, soil, vegetation, altitude, and host) that correspond to
the distribution locations of the species, and the relationship between the geographical dis-
tribution of the species and environmental variables is analyzed to build models to predict
the potential distribution areas of the species under different climatic conditions [30–32].
Currently, the main species distribution models include CLIMEX, GARP, DIVA-GIS, and
MaxEnt. Different species distribution models perform differently in predicting the ge-
ographic distribution of a species [33]. The MaxEnt model is based on the maximum
entropy theory. According to the known species distribution information and correspond-
ing environmental variables, it simulates and analyzes the distribution state of the species
when the entropy reaches the maximum under restricted conditions [34]. The MaxEnt
model is less affected by sample bias, has strong stability and high accuracy, and is easy
to operate [35]; thus, it has been used increasingly in recent years [36–38]. Some studies
noted that the MaxEnt model is sensitive to sampling bias and is prone to overfitting under
default parameters, which may result in unreliable prediction results [39]; therefore, it is
necessary to optimize the model. The Akaike information criterion correction (AICc) index
is usually used to measure the goodness of the statistical model fitting to avoid over-fitting
of data [40].

Determining the geographic distribution of pests under future climate change con-
ditions is key to developing long-term management strategies [41]. Wu et al. [42] used
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CLIMEX to predict the suitable habitat of M. destructor in China under the current climatic
conditions, which provides a empirical basis for formulating prevention and control mea-
sures for M. destructor. However, it fails to reflect the changes in suitable habitats under
future climatic conditions. Therefore, in this study we aimed to use ArcGIS and MaxEnt
models in combination to (1) evaluate the main environmental factors that affect the geo-
graphical distribution of M. destructor, and (2) predict the range of the potentially suitable
habitats of M. destructor in China under the current and future climate change scenarios,
which will provide an empirical basis for the prevention and control of M. destructor.

2. Materials and Methods
2.1. Data and Processing of Species Presence Records

To obtain the occurrence record of M. destructor, we accessed two online databases, the
Global Biodiversity Information Facility (https://www.gbif.org/, accessed on 15 January
2022) and the European and Mediterranean Plant Protection Organization (https://gd.
eppo.int/, accessed on 15 January 2022). Other data were obtained by searching for
published journal literature related to M. destructor. Additionally, a field investigation was
conducted to obtain the actual distribution information in northern Xinjiang, China. The
longitude and the latitude of each distribution point were determined through the Global
Positioning System (https://www.gps-latitude-longitude.com/, accessed on 30 January
2022). Presence records with repeat latitude and longitude values, ambiguity, and missing
distribution information were deleted according to the requirements of MaxEnt [43]. Finally,
259 distribution data points were selected to establish the prediction model (Table S1).

The software, ArcGIS 10.4 (Esri, RedLands, CA, USA) was downloaded online (http://
desktop.arcgis.com/zh-cn/, accessed on 10 November 2021), and the buffer analysis method
in the software was adopted to screen and check the obtained species distribution points to
avoid overfitting owing to large spatial correlation. The buffer diameter was set to 3 km, and
when the distance between the distribution points was less than 6 km, only one of them was
retained, resulting in 258 final distribution points (Figure 1). Then, 75% of the distribution
points were randomly used as training data, and the residual 25% were set as the testing data
to predict the potential distribution area of M. destructor in China.
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2.2. Environmental Parameters

The method of obtaining and processing the environmental data used in this study
was described by Li et al. [43]. Briefly, there were a total of 67 environmental factors,
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including 19 bioclimatic variables and 48 monthly climate factors (including the monthly
maximum temperature, minimum temperature, average temperature, and precipitation),
obtained from the Global Climate Data website (version 1.4, https://www.worldclim.org,
accessed on 10 March 2022). The climate data were defined from 1970 to 1990. Four CO2
representative concentration pathways (RCPs) were published in the Fifth Assessment
Report, which was issued by the Intergovernmental Panel on Climate Change [44]. Then,
three gas emission scenarios, including RCP2.6, RCP4.5, and RCP8.5, which represent
the minimum, medium, and maximum emission scenarios, respectively, were selected to
simulate the habitat suitability distribution of M. destructor in the 2050s (2041–2060) and
2070s (2061–2080) [43]. In line with the IPCC Fifth Assessment Report, the general model
CCSM4 was used to acquire the climate data. The spatial resolution was 2.5 arc-minutes
(4.5 km2) for all the data. The specific environmental factors are shown in Table 1.

Table 1. Environmental factors for the potential geographic distribution of Mayetiola destructor.

Code Environmental Factors

Bio1 Annual mean temperature (◦C)

Bio2 Mean diurnal range (◦C)
(Monthly mean [max temp − min temp])

Bio3 Isothermality ([BIO2/BIO7] [×100])
Bio4 Temperature seasonality (standard deviation ×100) (◦C)
Bio5 Maximum temperature of the warmest month (◦C)
Bio6 Minimum temperature of the coldest month (◦C)
Bio7 Temperature annual range (BIO5-BIO6) (◦C)
Bio8 Mean temperature of wettest quarter (◦C)
Bio9 Mean temperature of driest quarter (◦C)

Bio10 Mean temperature of warmest quarter (◦C)
Bio11 Mean temperature of coldest quarter (◦C)
Bio12 Annual precipitation (mm)
Bio13 Precipitation of the wettest month (mm)
Bio14 Precipitation of the driest month (mm)
Bio15 Precipitation seasonality (coefficient of variation)
Bio16 Precipitation of the wettest quarter (mm)
Bio17 Precipitation of the driest quarter (mm)
Bio18 Precipitation of the warmest quarter (mm)
Bio19 Precipitation of the coldest quarter (mm)
Tmin Average monthly minimum temperature (◦C)
Tmax Average monthly maximum temperature (◦C)

Tmean Average monthly mean temperature (◦C)
Prec Average monthly precipitation (mm)

The software, MaxEnt (http://biodiversityinformatics.amnh.org/open_source/maxent,
accessed on 10 November 2021, version 3.4.1) was used to eliminate the environmental factors
whose contribution rate was less than 1.0%. To overcome the overfitting of the MaxEnt
model we used the Pearson correlation coefficient analysis with the software, SPSS 19 (SPSS
Inc., Chicago, IL, USA) by discarding highly auto-correlated environmental variables in the
model [43]. When the correlation coefficient was greater than 0.9, there was a high correlation
(Table S2). Finally, nine key environmental factors were selected to model predictions of the
possible areas of suitability. The Jackknife test was performed with the MaxEnt to evaluate
the contribution of each environmental factor to the model construction [45], and the training
scores “with only one variable”, “without a variable”, and “with all the variables” were
calculated to judge the importance of the variables. The higher the score is, the greater its
importance will be.

2.3. MaxEnt Model Construction and Parameter Optimization

To optimize the MaxEnt model, the ENMeval data R package was used to adjust the
parameters of regulation multiplier (RM) and feature combination (FC), and the minimum
value of AICc index was determined as the optimal setting [11,46], establishing the final

https://www.worldclim.org
http://biodiversityinformatics.amnh.org/open_source/maxent
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model. The smaller the AICc value, the lower the complexity and the more reliable the
model [47]. AICc = 0 means the best-performing models [40].

The M. destructor default fitness index of the prediction results from the MaxEnt model
ranged from 0 to 1; the closer the values are to 1, the higher the possibility of the species’
presence. Jenks module in ArcGIS was used to evaluate the grades of suitable areas, and
the classification criteria for the grades are as follows: unsuitable (p ≤ 0.16), low-suitable
(0.16 < p ≤ 0.29), moderate-suitable (0.29 < p ≤ 0.81), and high-suitable areas (p > 0.81).

The receiver operating characteristic (ROC) curve and the area under the curve (AUC)
were used to test the accuracy of the prediction potential for the distribution of the species. The
AUC value has high reliability because it is not affected by the threshold [45]. Theoretically, the
AUC value ranges from 0 to 1, and the closer the AUC value is to 1, the greater the correlation
between the environmental variables and distribution model and the higher the accuracy of
the prediction results [48]. The grade of simulation prediction specific standard was as follows:
AUC ≤ 0.60, fail; 0.60 < AUC ≤ 0.70, poor; 0.70 < AUC ≤ 0.80, fair; 0.80 < AUC ≤ 0.90, good;
0.90 < AUC ≤ 1.0, excellent [49].

3. Results
3.1. Model Performance

Based on 258 current distribution data sets and nine environmental factors, the po-
tential geographical distribution of M. destructor in China was simulated in MaxEnt with
the default parameters (RM = 1, FC = LQHPT) and the optimized parameters (RM = 2,
FC = QH), respectively. As a result, the AUC values from the default and optimized param-
eters were 0.923 and 0.933, respectively (Figure 2), reaching an excellent level. In addition,
the delta AICc was 0 under optimized parameters but 43.941 under default parameters,
indicating that the optimized model performance was significantly improved, reducing
the complexity and avoiding overfitting. Therefore, the prediction result of the optimized
MaxEnt model was accurate and available.
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3.2. Dominant Environmental Factors Affecting Distribution

According to the contribution rate, nine environmental factors greatly influenced the
distribution range of M. destructor in the MaxEnt model (Figure 3). The nine factors had a
cumulative contribution of 99.8%, and their contribution rates from high to low were as
follows: tmin-2 (27.6%), prec-3 (22%), tmax-11 (20.5%), tmax-6 (10%), bio-15 (6.7%), bio-2
(5%), prec-11 (3.2%), bio-13 (2.5%), and bio-7 (2.3%).
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Figure 3. Percentage contribution of the nine variables. x-axis variables represent the minimum
temperature in February (tmin-2), precipitation in March (prec-3), maximum temperature in Novem-
ber (tmax-11), maximum temperature in June (tmax-6), precipitation seasonality (bio-15), mean
diurnal range (bio-2), precipitation in November (prec-11), precipitation of the wettest month (bio-13),
temperature annual range (bio-7).

The results of the Jackknife test showed that four key factors with the greatest influence
were tmax-11, tmin-2, prec-3, and bio-15 (Figure 4).
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determined by the Jackknife test.

The response curve of the four key factors is shown in Figure 5. According to the
curve of different factors, when the probability of M. destructor distribution was ≥0.16, the
suitability grade was a low-suitable distribution, tmax-11 was −2.01 to 24.92 ◦C, tmin-2
was −21.18–11.25 ◦C, prec-3 was 11.09–253.93 mm, bio-15 ranged from 0 to 93.34. When
the probability of M. destructor distribution was ≥0.29, and the suitability grade was a
moderate-suitable distribution, tmax-11 was 1.3–23.45 ◦C, and the optimum temperature
was 20.05 ◦C; tmin-2 was −17.26–8.82 ◦C, and the optimum temperature was −2.39 ◦C; prec-
3 was 23.13–203.67 mm, and the peak was reached when the rainfall reached approximately
72.69 mm. In addition, bio-15 ranged from 0 to 61.19.
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3.3. Predicting the Current Distribution of M. destructor in China

Under the current climatic conditions, the potential geographic distribution of M. destruc-
tor in China is shown in Figure 6. The suitable habitat area was 5.46 × 106 km2, accounting for
approximately 56.64% of the total area of the country, located at 25–48◦ N, 81–123◦ E, mainly
in the central and eastern regions. Specifically, the high-suitable area was 9.63 × 105 km2,
accounting for 9.99% of the total area of China, and it was mainly distributed in northern
Xinjiang, Hunan, Hubei, Chongqing, Guizhou, Sichuan, Jiangxi, Anhui, Jiangsu, Zhejiang,
Shanghai, Henan, Fujian, Taiwan, and Shaanxi province. In contrast, the moderate-suitable
area was 1.52 × 106 km2, accounting for 15.76% of the total area of China, and the low-suitable
area was 2.98 × 106 km2, accounting for 30.89% of the total area of China.

Considering that Xinjiang is the only distribution area in China, the potential distri-
bution range of M. destructor was especially analyzed, and the potential distribution of
M. destructor in Xinjiang is shown in Figure 7. Under the current climatic conditions, the
suitable distribution area was 77.12 km2, accounting for approximately 46.46% of Xinjiang’s
total area. The high-suitable area accounted for approximately 19.62% of the total suit-
able areas in Xinjiang and is mainly located in Ili Prefecture, Bortala Prefecture, Tacheng
Prefecture, Karamay City, Altay Prefecture, and Changji Prefecture.
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3.4. Predicting the Future Suitable Climatic Distribution of M. destructor in China

Compared with the potentially suitable areas of M. destructor in China under current
climate conditions, the future suitable area of the fly showed an increasing trend under
the three scenarios, RCP2.6, RCP4.5, and RCP8.5 (Figures 8 and 9). The main changes are
as follows:
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Figure 8. The predicted potential distribution area of M. destructor in China under three different
climate scenarios in the future.

Under the RCP2.6 scenario, the total suitable area would decrease by 6.24% in the
2050s (2041–2060) while increasing by 13.49% in the 2070s (2061–2080). Similarly, the high-
suitable area would decrease by 29.4% in the 2050s but expand by 9.08% in the 2070s, and
the low-suitable area would decrease by 5.51% in the 2050s and expand by 5.95% in the
2070s. In contrast, the moderate-suitable area would increase by 7.03% and 31.07% in the
2050s and 2070s, respectively (Figure 9a).

Under the RCP4.5 scenario, the total suitable area would increase by 8.58% and 16.49%
in the 2050s and 2070s, respectively. Similar to the total suitable area, the high-suitable area
would increase by 5.29% and 36.16% in the 2050s and 2070s, respectively; and the moderate-
suitable area would increase by 34.6% and 25.86% in the 2050s and 2070s, respectively.
Conversely, the low-suitable area would decrease by 3.64% in the 2050s but increase by
5.29% in the 2070s (Figure 9b).
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Under the RCP8.5 scenario, the total suitable areas would decrease by 4.04% in the
2050s while increasing by 1.65% in the 2070s. In the 2050s and 2070s, the high-suitable
area decreases by 43.63% and 71.97%, respectively. Similarly, the moderate-suitable area
increases by 24.87% and 11.1%, respectively. The low-suitable areas would decrease by
5.99% in the 2050s and expand by 20.64% in the 2070s (Figure 9c).

The potentially suitable area for M. destructor in Xinjiang in the future is shown in
Figure 10. Compared with the current conditions, the total suitable area of M. destructor in
Xinjiang tended to decrease in the 2050s but increase in the 2070s under the RCP 2.6 and
RCP 8.5 scenarios, whereas the suitable area would increase in the 2050s but decrease in
the 2070s under the RCP4.5 scenario (Figure 11). The main results were as follows:

Under the RCP2.6 scenario, the high-suitable area of M. destructor in Xinjiang increases
by 46.78% and 30.69% in the 2050s and 2070s, respectively; the moderate-suitable areas
increases by 3.74% and 12.75%, while the low suitable area decreases by 27.82% in the 2050s
and expands by 19.59% in the 2070s (Figure 11a).

Under the RCP4.5 scenario, the high-suitable area of M. destructor in Xinjiang would
decrease by 11.26% in the 2050s and increase by 17.36% in the 2070s. The moderate-suitable
area would increase by 79.21% and 37.07% in the 2050s and 2070s, respectively. In contrast,
the areas of low suitable areas would decrease by 14% and 18.02%, respectively (Figure 11b).

Under the RCP8.5 scenario, the high-suitable area of M. destructor in Xinjiang would
increase by 18.3% and 18.67% in the 2050s and 2070s, respectively. The area of moderate-
suitable areas would increase by 10.18% and 48.07%, respectively. However, the area of low
suitable areas would decrease by 57.43% and 9.59% in the 2050s and 2070s, respectively
(Figure 11c).
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In the future, as the grade of suitable habitat increases according to the prediction
results, the risk of some areas being invaded would increase. For example, part of Kizilsu
Kyrgyz Prefecture (Wuqia and Artush counties), Aksu Prefecture (Baicheng and Wensu
counties), and Kashi Prefecture (Shufu County) would change from the moderate-suitable
to high-suitable grade. In contrast, some high-suitable areas, e.g., part of the area in
Tacheng prefecture, would be downgraded to moderate-suitable owing to climatic warming,
especially under the RCP4.5 and RCP8.5 scenarios. In addition, climatic warming would
result in the southern boundary of distribution in Bayingolin County gradually moving
northward under the RCP4.5 and RCP8.5 scenarios (Figure 10).

4. Discussion
4.1. The MaxEnt Model

Prevention of invasive alien pests is more economic than post-introduction pest man-
agement [50]. While the scope of invasion of invasive species in the future is difficult to
predict [11], niche models are increasingly being used to predict the potential habitat of
invasive species, such as CLIMEX, GARP, DIVA-GIS, and MaxEnt [33]. Compared with
other models, the MaxEnt model has stronger performance and higher accuracy [51,52],
and the best prediction results when the ROC curve is used to evaluate the reliability of the
model [48,49]. In this study, we used an optimized MaxEnt model to predict the potential
distribution range of M. destructor under current and future climate conditions. The AUC
value of the optimized model was 0.933, reaching an excellent level. This suggests that the
predicted and actual geographic distribution of M. destructor were highly similar, and the
prediction results were highly reliable and accurate.

4.2. Environmental Factors Affecting the Potential Distribution of M. destructor

The distribution of a species is highly susceptible to environmental influences, and
environmental conditions directly or indirectly affect the physiological and ecological
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functions, limiting the distribution of the species [53,54]. In this study, temperature, in-
cluding the highest temperature in November (tamx-11) and the lowest temperature in
February (tmin-2), and precipitation, including the precipitation in March (prec-3) and the
precipitation variation coefficient (bio15), were the main environmental factors affecting
the distribution of M. destructor (Figure 4). Previous studies revealed that ambient tem-
perature and humidity were the two most important environmental factors affecting M.
destructor [26,55–57], suggesting that the prediction result related to the environmental
factors is credible in this study. Furthermore, the two temperature factors correspond to
the overwintering period of M. destructor, while the precipitation in March corresponds to
the pupae development stage of the overwintering generation in Xinjiang and most other
potential distribution areas [17,24,27].

In this study, tmax-11 ranged from −2.01 to 24.92 ◦C, which is suitable for M. destructor.
When the temperature was 20.05 ◦C, the probability of distribution of M. destructor reached
a maximum value, indicating the optimum temperature for M. destructor development
(Figure 5a). Tmin-2 was −21.18 to 11.25 ◦C, and the optimum temperature was −2.39 ◦C,
favorable to the presence of M. destructor. Previous studies support our predictions. Foster
and Taylor [23] suggested that the optimum temperature for M. destructor growth and
development is 21.1 ◦C. McColloch [25] reported that the third instar larvae, the major stage
to overwinter in most of the occurrence areas, can survive extreme ambient temperatures
ranging from −26.7 to 37.8 ◦C.

Ambient humidity can significantly affect the hatching of eggs, the survival, aestiva-
tion, and diapause of larvae, and the adult emergence of M. destructor [26,57]. Zhang [27]
found that the rainfall in mid-March was crucial for the occurrence of the spring popula-
tions of M. destructor in Xinjiang, China. It was observed that the precipitation in March
when it is >253.93 mm, or <11.09 mm are unsuitable for M. destructor; our results are
consistent with the previous study.

4.3. The Potential Distribution of M. destructor in China and in Xinjiang Only

In this study, the range of suitable habitats of M. destructor in China were 25–48◦ N,
81–123◦ E, with an area of 5.46 × 106 km2. This accounts for about 56.64% of China’s total
area, of which the proportions of high-, moderate-, and low-suitable areas were 9.99%,
15.76%, and 30.89%, respectively. Compared to the results predicted by Wu et al. [42] using
the CLIMEX model, the overall distribution of the suitable areas was consistent, and the
high-suitable areas were concentrated in the central and eastern regions of China. However,
there are some differences between the two prediction results, mainly in the following
aspects: (1) the area of the suitable habitats in this study was slightly smaller than that of
Wu et al. [42], and (2) the grades of some of the suitable areas were different. For example,
Wu et al. [42] found that Tibet, most of Inner Mongolia, and the whole of Heilongjiang
were low-suitable areas for M. destructor, and both the existing distribution and potentially
suitable areas in Xinjiang were low-suitable areas. In contrast, this study showed that
the northeastern part of Inner Mongolia, northern Heilongjiang, and most of Tibet were
non-suitable areas, while Xinjiang, Bortala, Ili, Tacheng, and other areas were high-suitable
areas for M. destructor (Figure 7). The difference in the prediction results of the two models
may be related to the difference in parameter selection. Nevertheless, according to some
studies, M. destructor has repeatedly erupted in the local areas of Bortala in Xinjiang, such as
in Wenquan County and Bole City [28], indicating that these areas are likely high-suitable
areas for M. destructor, which is consistent with our predictions.

In addition, under the three RCP scenarios, between 2041–2060 and 2061–2080, the
suitable occurrence range of M. destructor increases or decreases to different degrees. This
indicates that climate warming may change the suitable habitat of M. destructor in China.
Under the RCP2.6 and RCP4.5 scenarios, the range of the high-suitable area of M. destructor
showed a fluctuating upward trend, while under the RCP8.5 scenario, the area of the
high-suitable area significantly decreased (Figure 9). In Xinjiang, under the three scenarios,
the high- and moderate-suitable areas of M. destructor showed an increasing trend, and the
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areas of Tacheng, Bortala, and Ili adjacent to Kazakhstan were always high-suitable areas
(Figure 10), possibly owing to the similar climatic conditions of these regions to Kazakhstan.

According to our predictions, under the current climatic conditions, except for Xinjiang,
the potentially suitable areas of M. destructor were larger in Hunan, Chongqing, Hubei,
Anhui, Shanghai, Zhejiang, Jiangxi, Guizhou, Henan, and Jiangsu, among which Henan,
Anhui, and Jiangsu are the main wheat producing areas in China, accounting for 23.93%,
12.09%, and 10% of the total wheat planting area in China, respectively. Thus, once M.
destructor is introduced into these areas, it will pose a huge threat to wheat production.
Therefore, phytosanitary measures should be strengthened, such as prohibiting the export
of wheat crop straws, bedding, or fillers from the epidemic areas to prevent the spread of
M. destructor from Xinjiang.

According to the National Bureau of Statistics of China (http://www.stats.gov.cn/,
accessed on 1 October 2022), the annual wheat planting area in China is approximately
2.38 × 105 km2. Under the current climatic conditions, the potential distribution area of
M. destructor in China is much larger than the annual wheat planting area. Moreover,
many of these potentially suitable areas are natural pastoral areas where various Poaceae
forages grow, such as Agropyron repens, A. gaertn, and Echinochloa crusgalli, all of which
are wild hosts of M. destructor [27]. Prestidge [58] reported that M. destructor threatened
the prairie grass Bromus willdenowii, an important forage grass in the North Island of New
Zealand. Therefore, once M. destructor is introduced into these suitable areas, it may not
only affect the growth of forage grass but could also affect the development of animal
husbandry. It may also become a source of insects for the wheat planting areas adjacent to
the pastoral areas.

Currently, no M. destructor have been found in central and eastern China, the major
wheat concentration planting area in China [59]. The reason may be that the adult has a
short lifespan, usually only 1–4 days [21,60], and its migration ability is poor [61]. Also,
between the distribution area of Xinjiang and the non-occupied area, central and eastern
regions of China, there is a vast unsuitable area, for example, southeastern Xinjiang, western
Qinghai, and most of the Qinghai-Tibet Plateau, where there are many natural barriers
formed by high mountains, making it difficult for M. destructor to spread to the central and
eastern wheat areas by natural diffusion. Additionally, at present, the distribution area
of M. destructor in Xinjiang is still limited to parts of Bortala and Ili Prefecture; the main
reason may be the relatively effective control measures adopted locally.

Although MaxEnt has evident advantages for niche models, there were limitations to
the model in this study. Sixty-seven environmental variables related to temperature and
humidity were used in the study; however, the other environmental factors that affect the
distribution of M. destructor, such as the host range, natural predators, topography, and
altitude, were not considered. In addition, the feedback curve reflects the role of a single
environmental variable, while the behavior of insects is affected by multiple environmental
variables. Therefore, in future studies, the impact of multiple complex environmental
factors on M. destructor should be comprehensively considered to improve the accuracy of
the prediction results.

5. Conclusions

In this study, the MaxEnt model and ArcGIS software were used to simulate the
potential distribution areas of M. destructor in China under current and future climate
conditions predicted from three climate scenarios (RCP2.6, RCP4.5, and RCP8.5). Under
current climate conditions, the range of potential distribution areas of M. destructor were
25–48◦ N and 81–123◦ E, mainly in northern Xinjiang, central and eastern China. In the
future (2050s and 2070s), the potential distribution areas will expand under RCP2.6 and
RCP4.5 scenarios but reduce for RCP8.5 scenarios. The important environmental factors
that affect M. destructor include the maximum temperature in November (tmax-11), mini-
mum temperature in February (tmin-2), precipitation in March (prec-3), and precipitation
seasonality (bio-15).

http://www.stats.gov.cn/


Insects 2022, 13, 1052 15 of 17

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/insects13111052/s1, Table S1: Distribution data points; Table S2: Pearson
correlation coefficient.

Author Contributions: Conceptualization, T.-X.L., H.Z. and X.-S.H.; data curation, Q.M., J.-L.G.,
Y.G., Z.G. and P.L.; formal analysis, Q.M., X.-S.H. and H.Z.; funding acquisition, H.Z.; investigation,
P.L.; methodology, X.-S.H., H.Z. and T.-X.L.; project administration, H.Z.; software, Q.M. and Y.G.;
supervision, X.-S.H. and H.Z.; validation, X.-S.H., H.Z. and T.-X.L.; visualization, J.-L.G., Y.G. and
Z.G.; writing—original draft, Q.M., J.-L.G., Y.G. and Z.G.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology Assistance Program for
Developing Countries of China (KY202002018), National Modern Agricultural Industry Technology
System Project of China (CARS-03-37).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are included in the article. For the data provided in this study,
see the Sections 2.1 and 2.2 in the text.

Acknowledgments: We are grateful to Aimei Dai (Agricultural Technology Promotion Center of
Bortala Mongol Autonomous Prefecture) for the field surveys of the Hessian fly in Xinjiang, China.
We thank Yongliang Fan (Northwest A&F University) for reading and editing the manuscript. We
also thank the two anonymous reviewers for their insightful comments that helped us to improve
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sentis, A.; Desneux, N. Editorial overview: Global change: Integrating ecological and evolutionary consequences across time and

space. Curr. Opin. Insect Sci. 2019, 35, 3–6. [CrossRef] [PubMed]
2. Sattar, Q.; Maqbool, M.E.; Ehsan, R.; Akhtar, S. Review on climate change and its effect on wildlife and ecosystem. J. Environ. Biol.

2021, 6, 8–14. [CrossRef]
3. Shrestha, S. Effects of climate change in agricultural insect pest. Acta Sci. Agric. 2019, 3, 74–80. [CrossRef]
4. Commission of the European Communities. Communication from the Commission to the Council, the European Parliament, the European

Economic and Social Committee and the Committee of the Regions: Winning the Battle against Global Climate Change. COM 35 Final;
Commission of the European Communities: Brussels, Belgium, 2005.

5. Bellard, C.; Jeschke, J.M.; Leroy, B.; Mace, G.M. Insights from modeling studies on how climate change affects invasive alien
species geography. Ecol. Evol. 2018, 8, 5688–5700. [CrossRef] [PubMed]

6. Ma, C.; Ma, G.; Pincebourde, S. Survive a warming climate: Insect responses to extreme high temperatures. Annu. Rev. Entomol.
2021, 7, 163–184. [CrossRef]

7. Battisti, A.; Stastny, M.; Buffo, E.; Larsson, S. A rapid altitudinal range expansion in the pine processionary moth produced by the
2003 climatic anomaly. Glob. Chang. Biol. 2006, 12, 662–671. [CrossRef]

8. Monteith, J. Agricultural meteorology: Evolution and application. Agric. For. Meteorol. 2000, 103, 5–9. [CrossRef]
9. Aidoo, O.F.; Souza, P.G.C.; da Silva, R.S.; Santana Júnior, P.A.; Picanço, M.C.; Kyerematen, R.; Sétamou, M.; Ekes, S.; Borgemeister,

C. Climate-induced range shifts of invasive species (Diaphorina citri Kuwayama). Pest Manag. Sci. 2022, 78, 2534–2549. [CrossRef]
10. Aidoo, O.F.; Souza, P.G.C.; da Silva, R.S.; Santana Júnior, P.A.S.; Picanço, M.C.; Osei-Owusu, J.; Sétamou, M.; Ekesi, S.;

Borgemeister, C. A machine learning algorithm-based approach (MaxEnt) for predicting invasive potential of Trioza erytreae on a
global scale. Ecol. Inf. 2022, 71, 101792. [CrossRef]

11. Zhang, H.; Song, J.; Zhao, H.; Li, M.; Han, W. Predicting the distribution of the invasive species Leptocybe invasa: Combining
MaxEnt and Geodetector models. Insects. 2021, 12, 92. [CrossRef]

12. Tadesse, W.; El-Hanafi, S.; El-Fakhouri, K.; Imseg, I.; Rachdad, F.E.; El-Gataa, Z.; El-Bouhssini, M. Wheat breeding for Hessian fly
resistance at ICARDA. Crop J. 2022, in press. [CrossRef]

13. Harris, M.O.; Sandanayaka, M.; Griffin, A. Oviposition preferences of the Hessian fly and their consequences for the survival and
reproductive potential of offspring. Ecol. Entomol. 2001, 26, 473–486. [CrossRef]

14. Chen, M.S.; Liu, X.; Wang, H.; Bouhssini, M. Hessian fly (Diptera: Cecidomyiidae) interactions with barley, rice, and wheat
seedlings. J. Econ. Entomol. 2009, 102, 1663–1672. [CrossRef] [PubMed]

15. Naber, N.; Bouhssini, M.; Labhilili, M.; Udupa, S.; Nachit, M.M.; Baum, M.; Lhaloui, S.; Benslimane, A.; Abbouyi, H. Genetic
variation among populations of the Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae), in Morocco and Syria. Bull. Entomol.
Res. 2000, 90, 245–252. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/insects13111052/s1
https://www.mdpi.com/article/10.3390/insects13111052/s1
http://doi.org/10.1016/j.cois.2019.09.006
http://www.ncbi.nlm.nih.gov/pubmed/31629476
http://doi.org/10.17352/ojeb.000021
http://doi.org/10.31080/ASAG.2019.03.0727
http://doi.org/10.1002/ece3.4098
http://www.ncbi.nlm.nih.gov/pubmed/29938085
http://doi.org/10.1146/annurev-ento-041520-074454
http://doi.org/10.1111/j.1365-2486.2006.01124.x
http://doi.org/10.1016/S0168-1923(00)00114-3
http://doi.org/10.1002/ps.6886
http://doi.org/10.1016/j.ecoinf.2022.101792
http://doi.org/10.3390/insects12020092
http://doi.org/10.1016/j.cj.2022.07.021
http://doi.org/10.1046/j.1365-2311.2001.00344.x
http://doi.org/10.1603/029.102.0434
http://www.ncbi.nlm.nih.gov/pubmed/19736782
http://doi.org/10.1017/S0007485300000365
http://www.ncbi.nlm.nih.gov/pubmed/10996865


Insects 2022, 13, 1052 16 of 17

16. Barnes, H.F. Gall Midges of Economic Importance. Vol. VII. Gall Midges of Cereal Crops; Crosby Lockwood & Son: London, UK, 1956;
Volume 7, pp. 261–526.

17. Wellso, S.G. Aestivation and phenology of the Hessian fly (Diptera: Cecidomyiidae) in Indiana. Environ. Entomol. 1991, 20,
795–801. [CrossRef]

18. Schmid, R.B.; Allen, K.; Giles, K.L.; Brian, P.M. Hessian fly (Diptera: Cecidomyiidae) biology and management in wheat. J. Integr.
Pest Manag. 2018, 9, 14. [CrossRef]

19. Gagne, R.J.; Hatchett, J.H. Instars of the Hessian fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am. 1989, 82, 73–79. [CrossRef]
20. Whitworth, R.J.; Sloderbeck, P.E.; Davis, H.; Cramer, G. Kansas crop pests: Hessian fly. Kans. State Univ. Agric. Exp. Stn. Coop. Ext.

Serv. 2009, MF-2866, 1–3.
21. Bergh, J.C.; Harris, M.O.; Rose, S. Temporal patterns of emergence and reproductive-behavior of the Hessian fly (Diptera:

Cecidomyiidae). Ann. Entomol. Soc. Am. 1990, 83, 998–1004. [CrossRef]
22. Withers, T.M.; Harris, M.O.; Madie, C. Dispersal of mated female Hessian flies (Diptera: Cecidomyiidae) in field arrays of host

and nonhost plants. Environ. Entomol. 1997, 26, 1247–1257. [CrossRef]
23. Foster, J.E.; Taylor, P.L. Thermal-unit requirements for development of the Hessian fly under controlled environments. Environ.

Entomol. 1975, 4, 195–202. [CrossRef]
24. Buntin, G.; Chapin, J.W. Biology of Hessian fly (Diptera: Cecidomyiidae) in the southeastern United States: Geographic variation

and temperature-dependent phenology. J. Econ. Entomol. 1990, 83, 1015–1024. [CrossRef]
25. McColloch, J.W. The Hessian fly in Kansas. Kans. Agric. Exp. Stn. Bull. 1923, 11, 57–58.
26. Stuart, J.J.; Chen, M.S.; Shukle, R.; Harris, M.O. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopathol. 2012, 50, 339–357.

[CrossRef]
27. Zhang, X.Z. The discovery and investigation of Mayetiola destructor in Xinjiang. J. Plant Protect. 1983, 10, 1–10. (In Chinese) [CrossRef]
28. Dai, A.M.; Liang, Q.L.; Zhang, H.; Lu, P. Outbreak and the reasons of Hessian fly in Bortala Mongol Autonomous Prefecture,

Xinjiang. Plant Quar. 2014, 28, 60–63. (In Chinese) [CrossRef]
29. Hu, W.F.; Chen, L.L.; Yao, J.Q.; Ji, S.Y.; Sun, N. Analysis of the temporal and spatial evolution of temperature and precipitation in

Xinjiang under the background of climate change. J. Fuyang Norm. Univ. Nat. Sci. 2020, 37, 90–95. [CrossRef]
30. Franklin, J. Species distribution models in conservation biogeography: Developments and challenges. Divers. Distrib. 2013,

19, 1217–1223. [CrossRef]
31. Li, Y.; Cao, W.; He, X.; Chen, W.; Xu, S. Prediction of suitable habitat for lycophytes and ferns in Northeast China: A case study on

Athyrium Brevifrons. Chin. Geogr. Sci. 2019, 29, 1011–1023. [CrossRef]
32. Xu, D.; Zhuo, Z.; Wang, R.; Ye, M.; Pu, B. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling.

Glob. Ecol. Conserv. 2019, 19, e00691. [CrossRef]
33. Sarquis, J.A.; Cristaldi, M.A.; Arzamendia, V.; Bellini, G.; Giraudo, A.R. Species distribution models and empirical test: Comparing

predictions with well-understood geographical distribution of Bothrops alternatus in Argentina. Ecol. Evol. 2018, 8, 10497–10509.
[CrossRef] [PubMed]

34. Wang, R.L.; Wang, M.T.; Luo, J.D.; Liu, Y.; Wu, S.Q.; Wen, G.; Li, Q. The analysis of climate suitability and regionalization of
Actinidia deliciosa by using MaxEnt model in China. J. Yunnan Agric. Univ. Nat. Sci. 2019, 34, 522–531. [CrossRef]

35. Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of
different species distribution modeling methods. Ecography 2006, 29, 773–785. [CrossRef]

36. Ji, W.; Gao, G.; Wei, J. Potential global distribution of Daktulosphaira vitifoliae under climate change based on MaxEnt. Insects 2021,
12, 347. [CrossRef] [PubMed]

37. Song, J.; Zhang, H.; Li, M.; Han, W.; Yin, Y.; Lei, J. Prediction of spatiotemporal invasive risk of the red import fire ant, Solenopsis
invicta (Hymenoptera: Formicidae), in China. Insects 2021, 12, 874. [CrossRef] [PubMed]

38. Pascoe, E.L.; Marcantonio, M.; Caminade, C.; Foley, J.E. Modeling potential habitat for Amblyomma tick species in California.
Insects 2019, 10, 201. [CrossRef] [PubMed]

39. Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating model complexity and spatial sampling bias into ecological niche
models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 2014, 20, 334–343. [CrossRef]

40. Jia, X.; Wang, C.; Jin, H.; Zhao, Y.; Liu, L.J.; Chen, Q.H.; Li, B.Y.; Xiao, Y.; Yin, H. Assessing the suitable distribution area of Pinus
koraiensis based on an optimized MaxEnt model. Chin. J. Ecol. 2019, 38, 7. [CrossRef]

41. Zou, Y.; Ge, X.; Guo, S.; Zhou, Y.; Wang, T.; Zong, S. Impacts of climate change and host plant availability on the global distribution
of Brontispa longissima (Coleoptera: Chrysomelidae). Pest Manag. Sci. 2020, 76, 244–256. [CrossRef]

42. Wu, W.; Li, Z.H.; Hang, X. The predictive research on the potential adaptable areas of Mayetiola destructor in China based on
CLIMEX. Plant Quar. 2015, 29, 20–24. (In Chinese)

43. Li, X.Y.; Xu, D.P.; Jin, Y.W.; Zhuo, Z.H.; Yang, H.J.; Hu, J.M.; Wang, R.L. Predicting the current and future distributions of Brontispa
longissima (Coleoptera: Chrysomelidae) under climate change in China. Glob. Ecol. Conserv. 2021, 25, e01444. [CrossRef]

44. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013.

45. Li, A.; Wang, J.; Wang, R.; Yang, H.; Yang, W.; Yang, C.; Jin, Z. MaxEnt modeling to predict current and future distributions of
Batocera lineolata (Coleoptera: Cerambycidae) under climate change in China. Ecoscience 2019, 27, 23–31. [CrossRef]

http://doi.org/10.1093/ee/20.3.795
http://doi.org/10.1093/jipm/pmy008
http://doi.org/10.1093/aesa/82.1.73
http://doi.org/10.1093/aesa/83.5.998
http://doi.org/10.1093/ee/26.6.1247
http://doi.org/10.1093/ee/4.2.195
http://doi.org/10.1093/jee/83.3.1015
http://doi.org/10.1146/annurev-phyto-072910-095255
http://doi.org/10.13802/j.cnki.zwbhxb.1983.01.001
http://doi.org/10.19662/j.cnki.issn1005-2755.2014.04.013
http://doi.org/10.14096/j.cnki.cn34-1069/n/1004-4329(2020)03-0090-06
http://doi.org/10.1111/ddi.12125
http://doi.org/10.1007/s11769-019-1085-4
http://doi.org/10.1016/j.gecco.2019.e00691
http://doi.org/10.1002/ece3.4517
http://www.ncbi.nlm.nih.gov/pubmed/30464822
http://doi.org/10.12101/j.issn.1004-390X(n).201711039
http://doi.org/10.1111/j.0906-7590.2006.04700.x
http://doi.org/10.3390/insects12040347
http://www.ncbi.nlm.nih.gov/pubmed/33924706
http://doi.org/10.3390/insects12100874
http://www.ncbi.nlm.nih.gov/pubmed/34680643
http://doi.org/10.3390/insects10070201
http://www.ncbi.nlm.nih.gov/pubmed/31288467
http://doi.org/10.1111/ddi.12160
http://doi.org/10.13292/j.1000-4890.201908.017
http://doi.org/10.1002/ps.5503
http://doi.org/10.1016/j.gecco.2020.e01444
http://doi.org/10.1080/11956860.2019.1673604


Insects 2022, 13, 1052 17 of 17

46. Zhu, G.P.; Qiao, H.J. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers.
Conserv. 2016, 24, 1189–1196. [CrossRef]

47. Liu, X.Y.; Zhao, C.Y.; Li, F.; Zhu, J.F.; Gao, K.X.; Hu, Y.P. Prediction of potential geographical distribution of Solenopsis invicta
Buren in China based on MaxEnt. Plant Quar. 2019, 33, 70–76. (In Chinese) [CrossRef]

48. Wang, Y.S.; Xie, B.Y.; Wan, F.H.; Xiao, Q.M.; Dai, L.Y. Application of ROC curve analysis in evaluating the performance of alien
species’ potential distribution models. Biodiv. Sci. 2007, 4, 365–372.

49. Zhang, X.; Li, X.; Feng, Y.; Liu, Z. The use of ROC and AUC in the validation of objective image fusion evaluation metrics. Signal
Process. 2015, 115, 38–48. [CrossRef]

50. Waage, J.K.; Reaser, J.K. A global strategy to defeat invasive species. Science. 2001, 292, 1486. [CrossRef]
51. Zeng, Y.; Low, B.W.; Yeo, D.C.J. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish.

Ecol. Model. 2016, 341, 5–13. [CrossRef]
52. Babasaheb, B.F.; Shashank, P.R.; Suroshe, S.S.; Chandrashekar, K.; Meshram, N.M.; Timmanna, H.N. Invasion risk of the South

American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India: Predictions based on MaxEnt ecological
niche modelling. Int. J. Trop. Insect Sci. 2020, 40, 561–571. [CrossRef]

53. Soberon, J.; Peterson, A.T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers.
Inform. 2005, 2, 1–10. [CrossRef]

54. Soberon, J.M. Niche and area of distribution modeling: A population ecology perspective. Ecography 2010, 33, 159–167. [CrossRef]
55. Hamilton, E.W. Hessian fly larval strain responses to simulated weather conditions in the greenhouse and laboratory. J. Econ.

Entomol. 1966, 59, 535–538. [CrossRef]
56. Anonymous. The Hessian Fly; Xinjiang People’s Press: Urumqi, China, 1986; pp. 34–46.
57. Morgan, G.; Sansone, C.; Knutson, A. Hessian fly in Texas wheat. Tex. AM Agrilife Ext. Serv. Ext. Pub. 2005, E-350, 1–7. Available

online: https://hdl.handle.net/1969.1/87300 (accessed on 15 October 2022).
58. Prestidge, R.A. Population biology and parasitism of Hessian fly (Mayetiola destructor) (Diptera: Cecidomyiidae) on Bromus

willdenowii in New Zealand. N. Z. J. Agric. Res. 1992, 35, 423–428. [CrossRef]
59. Wang, L.M.; Liu, J. Analysis of spatial-temporal dynamic change of wheat planting structure of China. Chin. Agric. Sci. Bull. 2019,

35, 12–23.
60. Harris, M.O.; Rose, S. Factors influencing the onset of egglaying in a cecidomyiid fly. Physiol. Entomol. 1991, 16, 183–190. [CrossRef]
61. McColloch, J.W. Wind as a factor in the dispersion of the Hessian fly. Econ. Entomol. 1917, 10, 162–168. [CrossRef]

http://doi.org/10.17520/biods.2016265
http://doi.org/10.19662/j.cnki.issn1005-2755.2019.06.016
http://doi.org/10.1016/j.sigpro.2015.03.007
http://doi.org/10.1126/science.292.5521.1486a
http://doi.org/10.1016/j.ecolmodel.2016.09.019
http://doi.org/10.1007/s42690-020-00103-0
http://doi.org/10.17161/bi.v2i0.4
http://doi.org/10.1111/j.1600-0587.2009.06074.x
http://doi.org/10.1093/jee/59.3.535
https://hdl.handle.net/1969.1/87300
http://doi.org/10.1080/00288233.1992.10421350
http://doi.org/10.1111/j.1365-3032.1991.tb00555.x
http://doi.org/10.1093/jee/10.1.162a

	Introduction 
	Materials and Methods 
	Data and Processing of Species Presence Records 
	Environmental Parameters 
	MaxEnt Model Construction and Parameter Optimization 

	Results 
	Model Performance 
	Dominant Environmental Factors Affecting Distribution 
	Predicting the Current Distribution of M. destructor in China 
	Predicting the Future Suitable Climatic Distribution of M. destructor in China 

	Discussion 
	The MaxEnt Model 
	Environmental Factors Affecting the Potential Distribution of M. destructor 
	The Potential Distribution of M. destructor in China and in Xinjiang Only 

	Conclusions 
	References

